2017 1IEEE 23rd International Conference on Parallel and Distributed Systems

Automatic and Transparent
Resource Contention Mitigation for Improving
Large-scale Parallel File System Performance

Sarah Neuwirth*, Feiyi Wang', Sarp Oral’ and Ulrich Bruening*
*Institute of Computer Engineering, University of Heidelberg, Germany
{sarah.neuwirth, ulrich.bruening} @ziti.uni-heidelberg.de
National Center for Computational Sciences, Oak Ridge National Laboratory, USA
{fwang2, oralhs} @ornl.gov

Abstract—Proportional to the scale increases in HPC systems,
many scientific applications are becoming increasingly data
intensive, and parallel I/O has become one of the dominant
factors impacting the large-scale HPC application performance.
On a typical large-scale HPC system, we have observed that the
lack of a global workload coordination coupled with the shared
nature of storage systems cause load imbalance and resource
contention over the end-to-end I/0 paths resulting in severe
performance degradation. I/O load imbalance on HPC systems
is generally a self-inflicted wound and mostly occurs between the
1/0 paths and resources consumed by each individual job.

In this paper, we introduce TAPP-IO, a dynamic, shared load
balancing framework for mitigating resource contention. TAPP-
10 extends our previous work and solves two major limitations:
First, it transparently intercepts file creation calls during runtime
to balance the workload over all available storage targets. The us-
age of TAPP-10 requires no application source code modifications
and is independent from any I/O middleware. The framework can
be applied to almost any HPC platform and is suitable for systems
that lack a centralized file system resource manager. Second, the
framework proposes a new placement strategy to support not
only file-per-process I/0, but also single shared file I/O. This
opens the door to a new class of scientific applications that can
leverage the placement library for improved performance. We
demonstrate the effectiveness of our integration on the Titan
system at the Oak Ridge National Laboratory. Our experiments
with a synthetic benchmark and real-world HPC workload show
that, even in a noisy production environment, TAPP-IO can
improve large-scale application performance significantly.

I. INTRODUCTION

Top-tier scientific HPC systems are constantly increasing in
scale to improve application resolution and reduce the time
to solution. Such a scale increase also intensifies the system
complexity and decreases the overall system reliability (i.e.,
mean time to failure). To cope with system failures, most
scientific applications periodically write out memory states.
This defensive, bursty I/O (i.e., checkpointing) is the main
source of I/O activity on large-scale HPC systems. The rule
of thumb for checkpointing is that it should not take more
than 10% of the application run time in an hour. As the
HPC systems grow in scale, the cumulative memory size also
grows, resulting in larger amounts of data to be written out
during each checkpoint window. This pushes the limits and
capabilities of parallel file and storage systems serving HPC

systems, since the growth trajectories for these two are not
always the same. Most scientific HPC applications make no
difference between defensive I/O and scientific output; they
do I/O operations at regular pre-defined intervals and expect
a minimal amount of time is spent in I/O subroutines.

Parallel I/0O systems are inherently complex, particularly
in the context of end-to-end I/O paths. For example at the
starting point of a typical I/O path, an application can use a
high-level library, such as HDF5 [1], for various reasons in-
cluding portability, improved data management, and enhanced
metadata capabilities. HDF5 is implemented on top of MPI-
10 [2] which, in turn, performs POSIX I/O calls against a
parallel file system such as Lustre [3]. Furthermore, before
an I/O request reaches its eventual storage target, it may
have to traverse through the compute fabric (e.g., a 3D torus
or Dragonfly, or a plain fat-tree), and a large-scale storage
network fabric (e.g., InfiniBand). Finally, the request reaches
the backend storage that provides a block interface, though
the parallel file system (PFS) sits on top and across these
backend storage devices. In large-scale HPC deployments, I/O
subsystems are typically shared among multiple applications
running concurrently with different usage patterns. Due to the
shared nature and inherently complex design, the observed
I/0O performance at the application level can be much lower
than the theoretical peak bandwidth of the underlying storage
system. At the Oak Ridge Leadership Computing Facility
(OLCF), we observe firsthand that such a complex I/O sub-
system severely suffers from contention and significant load
imbalances among the different storage system components.
This effect is even more pronounced when the system is under
stress (i.e., bursty I/O activity periods). Also, it is observed that
at large scales the contention is mostly due to self-interference
(for a given scientific application) rather than by contention
from competing workloads [4].

Efficient use of extreme-scale computing resources often
requires extensive application tuning and code modification.
There is a steep learning curve for scientific application devel-
opers to understand the complex I/O subsystem and to address
the 1I/O load imbalance and contention issues. Therefore, it is
a major hurdle for applications to adopt and take advantage

of any underlying improvement. To ease this transition in
the most transparent way, we propose TAPP-IO (Transparent
Automatic Placement of Parallel 1/O), a dynamic, shared
load balancing framework that balances the I/O workload
evenly among all storage system components. Similarly to the
Balanced Placement I/0 (BPIO) library [5], the framework
addresses the resource contention problem by providing a
topology-aware, balanced placement strategy that is based
on a tunable, weighted cost function of available system
components. This paper makes the following contributions:

« We design and implement TAPP-IO, an I/O load bal-
ancing framework, that transparently intercepts file I/O
calls (metadata operations) during runtime to distribute
the workload evenly over all available storage targets.

o TAPP-IO supports three major, widely used I/O inter-
faces for broad application compatibility: HDF5, MPI-10,
and POSIX I/0. The framework requires no application
source code modifications and supports both statically
and dynamically linked applications.

« We propose a new placement strategy supporting both
file-per-process and single shared file 1/0. The single
shared file I/O model support enables a new class of
scientific applications to leverage the placement library
(transparently) for improved I/O performance.

« We demonstrate the effectiveness of TAPP-IO by re-
peating small-, medium- and large-scale runs over an
extended period of time and compare the results to our
previous work (i.e, BPIO and Aequilibro [6], [7]). We
evaluate the performance for POSIX /0, MPI-IO, and
HDFS5, by utilizing the Interleaved Or Random (IOR)
synthetic benchmark and a real-world HPC workload.
E.g., for the file-per-process I/O model with 4,096 nodes
and a file size of 4 GB per writing process, TAPP-IO
provides performance improvements of about 54% for
POSIX 1/0, 51% for MPI-IO, and 32% for HDF5 (see
also Figure 6).

The remainder of this paper is organized as follows. Sec-
tion 2 provides the background and related work. Section 3
describes the balancing framework. In Section 4, we discuss
the analysis methodology and evaluate the effectiveness of
our framework. Finally, we summarize our current efforts in
Section 5, discuss open issues, and outline future work.

II. BACKGROUND AND RELATED WORK

The experiments in this paper were conducted on the Titan
system at the Oak Ridge National Laboratory. Titan is a
Cray XK7 system with 18,688 compute nodes. Its parallel
file system is Spider II [8], which is based on the Lustre
technology [3] and one of the world’s fastest and largest
POSIX-compliant parallel file systems. It is configured and
deployed as two independent and non-overlapping file systems,
each with 144 Lustre Object Storage Servers (OSSs) and 1,008
Lustre Object Storage Targets (OSTs). The OSSes currently
run the Lustre parallel file system version 2.8.0.

Resource contention has a negative impact on the perfor-
mance and scalability in high-performance storage systems. As

emphasized by Wang et al. [5], a significant variation in usage
across system resources has been identified on a large-scale file
and storage system. This variation and the resulting contention
is due to the lack of a system-wide 1/O load organizer on
modern distributed large-scale HPC systems. Parallel file and
storage systems supporting these large-scale systems only have
a partial view of the overall I/O activity and can only try
to optimize the resource usage at one end of the I/O path.
Also, Xie et al. [4] observed that most I/O load imbalances are
the result of improper resource allocation within a given job
(i.e., scientific application), which makes this work particularly
relevant.

The end-to-end resource contention problem can be ad-
dressed by different approaches. One possibility would be
the improvement of the Lustre OST allocation scheme. But,
this only addresses one end of the problem (ignoring the rest
of the resources on the end-to-end I/O paths) and therefore,
is disregarded. Another way to achieve balanced resource
utilization is the deployment of a centralized, system-wide I/O
coordination and control mechanism. For example, Fastpass
[9] is a network framework that aims for high utilization with
zero queuing for data centers. For large-scale scientific HPC
systems, this approach is not feasible. Multiple applications
are running concurrently, with a variety of different I/O pat-
terns and workloads. A system-wide I/O organizer requires to
coordinate between different subsystems (often designed and
provided by different vendors), as well as scientific application
code changes to participate in system-wide coordinated I/O.
Therefore, even though it is possible to design a system-wide
I/O coordinator, it is practically prohibited to be deployed on
a large-scale HPC system. The system-wide, balanced 1/O re-
quest coordination would lead to a tremendous communication
overhead, and therefore, it likely would lead to a sub-optimal
utilization of the available computational resources.

The third approach is to balance the I/O workload on an
end-to-end and per job basis. This technique is adopted by the
Balanced Placement 1/0 (BPIO) library [5]. BPIO intelligently
allocates I/O paths for a parallel file system. The library
employs a placement strategy that provides a binding between
an I/O client (compute node or MPI rank ID) and a storage
target while aiming at an evenly I/O traffic distribution across
resource components to avoid points of contention. The library
utilizes the Fine-Grained Routing (FGR) congestion avoidance
method [10]. FGR organizes I/O paths to minimize end-to-end
hop counts and congestion. This is done by pairing clients
with their closest possible, and in the case of Titan, optimal
LNET router. The BPIO placement algorithm uses a placement
cost function that takes a weighted average of how frequently
different file system resources have been used by previous 1/O
requests issued by the same application. The most general case
is defined by

C=wR +wyRy + ... +w, R, (1)

where C'is the cost of an I/O path, R; is a resource component,
and w; is the weight factor with Z?:l w; = 1. For Lustre,
possible resource components are logical I/O routers (i.e.,

LNET), or actual file system and networking resources (i.e.,
Lustre I/O routers, OSSs, and OSTs). The algorithm loops
over all reachable storage targets to choose one with the lowest
placement cost per compute node. This is repeated for all I/O
clients allotted to the application once before it enters the I/O
write phase. An initial performance evaluation of the library
was performed on the Titan supercomputer [11] at OLCF.

Aequilibro [6], an ADIOS-based middleware, attempts to
resolve the load imbalance by utilizing the BPIO library.
ADIOS [12] is a flexible middleware that provides a simple I/O
application programming interface (API) with portable, fast,
scalable, metadata-rich output. An initial performance evalua-
tion has been carried out on the Titan system. Drawbacks are
that the usage is limited to specific ADIOS transport methods,
namely POSIX and MPI_AGGREGATE, and the overhead
added by ADIOS limits the performance improvement com-
pared to a direct BPIO integration into an application.

As we move towards the exascale era, resource contention
and performance variability in HPC systems remain a major
challenge. I/O workload imbalance paired with the increasing
gap between compute capabilities of HPC systems and the
underlying storage system are known issues in the HPC
domain [13], [14]. Several research studies have addressed
these problems to provide better I/O techniques. For example,
Gainaru et al. [15] introduce a global scheduler that minimizes
congestion caused by I/O interference by considering the
application’s past behaviors when scheduling I/O requests.
Herbein et al. [16] present a job scheduling technique that
reduces contention by integrating I/O-awareness into schedul-
ing policies. As shown by Yildiz et al. [14], scheduler-level
solutions not always lead to improved performance even
though it helps to control the level of interferences.

Some research efforts consider network contention as the
major contributor to I/O load imbalance. Luo et al. [17]
introduce a preemptive, core stateless optimization approach
based on open loop end-point throttling. Jiang et al. [18] in-
troduce new endpoint congestion-control protocols to address
the differentiation between network and endpoint congestion
more properly. Li et al. [19] present ASCAR, a storage traffic
management system for improving the bandwidth utilization
and fairness of resource allocation. This is not feasible for
large-scale HPC systems like Titan. There are too many appli-
cations and the I/O patterns change drastically depending upon
the run. Another area takes a file and storage-system centric
view. Zhu et al. [20] present CEFT-PVFS, a modification to the
PVES file system [21] to achieve a better I/O load balancing.
Luu et al. [22] analyze the problem of low I/O performance on
leading HPC systems. They use Darshan [23] logs of over a
million jobs representing a combined total of six years of I/O.
Liu et al. [24] present a set of dynamic and proactive ADIOS
transport methods that are able to shift workloads dynamically
to lightly used areas of the storage system while applying a
throttling technique that limits how much data can be re-routed
during writing.

This paper complements previous work by bridging the gap
between the interconnect level, and file and storage-system

centric view. It provides users with a transparent auto-tuning
framework that takes full advantage of the optimizations done
at the interconnect level and the load balancing done at the
file system level. We argue that by designing a pre-loadable
BPIO-inspired framework, we translate the benefits of BPIO
transparently into an application without any source code
modification.

Resource allocation has also been researched in the context
of commercial data centers, such as Pulsar [25] and Baraat
[26]. Many of the assumptions made for commercial data
center performance optimizations are not applicable to large-
scale scientific simulation systems. For example, scientific
HPC systems do not have a global view on all available
system resources and allocations. Commercial and scientific
applications have different requirements [27]. While commer-
cial codes can be classified as high-throughput computing,
scientific workloads are categorized as latency-sensitive, large-
scale, and tightly coupled computations. They assume the
presence of a high-bandwidth, low-latency interconnect, a
shared parallel file system between compute nodes, and a head
node that can submit MPI jobs to all worker nodes. Therefore,
TAPP-IO was developed for a scientific HPC environment and
tested on a system optimized for large-scale simulations.

III. TAPP-IO FRAMEWORK

TAPP-IO is designed to work with parallel file systems
and does not require any modifications to application or I/O
library source code. It is implemented as a user space library,
based on an improved placement algorithm (as detailed in
section 3.1) for intelligently allocating resources along I/O
paths. The TAPP-10 framework works with both dynamically
and statically linked applications and supports both file-per-
process and single-shared-file I/O modes. It also supports three
major I/O interfaces: POSIX I/O, MPI-1IO, and HDF5 1I/O. As
pointed out by a recent study of petascale supercomputers [22],
between 50% and 95% of HPC applications use the POSIX
1/0O library. The remaining jobs use MPI-IO directly or libraries
built atop MPI-IO, such as HDF5. This ensures that we have
a broad application compatibility support.

A. Parallel I/0 Support

The TAPP-10 framework proposes a file placement strat-
egy that supports both file-per-process and single-shared-file
I/O access patterns. File-per-process scales the single writer
I/O pattern to encompass all processes instead of just one
process. Each process performs I/O operations on their own
separate file. Thus, for an application run of N processes, N
or more files are created. In a single-shared-file application
I/O pattern, multiple processes perform I/O operations either
independently or concurrently to the same file. The possible
HPC application I/O patterns can roughly be classified as
follows (the ratio can be read as writer count : file count):

1) N : N, stripe count = 1

2) N : N, stripe count > 1

3) N : M, stripe count > 1, M < N

4) N :1, stripe count > 1

Shared File Layout #1 Shared File Layout #2

B . Proc. 1, 1 MB
rocess -
32 MB Proc. 2, 1 MB :::t
Proc. 3,1 MB S
Proc. 4, 1 MB 3
Process 2 S
32 MB 14
Proc. 32, 1 MB
o
Process 3 #
32 MB o
3+
c
k<]
Process 4 %
32MB 3
4
Proc. 1, 1 MB ~
Proc. 2,1 MB R
Proc. 3, 1 MB 5
Proc. 4, 1 MB E
Process 32 =%
32 MB 14
Proc. 32, 1 MB

Fig. 1. Two possible shared file layouts.

Case 1) and 2) describe file-per-process I/O patterns, case
3) presents a strategy where the writing is aggregated in
M shared files, and case 4) is the single-shared-file strategy
where multiple clients write to multiple ranges within the
same file. With a file-per-process 1/0 pattern, it is best to
use no striping (stripe count of 1). This limits the storage
target contention when dealing with a large number of files /
processes. Therefore, case 2) is disregarded for the TAPP-IO
framework. Case 3) is a special case of case 4) where multiple
writers are aggregated in multiple shared files. TAPP-IO cur-
rently supports cases 1), 3), and 4) with the limitation that the
balancing algorithm needs the expected file size for the shared
files. For single shared files, TAPP-10 tries to minimize both
the overhead associated with splitting an operation between
storage targets and contention between writing processes over
a single storage target. For example, Figure 1 displays two
possible shared file layouts for 32 writing processes. Layout
#1 keeps the data from a process in a contiguous block,
while Layout #2 strides the data throughout the file. When
accessing a single shared file from many processes, the stripe
count should equal the number of processes, if possible. The
size and location of I/O operations from the processes should
be carefully managed to allow as much stripe alignment
as possible resulting in each writing process accessing only
a single storage target. Analogous to file-per-process, the
algorithm follows the placement strategy implied by Layout
#1, i.e., stripe count = number of writers and stripe size = (file
size / stripe count). With these parameters, the algorithm tries
to achieve high levels of performance while mitigating storage
targets contention at large process counts. The placement
algorithm is invoked only once for every I/O write phase which
adds minimal overhead. The optimal set of storage targets is
determined similarly to the Balanced Placement procedure [5].
For each stripe of a shared file, the optimal stripe to storage
target assignment is calculated with the help of the BPIO
placement cost function. Algorithm 1 displays a simplified
version of the TAPP-IO balancing algorithm. TAPP-1O extends
prior work [5], [6] by introducing a support for transparent
function interpositioning, HDF5 1/O, and single shared files.

Algorithm 1 TAPP-IO Balancing Algorithm (simplified)
1: /* I/O call, e.g. open(), triggers balancing */

: /* Update NID/OST binding with BPIO cost function */

: osts — Balanced Placement (NIDs, OSTs)

: [* Determine placement parameters */

. if (File-per-process) then

start_ost «— osts[my_rank]

stripe size < 1 MB

stripe count « 1

. else if (Single shared File) && (my_rank == 0) then

stripe count < #writing processes

stripe size «— file size | stripe count

ost_list < osts

: end if

14: /* Initialize Lustre file descriptor via llapi */

15: if (File-per-process) then

16: llapi_file_create(...);

17: else if (Single shared File) && (my_rank == 0) then

18: llapi_file_open_param(...);

19: end if

—_ = = =
Wy -2

The implementation of the TAPP-IO balancing framework
has been deployed and tested on Titan’s Spider II file system.
In order to specify the striping information for the file-per-
process strategy, it is sufficient to set a file descriptor’s Lustre
striping information via the llapi library before opening the
file via the corresponding I/O interface (MPI_File_open ()
or H5Fcreate ()). 1lapi_file_create () allows us to
specify the stripe size, stripe count, and OST offset of a file
via the logical object volumn (LOV) manager. When MPI-10
or HDFS try to create a file, the I/O layers transparently realize
that the Lustre file descriptor was already created. Therefore,
the existing descriptor is used to open the corresponding file.
Historically, Spider II was based on Lustre 2.4 which lacked
the ability to provide fine-grained control of object placement.
Spider II is now running Lustre version 2.8. With Lustre 2.7
[28], a new feature was introduced that provides the user with
the ability to explicitly specify the striping pattern via an
ordered list of OSTs. We utilize the Lustre llapi to specify
the Lustre striping parameter struct llapi_stripe_param where
a list of OSTs can be passed to the LOV manager. Unlike the
file-per-process strategy, 11lapi_file_open_param() is
called by MPI rank O to create the Lustre file descriptor.
The TAPP-IO library returns a list of MPI rank ID to OST
assignments which is used to specify the striping pattern.
Currently, the balancing algorithm for single shared files needs
the expected file size from the application in order to match the
stripes with the writing processes. Via MPI_Info_set (),
the application can forward the file size by specifying a value
pair (fileSize, value). To utilize TAPP-IO for multiple-
shared files, the framework also needs the number of writ-
ing tasks per file and the corresponding MPI communicator.
TAPP-10 extracts the information from the info object and
calculates the stripe size. The stripe size is matched to keep
data from a process in a contiguous block. Processes can

Application: H5Fcreate (“testfile.h5”,
H5F_ACC_TRUNC, H5P_DEFAULT, plist_id)

High-Level I/O Library: hid_t HSFcreate(const char *filename,
unsigned £1ags, hid_t create_id, hid_taccess_id)

Application: MPI_File open (MPI_COMM WORLD,
“testfile”, MPI_MODE_CREATE, info, fd)

MPI-10 Library: intMPI_File_open(MP|_Comm comm,
char *filename, int amode, MPI_Info info, MPI_File *fh)

l Application: open (“testfile”, flags, 0664)

¥

POSIX Library: int open(const char *pathname,
int £lags, mode_t mode)

<k

4

TAPP-10

1. Obtain the address of H5Fcreate using d1sym ()
2. Create Lustre file descriptor for balanced data placement via TAPP-I0
3.Call real H5Fcreate (filename, flags, create_id, new_access_id)

(]

l HDFS5 Library (unmodified)

TAPP-10

1. Obtain the address of MPI_File_open using dlsym()
2. Create Lustre file descriptor for balanced data placement via TAPP-10
3.Callreal MPI_File_open(comm, filename, amode, info, fh)

2

MPI-10 Library (unmodified)

TAPP-10

1. Obtain the address of open using disym()
2. Create Lustre file descriptor for balanced data placement via TAPP-10
3.Callreal open(filename, flags, mode)

[

C POSIX Library (unmodified)

Fig. 2. Dynamic interception of I/O functions at runtime.

concurrently access a single shared file. Still, this feature
lacks the flexibility to dynamically re-size a file. For the time
being, dynamic re-striping or re-sizing of a file comes with an
enormous overhead. The basic idea would be to re-create the
file with the new striping pattern. But, this involves the copying
(i.e, reading into memory and then writing out of the memory)
of the file to the client and back to the parallel file system. This
procedure is resource consuming and therefore, not feasible. It
is expected that the introduction of the progressive file layouts
[29] which is based on composite layouts with Lustre 2.10
will provide the means to efficiently enhance the balancing
algorithm for single shared files.

B. Function Interpositioning

TAPP-IO uses function interpositioning, similar to Recorder
[30] and Darshan [23], to prioritize itself over standard func-
tions. For dynamically linked applications, the framework is
built as a shared, dynamic library. Once TAPP-IO is specified
as the preloading library via LD_PRELOAD, it intercepts
POSIX I/0, MPI-1IO, and HDFS5 file creation calls issued by
the application and reroutes them to the balancing framework.
For statically linked applications, the library requires no source
code modifications, but has to be added transparently during
the link phase of MPI compiler scripts such as mpicc or
mpif90. This approach is a compromise in that existing
binaries must be recompiled (or relinked) in order to use

Application

1/0 call, e.g/6pen() MPL_Init)NVIPI_Finalize()

TAPP-10 Library
TAPP-10 Core
TAPP-I0 Common

System Libraries

Fig. 3. TAPP-IO runtime environment.

TAPP-10 1/0 Module

TAPP-10. POSIX routines are intercepted by inserting wrapper
functions via the GNU linker’s —-wrap argument. After
rerouting the function calls to the TAPP-IO framework, the
library evenly places the data on the available storage targets.
This balancing approach is transparent to the user because
alterations are made without changes to application and library
source code.

For both dynamically and statically linked applications,
TAPP-10 intercepts MPI-IO routines using the profiling
(PMPI) interface to MPI. Figure 3 illustrates the TAPP-IO
runtime environment. The framework consists of three main
components: TAPP-10 Core, TAPP-10 Common, and TAPP-10
I/0 Modules. The core of the framework handles the initial-
ization and clean up of the library. Before any I/O call can be
rerouted to TAPP-IO, the internal data structures need to be
initialized. This happens during MPI_Init (). The common
module hosts the balancing algorithm and helper functions to
maintain module specific I/O characterization data. In addition,
there is an I/O module for every supported I/O interface.
The I/O modules implement the wrapper functions. Figure 2
displays the dynamic interception of I/O routines at runtime.
The following sequence illustrates the mode of operation of
TAPP-IO for HDF5:

1) TAPP-IO intercepts and reroutes H5Fcreate () to the
corresponding I/O module.

2) TAPP-IO Common provides a list of NID/OST bindings.

3) A Lustre file descriptor is allocated with the balancing
information.

4) The function returns by calling real_ HS5Fcreate ().

The mechanism is the same for the MPI-IO and
POSIX 1/O. It offers per job and end-to-end /O per-
formance improvement in the most transparent way. Cur-
rently, the framework supports the following I/O calls:
open[64] (), creat[64] (), MPI_File_open (), and
H5Fcreate[64] (). These mechanisms have been tested
with the MPICH MPI implementation for both GNU and Cray

TABLE 1
IOR BENCHMARK VARIANTS FOR THE FILE-PER-PROCESS STRATEGY.
[Index | Variant [Description \
@ Default The original IOR benchmark.

I) BPIO A modified version of IOR that utilizes the BPIO
library for balanced data placement.

An IOR benchmark where all /O calls are
replaced with the ADIOS API for I/O handling.
Same code base as IOR ADIOS, but utilizes the
BPIO library for balanced data placement.
Unmodified IOR benchmark utilizing TAPP-10
via LD_PRELOAD.

M | ADIOS

av) Aequilibro

%) TAPP-IO

C, C++, and Fortran compilers. It also works correctly for both
static and dynamic compilation, requires no additional support-
ing infrastructure for instrumentation, and is compatible with
other MPI implementations and compilers.

IV. EVALUATION

In this section, we evaluate and analyze the effectiveness
of our load balancing framework using a synthetic benchmark
tool and a real-world HPC workload running on Titan.

A. Methodology

The I/0O evaluation methodology is based on two bench-
marks, the Interleaved Or Random (IOR) benchmark and
Genarray, a benchmark that emulates I/O workload similar to
S3D [31]. In addition, we describe benchmark parameters that
need to be specified to model HPC workload behavior.

1) IOR Benchmark: TOR [32] provides a flexible way of
measuring I/O performance with different parameter config-
urations, including I/O interfaces ranging from traditional
POSIX to advanced parallel I/O interfaces like MPI-IO and
differentiates parallel 1/O strategies between file-per-process
and single-shared-file. Shan et al. [33] demonstrated that [OR
can be used to characterize and predict the I/O performance
on HPC systems at scale. Table I displays the IOR benchmark
variants used with the file-per-process strategy. The evaluation
is divided into three different I/O performance comparisons.
First, the original version of BPIO is directly used for the
data placement by modifying the IOR source code, referred
to as IOR BPIO. Before creating a file with Lustre’s llapi, the
BPIO library is used to determine the compute node (NID) to
OST assignment. The results are compared to the unmodified
IOR benchmark IOR Default. Second, all I/O interface calls
are replaced by the ADIOS API. We use IOR as a workload
generator to drive the ADIOS framework, denoted as IOR
ADIOS. Using ADIOS with IOR provides an easy way to stress
the file system while handling file I/O with the ADIOS APL
A side benefit is that Aequilibro can be tested without any
additional code modification. The third part of the evaluation
provides the comparison of IOR Default and /OR TAPP-I0.

For the single shared file (SSF) /O strategy, we use three
different variants of the IOR benchmark setups: (I) IOR
Default SSF, (II) IOR Optimized SSF, and (III) IOR TAPP-10
SSF. Variant (I) uses the Lustre default striping (stripe count
= 4, stripe size = 1MB). Variant (II) uses optimized a striping

information (stripe count = numberOfWriters, stripe size =
fileSize / numberOfWritingTask), but the Lustre default OST
placement. Variant (III) uses the same stripe count and size
as (II), but utilizes the BPIO balancing algorithm to obtain
MPI process ID to OST binding. This list is used to set the
specific striping information. The metrics of interest include
the overall execution time and the end-to-end I/O performance
improvement gained by using either BPIO, Aequilibro or
TAPP-IO. It is provided in percentage and calculated with the
following equation:

Performance Improvement = 100 * <M — 1) 2)

dec fault

2) HPC Workload: S3D is a combustion code simulation
that is widely used on HPC systems. It generates a large
amount of I/O requests. Verifying the I/O performance im-
provement of S3D with TAPP-IO provides us with a good
indicator of the impact on other large-scale applications.
Genarray is an S3D workload simulator provided by ADIOS.
We utilize the pre-loadable version of TAPP-IO to demon-
strate its effectiveness. This requires a small modification in
the ADIOS source code. By default, the MPI_AGGREGATE
transport method sets the striping information for files. In order
to run ADIOS with TAPP-10, we remove the part that specifies
the striping information. In Genarray, three dimensions of a
global array are partitioned among MPI processes along X-
Y-Z dimensions in the same block-block-block fashion. Each
process writes an N3 partition. The size of each data element is
4 bytes, leading to the total data size of N3+ P4 bytes, where
P is the number of processes. One key difference between the
IOR benchmark tool and Genarray is that by default Genarray
utilizes all cores present on a compute node. This improves
the computational efficiency of the simulation. On the other
hand, Genarray generates pressure on single storage targets,
because each compute node hosts its own operating system
with a single mount point per file system.

3) Benchmarking Parameters: In order to accurately model
an HPC workload behavior, the benchmark parameters need
to be aligned with the desired workload. The IOR benchmark
provides a wide range of parameters including API, FilePer-
Proc, WriteFile, NumTasks, BlockSize, and TransferSize. On
Titan, the memory size per node is 32 GB with 2 GB per
processor. We run the IOR with different blocksizes to evaluate
the impact of caching effects and a TransferSize of 1 MB.
For POSIX I/O, the fsync and useO_DIRECT options are set.
O_DIRECT bypasses I/O and file system buffers. For MPI-
10, the same effect can be achieved by enabling the direct_io
MPI-IO optimization hint. For Lustre-specific settings, each
file is created with a stripe size of 1 MB and in the case
of file-per-process mode, a StripeCount of 1. The stripe size
should be aligned with the TransferSize in order to get the
best performance. StripeCount specifies the number of OSTs
where the data is striped across while StripeSize defines the
size of one stripe. The default Lustre stripe count is 4.

4) Experimental Setup: All tests were performed on the
Titan supercomputer. In order to get representative results,

10R POSIX /0 with 64 node allocation
@ Default vs. BPIO
m Default vs. TAPP-I0
7 ADIOS vs. Aequilibro

TR

% g = e
123 5 7 & 9 10

IOR POSIX 1/O with 512 node allocation

I

4 5 6 7
Different runs

"
B
3
2
3

100

8 8

Performance
3

Improvement (%)
BN e s g

5

Performance
Improvement (%)

%
44
/i

SSSS

|

—
o

ik

3

—
SN

I

& &
838
o
"
~

Different runs

IOR MPI-IO 64 node allocation IOR MPI-10 512 node allocation

IOR POSIX I/O with 2048 node allocation I0R POSIX 1/O with 4096 node allocation

@
3

W Default vs. TAPP-I0

0 Default vs. BPIO 7 ‘ O Default vs. BPIO

2 ADIOS vs. Aecuilibro

g 120 |z ADIOS vs. Acauilibro g S 60
£ €100 < E 50 = m
55 55
£ 530 £ gao 7 2
H s .
£ 860 . RE g 7
= g9 (| Al Al n TE |
=20 |0 E Al Al 7 =10 |l
1l 0 |
0 7 [INZ 7 [N % % 0 2 2 2
12 3 4.5 6 7 8 9§ 10 12 03 4.5 6 7 8 9 10
Different runs Different runs
IOR HDFS with 64 node allocation o IOR HDF5 with 512 node allocation
T Default vs. BPIO 8 Default vs. TAPP-I0
=% | @ADIOS vs. Aequilibro ‘ _go |0 Defaultvs.BPIO
5o W& B Default vs. TAPP-I0
T $ £ 50 | @ADIOS vs. Aequilibro
2g 2g
5540 5840
£ &0 E§
g8 gex g
& 520 & 520 7]] 7
E £ ? 0 Al |
=10 =10 7 9 Al 0
b 0 ol L 07 10 1 I
o U o i 7 Il B L2 LNg L7
12 3

& 9 7 8 9 10

4.5 6
Different runs

g g0
e g s
83z 260
55w §8%
1 37 ;
S 230 s3 7 7
52 2 7 7 ’ t2x b ’
& 520 7w il ol 7l) &5 7 7
£ 7 A Al Al Al A £20 |9 a
T 10 Rl i =10 |l 0
o A 7 I o 7
1 2 3 4.5 6 7 8§ 9 10 12 3 4.5 6 7 8
Different runs Different runs
10R MPI-10 2048 node allocation I0R MPI-I0 4096 node allocation
80 [@Default vs. BPIO 100 o efaultvs, BPI0
= 70 |mDefault vs. TAPP-I0 20 Default vs. TAPP-IO fl
g £ 60 |ZADIOS vs. Aecuilibro M g ZADIOS vs. Aequilibro
5550 g o0
g 540 ” £E /
S 240
g2 |7 7 My a a &£ 8y 7 7
“10 |4 A A 7 7 E - - Y
o K I 1IN N7 1IN B 7 A
12 3 4.5 6 7 8 9 10 12 3 4.5 6 7 8 9 10
Different runs Different runs
4o 'OR HDFS with 2048 node allocation o 'ORHDFS with 4096 node allocation
35 [BDefaultvs. 710 T Default vs. BPIO
€5, |EDefaultvs TAPP-IO § 50 | mDefaultvs. TAPP-0
852 | ZADIOS vs. Aeauiibro 83 4o BADIOSvs: Aequiibro
g% 5%
EEx EE30
€8s ! Al £2 7 (il :
g5, [7 Al $52° il o 4
5 " 0 ol 7 7l 9l it
o A / Al o [N L7 L Al i
12 3 12 3 6 7 8 9

4 .5 6 7 4 5
Different runs Different runs

Fig. 4. Performance improvements for IOR large-scale runs.

two major issues are addressed. First, all experiments are
conducted in a busy production environment. No tests are
run during the quiet maintenance mode. The results show that
performance gains can be achieved in an active production
environment. Second, a broad set of compute nodes are used
instead of just a certain subset of nodes. This demonstrates
that independently from any specific node set on Titan, an
application can readily benefit from the presented balancing
framework. The application level placement scheduler (ALPS)
on Titan returns a node allocation list where nodes tend
to be logically close to each other. There are two attempts
to get a higher node coverage. The first one is to submit
scaling tests one after another independently, in the hope that
a different set of compute nodes is covered with every run.
The second attempt is to submit scaling runs in parallel to
occupy a larger set of nodes. Both approaches are used to get
a broader coverage. All of our experiments are conducted in a
noisy, active production environment. Therefore, performance
numbers may not always be conclusive. To cope with this
issue and to draw consistent observation, multiple tests are
performed with at least three repetitions per run. Different
runs are allocated on different sets of nodes, enabling us to
cover a broad set of compute nodes on Titan.

B. Synthetic Benchmark Results

The results of the scaling runs with a 4 GB file size per
writing process and file-per-process strategy are summarized
in Figure 4 for 64, 512, 2,048, and 4,096 nodes. Over a period
of four months, more than 30 scaled runs per node allocation
size were obtained. Each sub-figure represents a particular
node allocation. The X-axis represents the enumeration of runs
with the same count of node allocation, but for different sets
of nodes. We compare the bandwidth performance of IOR

Default and IOR BPIO (denoted as Default vs. BPIO), IOR
Default and IOR TAPP-IO (denoted as Default vs. TAPP-10),
and IOR ADIOS and IOR Aequilibro (denoted as ADIOS vs.
Aequilibro) utilizing Equation 2. In all cases, it can be seen
that the balancing provides significant performance improve-
ments for small-, medium-, and large-scale runs. An exception
is the performance for Aequilibro at smaller scales for POSIX
I/O. IOR BPIO and IOR TAPP-IO show similar performance
improvement trends. For POSIX I/O, TAPP-IO provides about
40% of performance improvement for 2,048 nodes and about
50% for 4,096 nodes. Similar trends can be observed for HDF5
and MPI-IO at large-scale. For 4,096 nodes, TAPP-10 provides
up to 89% of performance improvement for MPI-IO and 54%
for HDFS. It is noteworthy that the performance improvement
achieved by Aequilibro is inferior to BPIO and TAPP-IO.
The additional overhead introduced by the I/O middleware
framework lowers the overall I/O performance. While there
are variations across different runs, it can be observed that
the trend remains the same. There are consistent performance
gains across multiple runs and iterations. Optimizing the
overall I/O cost leads to a reduced application execution time
(especially for large-scale runs) and therefore, to a reduced
operational cost per executed application.

Figure 5 summarizes the IOR bandwidth results for different
file sizes scaling from 8 to 4,096 nodes for file-per-process.
The results illustrate the average bandwidth per second from
over more than 40 scaled runs with at least three repeti-
tions per IOR variant (refer to Table I) per node allocation
within one run. The results were collected over the period
of four months. From the throughput results, we make the
following observations. First, starting from small-scale runs
with at least 16 nodes, our load balancing framework TAPP-

180 I0R POSIX 1/0, 128 MB File Size 200 I0R POSIX I/0, 512 MB File Size 55 I10R POSIX I/0, 1 GB File Size 350 IOR POSIX I/0, 4 GB File Size
—o—IOR Default 180 —o—I0R Default) ~—I0R Default ~&—I0R Default
160 1|_g ior ADIOS —8—I0R ADIOS 7 —&—I0R ADIOS —&—I0R ADIOS
_140 -|-a—IOR3PIO _160 1|4 10R3PIO _200 | _sI0R 3PIO _200 1|4 10R3PIO
Z120 | 10R Aequibro 2140 | - 10R Aequilibro z - 10R Aequilibro z 108 Aequilibro
) 0 IORTAPP-I0 ©120 |0 IORTAPP-I0 ©150 |-0 IORTAPP-I0 8150 |0 IORTAPP-I0
g1 £]]
3 5 goo 3 3
% % 80 % 100 % 100 —
2 60 £ 60 H H
a a 8 &
® 40 50 50
—
=t 1 B —
0 oa—#® PE: P
8 16 32 64 128 256 512 1024 2048 4096 8 16 32 64 128 256 512 1024 2048 4096 8 16 32 64 128 256 512 1024 2048 4096 8 16 32 64 128 256 512 1024 2048 4096
Number of nodes Number of nodes Number of nodes Number of nodes
IOR MPI-10, 128 MB File Size 10R MPI-10, 512 MB File Size IOR MPI-I0, 1 GB File Size IOR MPI-I0, 4 GB File Size
180 200 220 220
[—o—IOR befault 150 |[F-TORDeRauR 200 | [TORDefauit 200 | [F#-TORDefault
160 |_g—10R ADIOS | —@—10R ADIOS 180 | —8—10R ADIOS —@—10R ADIOS
_140 {|-s-10R 3010 / _160 |+ i0r30I0 / _ 180 1, or3pi0 _180 1) orari0
Zs0 || 10R Aequiibrol 2140 ||-x-I0R Aequilibrol % 1607|108 Aequilbrol 4 2160 7| - 10R Aequilbrol
© O IORTAPP-10 5 G150 | [0 10RTAPP-IO 7z / & 140 - | o 10RTAPP-I0 §140 | o 10RTAPP-I0
£100 '/ £100 4 £120 £120
2 80 / 2 / $100 / 2100
3 3 80 H H
< -] ° 80 £ e 80
2 60 2 60 s A 5
3 % 2 P & 60 & 60
40 - 40 40
20 20 20 = 20
0 0 == 0@ 0@
8 16 32 64 128 256 512 1024 2048 4096 8 16 32 64 128 256 512 1024 2048 4096 8 16 32 64 128 256 512 1024 2048 4096 8 16 32 64 128 256 512 1024 2048 4096
Number of nodes Number of nodes Number of nodes Number of nodes
IOR HDFS, 128 MB File Size IOR HDFS, 512 MB File Size IOR HDFS5, 1GB File Size IOR HDFS, 4 GB File Size
140 160 160 160
—o~1OR Default —o-1OR Default o~ TOR Default —o-TOR Default
120 |{-a-10rADIOS 140 | -a-10RADIOS 140 | -8 I0RADIOS 140 | -m-I0RADIOS
e 4-I0RBPIO _120 || &~I0RBPIO _120 ||-a-1oRBPIO _120 ||&-I0REPIO
F100 {-x- 10R Aequilibro T - OR Aequilibro =z - I0RAequiibro z x- 10R Aequilibro
8 ,, Lo ormerio 8100 o 1orTAPP10 B100 |[_o 1oRTAPP-0 8100 o 1oRTAPP-I0
= = = =
%00 g e B £
3 3 60 3 60 3 s
§ a0 H 5 § 3
@ = @ 40 @ 40 @ 40 ~
20 20 ,__?/ 20 20
0 0 o—F —§— 0 —t —4= o ="
8 16 32 64 128 256 512 1024 2048 4096 8 16 32 64 128 25 512 1024 2048 4096 8 16 32 64 1B 25 512 1024 2048 4096 8 16 32 64 128 25 512 1024 2048 4096
Number of nodes Number of nodes Number of nodes Number of nodes

Fig. 5. IOR bandwidth performance for IOR (I) to (V) for different file sizes.

IO and the BPIO library both provide consistent bandwidth
improvements. Aequilibro does not provide any significant
improvement for less than 128 nodes. Second, as we scale
up in terms of I/O processes and allocated computing nodes,
POSIX, MPI-IO, and HDF5 benefit from utilizing TAPP-
IO with IOR. For example, IOR TAPP-IO with POSIX 1/O
achieves up to 202.7 GB/s on average for a 4,096 node
allocation and a 4 GB file size per writing process. This can be
translated to 54% performance improvement compared to the
default data placement with IOR Default. For smaller file sizes,
the maximum bandwidth is less, but the average performance
improvement trend remains the same compared with the
default data placement. This consistent improvement can be
observed for MPI-IO and HDF5 as well. Another noteworthy
aspect is that the expected caching effects for smaller file
sizes were non-existent. In summary, it can be said that all
IOR variants utilizing a data balancing algorithm are able to
provide similar performance results. But, TAPP-IO makes the
application independent from the need to actively adopt the

Average /0 Bandwidth Improvement
100 5
BPOSIX /0 -
80 || EMPHO .
o & D HDF5
[
g€
£ EGO 22 6 49 =T
59 a4 a
€t o 38
g 5% 3231 33 31 32 32
E 2» 22 23 27, 2z
20
prve ||
PR KRR | b | (SR ISR [(BN | (N0 | (88 | |NN [(N
8 16 32 64 128 256 512 1024 2048 4096
20 Number of nodes
Fig. 6. Average performance gains (in %): TAPP-IO vs. Default placement.

BPIO mechanism by integrating it into the application or using
an I/O framework such as Aequilibro. Note, the performance
varieties that could be observed in previous work [6], [34]
are leveled for POSIX I/O and MPI-IO. We think that this
is the effect of only creating the Lustre file descriptor for
MPI-10 instead of pre-creating a file via the POSIX interface.
Figure 6 shows the performance improvement averaged over
all completed runs for file-per-process I/O and a 4 GB file size
per writing process (see also Figure 4). It confirms that TAPP-
IO consistently provides a higher throughput with the balanced
placement algorithm. The only exceptions are MPI-IO for 8
nodes and HDFS5 for 32 nodes.

Figure 7 presents the average application execution time
of IOR Default and IOR TAPP-IO for MPI-IO with file-per-
process. The percentage on top of the bars describes the time
improvement. A similar trend can be observed for POSIX 1/0
and HDF5. The results are not displayed due to the brevity
of the paper. From the results, we conclude that resolving
resource contention at the storage system level directly impacts

MPI-I0 with 4GB Block Size
250 156.8%

B IOR Default
120 - | @IOR TAPP-I0

100

40

Application execution time (in s)
©
3

1355% V37:3% 135.1%

20 $111.3% I]
J105% V92.7% . I I
0 .

16 32 64 128 256 512
Number of nodes

1024

2048 4096

Fig. 7. Average application execution time for MPI-IO with 4 GB block size.

the overall execution time of the application. With the prospect
of big data and the increasing amount of defensive I/O in
mind, we expect that the balancing mechanism will have a
tremendous effect on an application’s performance.

The IOR benchmark output provides the standard deviation
and mean calculated from the performance results of the
executed repetitions per run. While evaluating the collected
benchmarks results, we constantly were able to make the
following observation for all IOR variants utilizing a balancing
algorithm independently from the I/O interface. For TAPP-
IO, the standard deviation is tremendously lower for all tested
file sizes. The standard deviation is a measure to quantify the
amount of variation of a set of data values. In other words,
when utilizing the BPIO, the achieved bandwidth of each
repetition is relatively close while using the Lustre default
data placement leads to a huge variation among repetitions.

10R MPI-I0, 512 MB Block Size, Single Shared File 10R MPI-10, 2 GB Block Size, Single Shared File

-
S
S

—@—I0R Default
—@-I0R Optimized
4 IOR TAPP-I0

—o—IOR Default
8- I0R Optimized
4~ |OR TAPP-I0

@

3
®
]

@
3

S
]

Bandwidth (GB/s)
Fl
88

Bandwidth (GB/s)

N
S

=)

8 16 32 256 512 1024 8 16 32

64 8 256 512 1024
Number of nodes

Number of nodes

Fig. 8. IOR bandwidth performance for MPI-IO and single shared file.

Figure 8 displays initial performance results of TAPP-
10 with the single shared file balancing algorithm for IOR
with MPI-IO for different block sizes. The result present the
average bandwidth out of 30 scaled runs with node allocations
ranging from 8 to 1,024 nodes with one writing process per
allocated node. Similar to the file-per-process mode, TAPP-IO
provides significant performance improvement starting with a
node allocation as minimal as 32 nodes. The default Lustre
striping pattern throttles the throughput tremendously. The
default striping pattern distributes the file over 4 OSTs with
a striping size of 1. Multiple writing processes try to access
the same OST at the same time. The optimized IOR version
provides an increasing bandwidth compared to the default
variant, but still utilizes the Lustre default OST placement like
the file-per-process results. The observed performance gain
by distributing stripes of the same file evenly among available
storage targets is consistent with the observations made for the
file-per-process 1/O pattern. For example, TAPP-IO provides
a performance improvement of about 75.8% compared to
the optimized placement for 256 nodes. Another consistent
observation that should be noted is that the standard deviation
results obtained from different iterations within the same run
was relatively small for TAPP-IO compared to the results
obtained with the Lustre default data placement.

C. HPC Application Results

We perform scaled runs with 128, 256, 512, 1,024, 2,048,
and 4,096 nodes which correspond to 2,048, 4,096, 8,192,
16,384, 32,768, and 65,536 MPI processes, respectively. We

Genarray - S3D Workload Benchmark
60 -

‘ WPOSIX 1/0
_50 BEMPIIO
o & ‘ T HDF5
gga0
g5,
E E30
g 520
& o
o H H
=10
64 128 256 512 1024 2048 4096

Number of nodes

Fig. 9. Average I/O bandwidth improvement for S3D workload.

use weak scaling of the problem size grid such that each
process generates an 8 MB output/checkpoint file periodically
(10 checkpoints in each run). The I/O bandwidth measure-
ment is performed for default (ADIOS) and balanced data
placement (ADIOS with TAPP-1O) by running three Genarray
simulations within the same allocation. Figure 9 displays the
summary of the I/O bandwidth improvements observed for
S3D-I0. The improvements are averaged over ten runs for
each configuration. It can be observed that even for small node
count runs the performance can be improved. For large-scale
runs, we observe that TAPP-IO significantly improves the I/O
bandwidth. This is consistent with the IOR synthetic bench-
mark performance results. For large node/processor counts,
applications can directly benefit from TAPP-IO without any
additional code changes.

V. CONCLUSIONS

This work attempts to resolve I/O contention in busy HPC
environments, by introducing TAPP-IO, a dynamic, shared
data placement framework that mitigates resource contention
and load imbalance at the lowest level, thereby improving the
application-level performance. TAPP-1O introduces a balanc-
ing algorithm for the file-per-process and single-shared-file
I/O patterns and supports HDF5, MPI-IO, and POSIX I/O.
It does not require any source code modifications and acts as
a transparent auto-tuning layer for parallel I/O performance.

The effectiveness of the TAPP-IO framework is evaluated
in comparison to our past work for POSIX I/O, MPI-IO,
and HDF5. We utilize IOR, a synthetic benchmark, and a
real-world HPC workload. Our results show that TAPP-IO
translates the benefits of BPIO transparently into an appli-
cation while providing consistent performance improvements
for different node allocations. For example, POSIX 1/0 MPI-
IO can be improved by up to 50% on per job basis while
HDF5 shows performance improvements of up to 32%. The
simplicity of the integration shows that TAPP-IO is a viable
solution for improving the overall I/O performance.

Future work will include the performance evaluation with
scientific HPC workloads, especially for the single-shared-file
strategy. Although our evaluation is centered around Titan
and Spider II, load imbalance and resource contention are a
common problem in large-scale HPC systems. We believe that
TAPP-IO and our proposed techniques can be applied to HPC
platforms that lack a centralized resource manager.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable feed-
back. This research used resources of the Oak Ridge Lead-
ership Computing Facility, located in the National Center for
Computational Sciences at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the Department
of Energy under Contract DE-AC05-000R22725.

[1]

(10

[11]

[12]

[13]

[14]

[15]

REFERENCES

M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An
Overview of the HDF5 Technology Suite and its Applications,” in
EDBT/ICDT 2011 Workshop on Array Databases (AD ’11), 2011, pp.
36-47.

R. Thakur, W. Gropp, and E. Lusk, “On Implementing MPI-IO Portably
and with High Performance,” in 6th Workshop on 1/O in Parallel and
Distributed Systems, 1999, pp. 23-32.

1 P.J. Braam et al., “The Lustre Storage Architecture,” 2004.
] B. Xie, Y. Huang, J. S. Chase, J. Y. Choi, S. Klasky, J. Lofstead,

and S. Oral, “Predicting Output Performance of a Petascale Supercom-
puter,” in Proceedings of the 26th International Symposium on High-
Performance Parallel and Distributed Computing (HPDC), 2017, pp.
181-192.

F. Wang, S. Oral, S. Gupta, D. Tiwari, and S. Vazhkudai, “Improv-
ing Large-scale Storage System Performance via Topology-aware and
Balanced Data Placement,” in 20th IEEE International Conference on
Parallel and Distributed Systems (ICPADS), 2014, pp. 656-663.

S. Neuwirth, F. Wang, S. Oral, S. Vazhkudai, J. Rogers, and U. Bru-
ening, “Using Balanced Data Placement to Address /O Contention in
Production Environments,” in 2016 28th International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD),
Oct 2016, pp. 9-17.

S. Neuwirth, S. Oral, F. Wang, and U. Bruening, “An I/O Load Balancing
Framework for Large-scale Applications (BPIO 2.0),” Poster at 2016
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis (SC16), 2016.

S. Oral, D. A. Dillow, D. Fuller, J. Hill, D. Leverman, S. S. Vazhkudai,
F. Wang, Y. Kim, J. Rogers, J. Simmons et al., “OLCF’s 1 TB/s, Next-
generation Lustre File System,” in Cray User Group Conference (CUG
2013), 2013.

J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A Centralized “Zero-queue” Datacenter Network,” in 2014
ACM Conference on SIGCOMM (SIGCOMM ’14), 2014, pp. 307-318.
M. Ezell, D. Dillow, S. Oral, F. Wang, D. Tiwari, D. E. Maxwell,
D. Leverman, and J. Hill, “I/O Router Placement and Fine-Grained
Routing on Titan to Support Spider II,” in Cray User Group Conference
(CUG 2014), 2014.

A. S. Bland, J. C. Wells, O. E. Messer, O. R. Hernandez, and J. H.
Rogers, “Titan: Early Experience with the Cray XK6 at Oak Ridge
National Laboratory,” in Cray User Group Conference (CUG), 2012.
J. FE. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,
“Flexible IO and Integration for Scientific Codes Through The Adaptable
10 System (ADIOS),” in 6th International Workshop on Challenges of
Large Applications in Distributed Environments, 2008, pp. 15-24.

S. Ahern et al., “Scientific Discovery at the Exascale: Report from
the DOE ASCR 2011 Workshop on Exascale Data Management,
Analysis and Visualization,” http://science.energy.gov/~/media/ascr/pdf/
program-documents/docs/Exascale- ASCR- Analysis.pdf, 2011.

0. Yildiz, M. Dorier, S. Ibrahim, R. Ross, and G. Antoniu, “On the Root
Causes of Cross-Application I/O Interference in HPC Storage Systems,”
in 2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), May 2016, pp. 750-759.

A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir,
“Scheduling the I/O of HPC Applications Under Congestion,” in 2015
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2015, pp. 1013-1022.

S. Herbein, D. H. Ahn, D. Lipari, T. R. Scogland, M. Stearman,
M. Grondona, J. Garlick, B. Springmeyer, and M. Taufer, “Scalable
1/0-Aware Job Scheduling for Burst Buffer Enabled HPC Clusters,”

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

in Proceedings of the 25th ACM International Symposium on High-
Performance Parallel and Distributed Computing, ser. HPDC ’16. New

York, NY, USA: ACM, 2016,£)p, 69-80.
M. Luo, D. K. Panda, K. Z. Ibrahim, and C. lancu, “Congestion

Avoidance on Manycore High Performance Computing Systems,” in
26th ACM International Conference on Supercomputing (ICS ’12), 2012,
pp- 121-132.

N. Jiang, L. Dennison, and W. J. Dally, “Network Endpoint Congestion
Control for Fine-grained Communication,” in Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis (SC15), ser. SC *15. New York, NY, USA: ACM,
2015, pp. 35:1-35:12.

Y. Li, X. Lu, E. L. Miller, and D. D. Long, “ASCAR: Automating
contention management for high-performance storage systems,” in 37st
Symposium on Mass Storage Systems and Technologies (MSST). 1EEE,
2015, pp. 1-16.

Y. Zhu, H. Jiang, X. Qin, D. Feng, and D. R. Swanson, “Improved
Read Performance in a Cost-effective, Fault-tolerant Parallel Virtual File
System (CEFT-PVFS),” in 3rd IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGrid), 2003, pp. 730-735.

R. B. Ross, R. Thakur et al., “PVFS: A Parallel File System for Linux
Clusters,” in 4th Annual Linux Showcase and Conference, 2000, pp.
391-430.

H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms, M. Prabhat,
S. Byna, and Y. Yao, “A Multiplatform Study of I/O Behavior on
Petascale Supercomputers,” in 24th International Symposium on High-
Performance Parallel and Distributed Computing (HPDC ’15), 2015,
pp. 33-44.

P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross, “Understanding and Improving Computational Science Storage
Access through Continuous Characterization,” ACM Transactions on
Storage (TOS), vol. 7, no. 3, pp. 8:1-8:26, October 2011.

Q. Liu, N. Podhorszki, J. Logan, and S. Klasky, “Runtime I/O Re-
Routing + Throttling on HPC Storage,” in 5th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage ’13), 2013.

S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and E. Thereska, “End-
to-end Performance Isolation Through Virtual Datacenters,” in [Ith
USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’14), 2014, pp. 233-248.

F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentralized
Task-aware Scheduling for Data Center Networks,” in ACM SIGCOMM
Computer Communication Review, vol. 44, no. 4, 2014, pp. 431-442.
K. Yelick et al, “The Magellan Report on Cloud Computing
for Science,” http://science.energy.gov/~/media/ascr/pdf/
program-documents/docs/Magellan_Final_Report.pdf, 2011.

OpenSFS, “Lustre 2.7.0 Released,” http://lustre.org/
lustre-2-7-0-released/, March 2015.

R. Mohr, M. J. Brim, S. Oral, and A. Dilger, “Evaluating Progressive
File Layouts For Lustre,” in Cray User Group Conference (CUG 2016),
2016.

H. Luu, B. Behzad, R. Aydt, and M. Winslett, “A multi-level approach
for understanding I/O activity in HPC applications,” in 2013 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE,
2013, pp. 1-5.

J. H. Chen, A. Choudhary, B. De Supinski, M. DeVries, E. Hawkes,
S. Klasky, W. Liao, K. Ma, J. Mellor-Crummey, N. Podhorszki et al.,
“Terascale Direct Numerical Simulations of Turbulent Combustion using
S3D,” Computational Science & Discovery, vol. 2, no. 1, p. 015001,
January 2009.

LLNL, “The Interleaved Or Random (IOR) Benchmark,” https://github.
com/LLNL/ior, May 2017.

H. Shan, K. Antypas, and J. Shalf, “Characterizing and Predicting
the I/O Performance of HPC Applications using a Parameterized Syn-
thetic Benchmark,” in 2008 ACM/IEEE Conference on Supercomputing
(SC08), 2008, pp. 42:1-42:12.

J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf, “Managing Variability in the 10 Perfor-
mance of Petascale Storage Systems,” in 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC10), 2010, pp. 1-12.

