
Diving into Petascale Production File Systems
through Large Scale Profiling and Analysis

Feiyi Wang†, Hyogi Sim†, Cameron Harr∗, Sarp Oral†

Lawrence Livermore National Laboratory∗Oak Ridge National Laboratory†

ABSTRACT
As leadership computing facilities grow their storage capacity into
the multi- petabyte range, the number of files and directories leap
into the scale of billions. A complete profiling of such a parallel
file system in a production environment presents a unique chal-
lenge. On one hand, the time, resources, and negative performance
impact on production users can make regular profiling difficult.
On the other hand, the result of such profiling can yield much
needed understanding of the file system’s general characteristics,
as well as provide insight to how users write and access their data
on a grand scale. This paper presents a lightweight and scalable
profiling solution that can efficiently walk, analyze, and profile
multi-petabyte parallel file systems. This tool has been deployed
and is in regular use on very large-scale production parallel file
systems at both Oak Ridge National Lab’s Oak Ridge Leadership
Facility (OLCF) and Lawrence Livermore National Lab’s Livermore
Computing (LC) facilities. We present the results of our initial anal-
ysis on the data collected from these two large-scale production
systems, organized into three use cases: (1) file system snapshot
and composition, (2) striping pattern analysis for Lustre, and (3)
simulated storage capacity utilization in preparation for future file
systems. Our analysis shows that on the OLCF file system, over 96%
of user files exhibit the default stripe width, potentially limiting
performance on large files by underutilizing storage servers and
disks. Our simulated block analysis quantitatively shows the space
overhead when doing a forklift system migration. It also reveals
that due to the difference in system compositions (OLCF vs. LC), we
can achieve better performance and space trade-offs by employing
different native file system block sizes.

1 INTRODUCTION
Present-day large-scale United States Department of Energy (DOE)
High Performance Computing (HPC) facilities, such as Oak Ridge
Leadership Computing Facility (OLCF) [10], Livermore Computing
Center (LC) [14], Argonne Leadership Computing Facility (ALCF)
[1], and National Energy Research Scientific Computing Center
(NERSC) [8], are equipped with parallel file system capacities in tens
of petabytes. Next generation parallel file systems at these facilities
will have capacities in the hundreds of petabytes. Understanding
the file system metadata can provide useful insight into how these
file systems are used and how to develop and deploy better file
systems for the future [16, 17, 20, 24]. However, a tool for effectively

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
PDSW–DISCS’17, November 12–17, 2017, Denver, CO, USA

analyzing themetadata contents of these large-scale file systems has
been lacking due to the technical challenges of efficiently profiling
billions of file system entries.

Taking one of the most widely deployed parallel file systems,
Lustre, as an example, there is little information provided regarding
the characteristics of the files beyond overall health status, inode
usage, and other common attributes. Third party tools designed for
file system analysis at this scale are few in number. Robinhood [3] is
perhaps the best known tool and is considered a policy engine rather
than a profiler, providing policy-based management. Policy engines
provide more functionality than fprof but operate by collecting
and storing the file system metadata in a database. To collect that
metadata, Robinhood can either scan a POSIX file system or connect
to Lustre’s MDT changelog [7] to log all file system changes to
its database. Scanning and populating the Robinhood database
can take an excessively long time with a moderately to heavily-
used file system. For example, we observed processing rates of
50-250 files/sec when using Robinhood with twelve scan threads
on production file systems in LC, a rate that would take over two
months to finish just one of LC’s larger file systems. Additionally,
simultaneous I/O from thousands of users can cause the DB to fall
behind the active changelog and fail to catch up. Newer versions of
Robinhood reportedly provide greatly improved performance, but
have not been tested by LC or OLCF.

In this paper, we present fprof, a profiling tool that addresses the
aforementioned problems. Specifically, fprof is scalable and can run
in parallel on multiple nodes to speed up the profiling process. In
addition, fprof is portable, using only standard Portable Operating
System Interface (POSIX) file system features with no file system-
specific features. fprof is also flexible in that HPC administrators
can run it on demand. Besides the design and implementation of
fprof, in this paper we present the profiling results of two large-
scale production parallel file systems deployed at OLCF and LC. In
particular, our analysis focuses on three use cases:
File system snapshot and characterization The file size, file
quantity, and file attribute information generated by fprof describe
the characteristics of the current file system and provide vital input
into how users utilize the file system. That user behavior in turn
helps us project the requirements for future file system designs.
For instance, the file size distribution results of the two profiled
file systems (§ 3.1) revealed distinct application access patterns
between the two sites, leading to separate block size settings.
Stripe pattern analysis Lustre allows users to control how files
are striped across multiple storage targets, i.e., stripe count. How-
ever, our analysis reveals over 96% of the files do not exploit this
feature at all. Using the default stripe count may inhibit the po-
tential performance increase from wider stripe count, particularly
for large files. Such user behavior justifies the need for intelligent
features, such as Progressive File Layout (PFL) in Lustre [15].

PDSW–DISCS’17, November 12–17, 2017, Denver, CO, USA F. Wang et al.

Space utilization for future file systems Using fprof, we can
quantitatively address the following what-if question for future file
system planning: if we were to migrate the entire Lustre-based file
system to a GPFS-based file system [2], what would be the space
utilization impact, considering different block allocation strategies
of the two file systems? The results demonstrably impacted future
system planning and acquisitions.

2 DESIGN AND IMPLEMENTATION
fprof 1 takes a target directory path as an argument and profiles
all the entries under the target directory. The target can be the root
or a subdirectory of a file system. The basic profiling results from
fprof include the histogram of files according to their sizes and
the statistical summary of the file system, such as the number of
files/directories, average file size, maximum number of entries in a
directory, top N largest files in the system, etc. Figure 1 provides a
snapshot of the example output. In addition, fprof also provides a
block-usage space consumption conversion tool. We believe this
feature is particularly useful for scenarios where the contents of a
given path is transferred from one parallel file system technology
to another, e.g., Lustre to GPFS.

2.1 Design Overview
At the core of the lightweight and scalable design of fprof is a
parallelization engine (PE). The primary function of the PE is to
distribute the workload evenly across a cluster of machines to scan
the entire file system in an efficientmanner. The ability to parallelize
the workload is paramount to tackling the system at scale.

Specifically, we adopt a work stealing algorithm for the workload
distribution and the Dijkstra-Scholten algorithm for the distributed
termination, as suggested for a parallel tree walk [21, 23]. In the
work stealing algorithm, each worker process maintains its inde-
pendent work queue and processes work units as needed. When the
work queue becomes empty, it randomly picks one or more of its
peers and sends out a work request. A busy worker process then
responds by allocating a portion of work units in its work queue to
the requester. The highlight of this load distribution method lies
in its self-balancing nature, i.e., eventually the workload will be
evenly distributed regardless of the initial distribution. It gracefully
addresses the runtime load imbalance caused by the heterogeneity
of the cluster, e.g., stragglers due to weaker processing power. Since
there is not a central coordinator (master), for this fully distributed
paradigm to work, we need a mechanism to detect the termina-
tion condition when all work items in all work queues are finished.
In our current implementation, we adopt the Dijkstra-Scholten
algorithm [18] for detecting the completion of the work.

2.2 Implementation
Here, we summarize implementation related issues that we have
encountered while developing fprof.

First, the length of the local work queue for each worker process
is dynamic and dependent on the number of files within a directory
and how directories are laid out. We found that multiple sibling
directories, each with millions of files, can potentially exhaust the
local work queue: e.g., the largest single directory at LC contains
1 fprof is open source and publicly available at https://github.com/olcf/pcircle.

Running parameters:
Num of hosts: 12
Num of processes: 84
Syslog report: no
Stripe analysis: no
Root path: ['/p/lscratche ']
...

Fileset histogram:
Buckets Num of Files Size %(Files) %(Size)

<= 4.00 KiB 405 ,101 ,078 478.02 GiB 30.17% 0.01%
<= 8.00 KiB 125 ,265 ,283 711.78 GiB 9.33% 0.02%

...
> 4.00 TiB 5 50.87 TiB 0.00% 1.31%

fprof epilogue:
Directory count: 45 ,265 ,268
Sym links count: 10 ,430 ,723
Hard linked files: 309 ,219
File count: 1 ,342 ,586 ,738
Sparse files: 824 ,561 ,829
Avg file size: 2.83 MiB
Max files within dir: 26 ,546 ,573
...

Figure 1: Snippet of fprof output for the LC file system.

over 26 million files. To curtail the size of the local work queue,
fprof inserts newly scanned files to the front of the queue and
newly scanned directories to the tail of the queue. This optimization,
together with a double-ended queue structure, gives priority to
files over directories and provides O(1) efficiency for insert with a
negligible cost of increased memory overhead.

In addition, after profiling file systems with fprof, we found that
sparse files can be sufficiently pervasive to affect fprof’s usage ac-
counting and therefore needed to be taken into account. Detecting
sparse files is not trivial and there exist three major approaches:
(1) using the FILEMAP directive of the ioctl(2) operation; (2)
using the SEEK_HOLE directive of the lseek(2) function, and (3)
using the st_blocks and st_size directives of the stat(2) function.
Although the first two approaches can efficiently detect holes, they
are not supported uniformly across file systems. For instance, the
SEEK_HOLE method is not supported with ext4 and NFS file sys-
tems in Linux kernels older than version 3.0; FUSE didn’t support
the feature until Linux 4.5. In our current implementation, we com-
pare the file size with the st_blocks value from the stat(2) system
call, which specifies the number of 512B blocks allocated. We have
found that the stat(2) based approach is the most portable and re-
liable across various system environments. The stat(2) approach
has its own shortcoming, however, in that it identified as sparse
those files that were merely compressed by the ZFS file system that
underlies LC’s Lustre implementations.

2.3 Deployment
Even though fprof is designed to run with multiple processes on
multiple nodes to scale, there exist practical concerns and con-
straints for deploying and running on a production system. For
instance, due to the architecture of centralized metadata manage-
ment in Lustre [22], excessive metadata scanning operations might
adversely impact the foreground file system operations. To this end,
OLCF ran fprof using a single client node for profiling the Lustre-
based Spider II file system, while at LC, fprof was run on multiple
nodes, resulting in a significant performance improvement. Caution
should be taken with either model to avoid exhausting resources on
the client or metadata nodes. For instance, running fprof on a single
host caused the Lustre client to crash with anOut OfMemory (OOM)

https://github.com/olcf/pcircle

Diving into Petascale Production File Systems
through Large Scale Profiling and Analysis PDSW–DISCS’17, November 12–17, 2017, Denver, CO, USA

OLCF (atlas1 & atlas2) LC (lscratche)

File system Lustre Lustre
Back-end local file system ldiskfs ZFS
Capacity 32 PB 5.7 PB

File count 0.92 billion 1.3 billion
Directory count 115 million 45 million
Hard link count 4,390,426 309,219
Symbolic link count 7,951,784 10,430,723
Sparse file count 3,240,848 824,561,829
Max # of files in a directory 6,006,529 26,646,573

Average file size 27.67 MB 2.83 MB
Largest files (top N) 32 TB 12.77 TB

Table 1: A summary of two target parallel file systems. The usage
patterns are notably different between the two HPC centers.

failure. We found that in Lustre the number of client-side locks to
control the Least Recently Used (LRU) cache size is set to “unlimited”
by default, leading to memory exhaustion when scanning billions of
entries in the file system. Fortunately, this can be easily avoided by
manually limiting client LRU caches with the following command:
lctl set_param ldlm.namespaces.*.lru_size=2000.

3 PROFILING AND ANALYSIS
We ran fprof on the OLCF’s center-wide Spider II file system[22]
and the lscratche file system in LC [6] in May 2017. Note the differ-
ence in file system architectures of the two HPC centers outlined in
Table 1. The Spider II file system in OLCF consists of two symmet-
ric 16 PB Lustre file systems, atlas1 and atlas2, that are built upon
Object Storage Targets (OSTs) formatted with the ldiskfs filesystem.
In contrast, LC hosts multiple classified and unclassified Lustre file
systems using OSTs formatted with the ZFS file system [9]. The
lscratche file system, used in this study, is one of the unclassified
Lustre file systems providing a 5.7 PB name space (Table 1).

3.1 File System Snapshot and Characterization
Table 1 summarizes the basic profiling results with fprof from two
target file systems. One can clearly see that the two file systems
exhibit significantly different workload patterns. Specifically, the
LC file system has approximately 41% more files despite having a
capacity only 18% of that in OLCF. In contrast, the OLCF file system
has two and a half times the number of directories and an average
file size that is nearly ten times greater than on lscratche. In addition,
a single directory in the LC file system holds over 26 million entries,
four times more than the one in the OLCF file system, as single large
directories are generally frowned upon at OLCF. Therefore, we can
conclude that applications at LC tend to create many small files in
a directory compared to applications at OLCF, which create fewer
but larger files. As a note, both centers have a misleadingly high
number of directories due to purge policies, which only remove
files, leaving in place many empty directories.

Another notable observation is the stark difference in the number
of sparse files on the two targeted file systems. On LC’s lscratche,
63% of the regular files are identified as sparse files while only
0.35% of the files on the OLCF file system are sparse. An initial
investigation into this disparity suggested that particular libraries

or applications created such files. However, this could not account
for the large number of other, seemingly random, files that were
characterized as sparse. Further investigation led to a very different
culprit: compression. LC enables ZFS compression on all the Lustre
OSTs, meaning all file objects will be compressed when possible.
ZFS aggressively compresses empty spaces in files, and this results
in a mismatch in allocated blocks versus the apparent file size.

To verify this effect, we created two 1000 MB files in the ZFS-
backed Lustre file system with the dd utility. The first file (randjunk)
was created using random input from /dev/urandom while the sec-
ond (zerojunk) was filled with zeros from /dev/zero, which makes
the file highly compressible. Using the stat(2) system call, we
then observed the file size (st_size) and the number of allocated
blocks (st_blocks) for each file. Although both files exhibited the
same file size (1,048,576,000 bytes), the number of allocated blocks
was different. Specifically, ZFS could compress the zerojunk file all
the way down to a single 512 B block, whereas randjunk, which was
essentially non-compressible, consumed 2,049,393 blocks. In such a
case as the zerojunk file that is heavily compressed, the allocated
blocks appear much lower than the size suggests, resulting in the
file being falsely labeled sparse. Further development of the fprof
utility will allow the option to search for holes in the file to more
accurately determine sparseness.

Next, we further analyze the file size distributions in the two
target file systems. Figure 2(a) and (b) depict the file count and
space occupancy per file size for both the OLCF and LC file systems,
respectively. Here, we consider files smaller than 1MB as small
and files greater than 1GB as large. We clearly observe that small
files dominate the file count in both file systems, i.e., over 90% and
87% in the OLCF and LC file systems, respectively. However, the
two file systems exhibit different trends in the space occupancy
distribution. Specifically, in the OLCF file system, 84.6% of the
total capacity is occupied by the large files that are greater than
1GB, while only 42.5% are occupied by such files in the LC file
system. As we see in Figure 2(b), many files in the LC file system
are positioned in the middle range, i.e., from 1MB to 1GB. The
different profiling results in the two target file systems suggest that
each center exhibits different file system workloads and has distinct
file system requirements. Such insights from the profiling can be a
valuable guidance in designing and planning future file systems.

3.2 Striping Pattern Analysis
Striping is a mechanism for a parallel file system to distribute data
across multiple storage targets to improve parallel performance. For
Lustre, the stripe count has been a perennial cause of performance
issues and an added burden for the end user [5, 13]. Prior to Lustre
2.10, a stripe count must be specified upon the creation of a file
(or directly inherited from the parent directory) and can’t change
afterward unless explicitly restriped, an expensive copy operation
of the entire file. At OLCF, the default stripe count is set as four. The
performance implication is that the file’s data will be served from
four OSTs, even for very large files, if the default stripping pattern
is used. This limits per-file performance unless a larger stripe count
is specified by the user. LC, however, uses a default stripe count
of one on its production file systems, writing files to a single OST.
This setting is justified by the overwhelmingly small file makeup

PDSW–DISCS’17, November 12–17, 2017, Denver, CO, USA F. Wang et al.

 0

 10

 20

 30

 40
90.78%: Small files
(<1MB)

P
e

rc
e

n
ta

g
e

 (
C

o
u

n
t)

 0

 10

 20

 30

 40

4
 K

B

8
 K

B

1
6

 K
B

3
2

 K
B

6
4

 K
B

1
2

8
 K

B

2
5

6
 K

B

5
1

2
 K

B

1
 M

B

2
 M

B

4
 M

B

1
6

 M
B

3
2

 M
B

6
4

 M
B

1
2

8
 M

B

2
5

6
 M

B

5
1

2
 M

B

1
 G

B

4
 G

B

6
4

 G
B

1
2

8
 G

B

2
5

6
 G

B

5
1

2
 G

B

1
 T

B

4
 T

B

>
4

 T
B

84.60%: Large files
(>1GB)

P
e

rc
e

n
ta

g
e

 (
S

p
a

c
e

)

(a) OLCF

 0

 10

 20

 30

 40
87.84%: Small files
(<1MB)

P
e

rc
e

n
ta

g
e

 (
C

o
u

n
t)

 0

 10

 20

 30

 40

4
 K

B

8
 K

B

1
6

 K
B

3
2

 K
B

6
4

 K
B

1
2

8
 K

B

2
5

6
 K

B

5
1

2
 K

B

1
 M

B

2
 M

B

4
 M

B

1
6

 M
B

3
2

 M
B

6
4

 M
B

1
2

8
 M

B

2
5

6
 M

B

5
1

2
 M

B

1
 G

B

4
 G

B

6
4

 G
B

1
2

8
 G

B

2
5

6
 G

B

5
1

2
 G

B

1
 T

B

4
 T

B

>
4

 T
B

42.47%: Large files
(>1GB)

P
e

rc
e

n
ta

g
e

 (
S

p
a

c
e

)

(b) LC

Figure 2: File size distribution in OLCF and LC.

of LC file systems: nearly 88% of files on lscratche are less than or
equal to 1 MB in size, the size of one stripe.

With fprof, we have implemented striping analysis which takes
a threshold on file size and examines striping information for all
files above it. On April 21st and 25th of 2017, we ran a stripe anal-
ysis on OLCF’s center-wide file system, gathering and combining
stripe information for all files at and over 4 GB in size. We set this
threshold for two reasons. First, reading the stripe can be an expen-
sive operation, and we want to minimize the overall performance
impact on a live production system. Second, we believe that 4 GB
and above is a reasonable line to draw - applications should pay
attention to the data layout once this threshold is crossed. Figure 3
summarizes the results using the scatter plot of file size against
stripe width. Each data point is further visually enhanced by the
size component, where the larger dots indicate a larger file size.

All together we obtained over 513,740 data points allowing us
to make the following observations. On both file systems (atlas1
and atlas2), each supporting a maximum of 1,008 OSTs (or stripes),
only 21 distinct stripe counts are in use. An overwhelming majority
of the files (96.83%) stayed with the default setting. That is, only
3.17% of the files make use of a different stripe pattern. Among
those with changed file layout, 2,262 of the files have set the stripe
count to 1. Initially we thought these must be test datasets for
experimental purposes, but upon close examination, realized they

Figure 3: Correlating file size and stripe width on Spider II

are not - the average file size is 14 GB, with a maximum file size
of 235 GB. We speculate that applications may perform a 1:1, or
file-per-process write. Restricting the stripe width in such cases can
avoid contention on OSTs and increase the overall I/O performance.

If we examine the relationship between the file size and its stripe
count, as demonstrated in Figure 3, we cannot establish a positive
correlation. That is, though there are a few cases where large files
are striped larger, we also observe the opposite - where very large
files stay with the default. In fact, we see one of the largest files on
Spider II, a single 32 TB file, use the default striping of 4. Further-
more, even for users making a conscious choice of changing the
file layout, there is not a clear correlation on the file size and choice
of stripe width. For example, within each chosen stripe width there
are many outliers: any data point 3 interquartile ranges (IQR) below
the first quartile or above the third quartile. One extreme case in
point: for users or applications using the maximum stripe width
of 1,008, the median file size is 4.7 GB while the mean is 26.9 GB.
This cannot justify the use of extreme wide stripe count; on the
contrary, it most likely hurts the I/O performance.

In summary, our striping analysis shows that the majority of
power users at OLCF (applications writing out the largest volumes
of data) don’t follow the established performance link between
stripe count and file size, which suggests that more proactive user
outreach and education are needed. In addition, our observation
also accentuates the urgent need for deploying recently developed
Lustre Progressive File Layout (PFL) [15] into production systems.

3.3 Block Space Analysis of Future File System
For the past decade, OLCF designed and deployed three generations
of storage and file systems, all of which are built upon Lustre.
However, the upcoming Summit computer [11] will be serviced by
a GPFS-based, center-wide Spider III file system. LC’s upcoming
Sierra system [4] will have a similar GPFS file system. The build
proposals for Summit and Sierra suggest employing a large file
system block size for better performance. Given the difference
between Lustre and GPFS on block management, there have been
concerns on how efficient or inefficient disk usage might be. To

Diving into Petascale Production File Systems
through Large Scale Profiling and Analysis PDSW–DISCS’17, November 12–17, 2017, Denver, CO, USA

this end, fprof provides a special feature that simulates the what-if
scenarios for migrating objects in a particular Lustre file system to
a fresh GPFS file system, with varying block-sizes. The simulation
result helps identify the optimal block size which can maximize the
space utilization in the target GPFS file system.

In the following, we first explain unique aspects of GPFS block
management compared to Lustre. We then run and simulate three
different cases/systems: the first is a dataset from a real-world
scientific application (Moment Closure Solver [19]) that is internally
used in OLCF to evaluate the storage performance. This represents
extreme and ill-fitting cases. In addition, we also conduct the whole
system simulation using the snapshots from both OLCF Spider II
and LC’s lscratche production systems.

3.3.1 Block Management in GPFS. While Lustre delegates the
block management to the underlying local disk file system, e.g., ld-
iskfs or ZFS, GPFS has its own block management with two distinct
features relevant to the block usage and its overhead:
Data in inode GPFS supports a data-in-inode feature which al-
lows the data portion of small files to be stored in the inode elimi-
nating the I/O needed to read the data segment. It also allows the
directory entries of a child directory to be stored in the parent’s
inode, eliminating the need for a metadata I/O operation for the
children directory entries. Each inode has a fixed header of 128
bytes and some optional parts. Assuming the inode does not hold
any optional part, then all the space other than the part for the
header can be used for data. Thus, for a 512 byte inode, we have
384 bytes of space after the headers for file data, and for a 4,096
byte inode we can fit up to 3,968 bytes of file data.
Sub-blocks For performance reasons, GPFS prefers larger native
block sizes. However, larger block sizes can result in wasted space if
the block isn’t fully used by the file data. To minimize wasted space
with large block sizes, GPFS supports the notion of “sub-blocks” -
where a native block can be further divided into 32 sub-blocks to
improve space efficiency.

The question we sought to answer is, given the scale of storage
(e.g., 250 PB usable space in the case of Spider III), what are the
trade-offs between increasing the native file system block size (for
better performance) and potential wasted capacity? Can we obtain a
quantifiable estimate in this early phase to guide the system design?

3.3.2 Comparing Space Utilization. Figure 4 summarizes three
runs of the space utilization simulator on (1) an output dataset from
a large-scale Moment Closure Solver, (2) the entire OLCF Spider II
file system, and (3) LC’s entire lscratche file system. All three runs
have data-in-inode set to be 4KB, and we vary the file system block
size from 256KB to 32MB.

Case 1 presents one of the worst case scenarios: for a dataset
has close to 100,000 files, the average file size is only 11.27 KB. It
yields only 86.37% efficiency with a 256KB file system block size
and plummets to 2.69% with a 32MB block size. Fortunately, our
earlier profiling did suggest that even though the majority of the
files are small, the majority of the space is consumed by large files.
By embedding the estimator logic into the live profiling process,
we quantitatively demonstrated that both LC and OLCF production
file system fare much better with larger block sizes. In the case of
32MB blocks for a 250PB file system, the wasted space is a little over
5PB or 2%, which is deemed acceptable. Further analysis suggests

86.37%

78.13%

54.60%

19.24%

10.33%

5.32%

2.69%

99.94%

99.86%

99.67%

98.50%

96.88%

98.84%

87.80%

99.99%

99.97%

99.94%

99.75%

99.51%

98.92%

97.91%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

256	KB

512	KB

1	MB

4	MB

8	MB

16	MB

32	MB

Space	Utilization	Rate	(Actual	Data	Size	/	Total	Size	with	Allocated	Blocks)	

Si
m
ul
at
ed
	Fi
le
	Sy

st
em

	B
lo
ck
	Si
ze
s

OLCF	(spider	2) LC	(lscratche) Mn	Solver	Dataset

Figure 4: Space consumption comparison: block size vs. effi-
ciency

that there exists a difference between LC and OLCF, particularly at
32MB, where LC’s space utilization drops to 87.80%. This number
also corroborates the earlier snapshot analysis in § 3.1 where the
average file size at LC is smaller than at OLCF. Assuming other
things being equal, we claim that a native file system block size of
16 MB would be a better choice and preferred optimization point.

We also note the efficacy of the data-in-inode feature present in
GPFS. With this feature turned-on, nearly 60% of the files in the
dataset can be stored in their respective inodes without having to
use separately allocated data blocks. This drastically improves the
overall space utilization.

4 CONCLUSIONS
In this paper, we presented the design and implementation of a
lightweight, scalable and portable tool, fprof, to efficiently profile
large-scale parallel file systems. We also presented three profil-
ing and analysis use cases from two large-scale HPC parallel file
systems. Our stripe pattern analysis demonstrated the disconnect
between system design and actual user/application behavior and
suggested the importance and urgency for features such as the
Progress File Layout. Our simulated block analysis not only quan-
tified the space overhead for a complete system migration, but
also revealed optimization points for better performance and space
trade-offs by employing different native file system block sizes.

Currently, fprof has been deployed at OLCF to run on a biweekly
basis. The profiling results are further streamed into a Splunk
server [12] and displayed on a dashboard. LC has fprof scheduled
to run quarterly. We are hoping that the periodic profiling will help
us to gain a deeper understanding of how the large-scale parallel
file systems are used in scientific computing centers. Furthermore,
such an understanding will provide practical and valuable insights
for future system designs.

Acknowledgment
This research used resources of the Oak Ridge Leadership Computing Facil-
ity, which is a DOE Office of Science User Facility supported under Contract
DE-AC05-00OR22725. The work at LC was performed under the auspices
of the DOE by LLNL under Contract DE-AC52-07NA27344.

PDSW–DISCS’17, November 12–17, 2017, Denver, CO, USA F. Wang et al.

REFERENCES
[1] Argonne Leadership Computing Facility. https://www.alcf.anl.gov.
[2] General Parallel File System welcome page - IBM. https://www.ibm.com/support/

knowledgecenter/en/SSFKCN/gpfs_welcome.html.
[3] Home Âů cea-hpc/robinhood Wiki Âů GitHub. https://github.com/cea-hpc/

robinhood/wiki.
[4] Livermore Computing - Sierra. https://hpc.llnl.gov/hardware/platforms/sierra.
[5] Lustre Basics. https://www.olcf.ornl.gov/kb_articles/lustre-basics/.
[6] Lustre Parallel File System | High Performance Computing. https://hpc.llnl.gov/

hardware/lustre-parallel-file-system.
[7] Lustre* Software Release 2.x. http://doc.lustre.org/lustre_manual.xhtml.
[8] National Energy Research Scientific Computing Center. http://www.nersc.gov.
[9] Native ZFS for Linux. http://zfsonlinux.org/zfs-disclaimer.html.
[10] Oak Ridge Leadership Computing Facility. https://www.olcf.ornl.gov.
[11] Oak Ridge Leadership Computing Facility - Summit. https://www.olcf.ornl.gov/

summit/.
[12] Operational Intelligence, Log Management, Application Management, Enterprise

Security and Compliance | Splunk. https://www.splunk.com.
[13] Optimizing I/O performance on the Lustre file system - nersc. http://www.nersc.

gov/users/storage-and-file-systems/i-o-resources-for-scientific-applications/
optimizing-io-performance-for-lustre/.

[14] Portal | High Performance Computing - Livermore Computing. https://hpc.llnl.gov/
portal.

[15] Progressive File Layouts - Lustre Wiki. http://wiki.lustre.org/Progressive_File_
Layouts.

[16] Nitin Agrawal, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2009.
Generating realistic impressions for file-system benchmarking. ACM Transactions
on Storage (TOS) 5, 4 (2009), 16.

[17] Nitin Agrawal, William J Bolosky, John R Douceur, and Jacob R Lorch. 2007. A
five-year study of file-system metadata. ACM Transactions on Storage (TOS) 3, 3
(2007), 9.

[18] Wan Fokkink. 2013. Distributed Algorithms: An Intuitive Approach. MIT Press.
[19] C Kristopher Garrett, Cory Hauck, and Judith Hill. 2015. Optimization and Large

Scale Computation of an Entropy-Based Moment Closure. J. Comput. Phys. 302
(2015), 573–590.

[20] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. 2012. A file is not a file: understanding the I/O behavior
of Apple desktop applications. ACM Transactions on Computer Systems (TOCS)
30, 3 (2012), 10.

[21] J. LaFon, S. Misra, and J. Bringhurst. 2012. On distributed file tree walk of
parallel file systems. In International Conference on High Performance Computing,
Networking, Storage and Analysis (SC). 1–11.

[22] Sarp Oral, James Simmons, Jason Hill, Dustin Leverman, Feiyi Wang, Matt Ezell,
Ross Miller, Douglas Fuller, Raghul Gunasekaran, Youngjae Kim, Saurabh Gupta,
Devesh Tiwari, Sudharshan S. Vazhkudai, JamesH. Rogers, David Dillow, GalenM.
Shipman, and Arthur S. Bland. 2014. Best Practices and Lessons Learned from De-
ploying and Operating Large-scale Data-centric Parallel File Systems. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’14).

[23] Feiyi Wang, Verónica G Vergara Larrea, Dustin Leverman, and Sarp Oral. 2016.
FCP: A Fast and Scalable Data Copy Tool for High Performance Parallel File
Systems. In The 38th Cray User Group (CUG ’16).

[24] Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating network commu-
nities based on ground-truth. Knowledge and Information Systems 42, 1 (2015),
181–213.

https://www.alcf.anl.gov
https://www.ibm.com/support/knowledgecenter/en/SSFKCN/gpfs_welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSFKCN/gpfs_welcome.html
https://github.com/cea-hpc/robinhood/wiki
https://github.com/cea-hpc/robinhood/wiki
https://hpc.llnl.gov/hardware/platforms/sierra
https://www.olcf.ornl.gov/kb_articles/lustre-basics/
https://hpc.llnl.gov/hardware/lustre-parallel-file-system
https://hpc.llnl.gov/hardware/lustre-parallel-file-system
http://doc.lustre.org/lustre_manual.xhtml
http://www.nersc.gov
http://zfsonlinux.org/zfs-disclaimer.html
https://www.olcf.ornl.gov
https://www.olcf.ornl.gov/summit/
https://www.olcf.ornl.gov/summit/
https://www.splunk.com
http://www.nersc.gov/users/storage-and-file-systems/i-o-resources-for-scientific-applications/optimizing-io-performance-for-lustre/
http://www.nersc.gov/users/storage-and-file-systems/i-o-resources-for-scientific-applications/optimizing-io-performance-for-lustre/
http://www.nersc.gov/users/storage-and-file-systems/i-o-resources-for-scientific-applications/optimizing-io-performance-for-lustre/
https://hpc.llnl.gov/portal
https://hpc.llnl.gov/portal
http://wiki.lustre.org/Progressive_File_Layouts
http://wiki.lustre.org/Progressive_File_Layouts

	Abstract
	1 Introduction
	2 Design and Implementation
	2.1 Design Overview
	2.2 Implementation
	2.3 Deployment

	3 Profiling and Analysis
	3.1 File System Snapshot and Characterization
	3.2 Striping Pattern Analysis
	3.3 Block Space Analysis of Future File System

	4 Conclusions
	References

