
Automatic and Transparent
Resource Contention Mitigation for Improving
Large-scale Parallel File System Performance

Sarah Neuwirth˚, Feiyi Wang:, Sarp Oral: and Ulrich Bruening˚
˚Institute of Computer Engineering, University of Heidelberg, Germany

{sarah.neuwirth, ulrich.bruening}@ziti.uni-heidelberg.de
:National Center for Computational Sciences, Oak Ridge National Laboratory, USA

{fwang2, oralhs}@ornl.gov

Abstract—Proportional to the scale increases in HPC systems,
many scientific applications are becoming increasingly data
intensive, and parallel I/O has become one of the dominant
factors impacting the large-scale HPC application performance.
On a typical large-scale HPC system, we have observed that the
lack of a global workload coordination coupled with the shared
nature of storage systems cause load imbalance and resource
contention over the end-to-end I/O paths resulting in severe
performance degradation. I/O load imbalance on HPC systems
is generally a self-inflicted wound and mostly occurs between the
I/O paths and resources consumed by each individual job.

In this paper, we introduce TAPP-IO, a dynamic, shared load
balancing framework for mitigating resource contention. TAPP-
IO extends our previous work and solves two major limitations:
First, it transparently intercepts file creation calls during runtime
to balance the workload over all available storage targets. The us-
age of TAPP-IO requires no application source code modifications
and is independent from any I/O middleware. The framework can
be applied to almost any HPC platform and is suitable for systems
that lack a centralized file system resource manager. Second, the
framework proposes a new placement strategy to support not
only file-per-process I/O, but also single shared file I/O. This
opens the door to a new class of scientific applications that can
leverage the placement library for improved performance. We
demonstrate the effectiveness of our integration on the Titan
system at the Oak Ridge National Laboratory. Our experiments
with a synthetic benchmark and real-world HPC workload show
that, even in a noisy production environment, TAPP-IO can
improve large-scale application performance significantly.

I. INTRODUCTION

Top-tier scientific HPC systems are constantly increasing in

scale to improve application resolution and reduce the time

to solution. Such a scale increase also intensifies the system

complexity and decreases the overall system reliability (i.e.,

mean time to failure). To cope with system failures, most

scientific applications periodically write out memory states.

This defensive, bursty I/O (i.e., checkpointing) is the main

source of I/O activity on large-scale HPC systems. The rule

of thumb for checkpointing is that it should not take more

than 10% of the application run time in an hour. As the

HPC systems grow in scale, the cumulative memory size also

grows, resulting in larger amounts of data to be written out

during each checkpoint window. This pushes the limits and

capabilities of parallel file and storage systems serving HPC

systems, since the growth trajectories for these two are not

always the same. Most scientific HPC applications make no

difference between defensive I/O and scientific output; they

do I/O operations at regular pre-defined intervals and expect

a minimal amount of time is spent in I/O subroutines.

Parallel I/O systems are inherently complex, particularly

in the context of end-to-end I/O paths. For example at the

starting point of a typical I/O path, an application can use a

high-level library, such as HDF5 [1], for various reasons in-

cluding portability, improved data management, and enhanced

metadata capabilities. HDF5 is implemented on top of MPI-

IO [2] which, in turn, performs POSIX I/O calls against a

parallel file system such as Lustre [3]. Furthermore, before

an I/O request reaches its eventual storage target, it may

have to traverse through the compute fabric (e.g., a 3D torus

or Dragonfly, or a plain fat-tree), and a large-scale storage

network fabric (e.g., InfiniBand). Finally, the request reaches

the backend storage that provides a block interface, though

the parallel file system (PFS) sits on top and across these

backend storage devices. In large-scale HPC deployments, I/O

subsystems are typically shared among multiple applications

running concurrently with different usage patterns. Due to the

shared nature and inherently complex design, the observed

I/O performance at the application level can be much lower

than the theoretical peak bandwidth of the underlying storage

system. At the Oak Ridge Leadership Computing Facility

(OLCF), we observe firsthand that such a complex I/O sub-

system severely suffers from contention and significant load

imbalances among the different storage system components.

This effect is even more pronounced when the system is under

stress (i.e., bursty I/O activity periods). Also, it is observed that

at large scales the contention is mostly due to self-interference

(for a given scientific application) rather than by contention

from competing workloads [4].

Efficient use of extreme-scale computing resources often

requires extensive application tuning and code modification.

There is a steep learning curve for scientific application devel-

opers to understand the complex I/O subsystem and to address

the I/O load imbalance and contention issues. Therefore, it is

a major hurdle for applications to adopt and take advantage

2017 IEEE 23rd International Conference on Parallel and Distributed Systems



of any underlying improvement. To ease this transition in

the most transparent way, we propose TAPP-IO (Transparent
Automatic Placement of Parallel I/O), a dynamic, shared

load balancing framework that balances the I/O workload

evenly among all storage system components. Similarly to the

Balanced Placement I/O (BPIO) library [5], the framework

addresses the resource contention problem by providing a

topology-aware, balanced placement strategy that is based

on a tunable, weighted cost function of available system

components. This paper makes the following contributions:

‚ We design and implement TAPP-IO, an I/O load bal-

ancing framework, that transparently intercepts file I/O

calls (metadata operations) during runtime to distribute

the workload evenly over all available storage targets.

‚ TAPP-IO supports three major, widely used I/O inter-

faces for broad application compatibility: HDF5, MPI-IO,

and POSIX I/O. The framework requires no application

source code modifications and supports both statically

and dynamically linked applications.

‚ We propose a new placement strategy supporting both

file-per-process and single shared file I/O. The single

shared file I/O model support enables a new class of

scientific applications to leverage the placement library

(transparently) for improved I/O performance.

‚ We demonstrate the effectiveness of TAPP-IO by re-

peating small-, medium- and large-scale runs over an

extended period of time and compare the results to our

previous work (i.e, BPIO and Aequilibro [6], [7]). We

evaluate the performance for POSIX I/O, MPI-IO, and

HDF5, by utilizing the Interleaved Or Random (IOR)

synthetic benchmark and a real-world HPC workload.

E.g., for the file-per-process I/O model with 4,096 nodes

and a file size of 4 GB per writing process, TAPP-IO

provides performance improvements of about 54% for

POSIX I/O, 51% for MPI-IO, and 32% for HDF5 (see

also Figure 6).

The remainder of this paper is organized as follows. Sec-

tion 2 provides the background and related work. Section 3

describes the balancing framework. In Section 4, we discuss

the analysis methodology and evaluate the effectiveness of

our framework. Finally, we summarize our current efforts in

Section 5, discuss open issues, and outline future work.

II. BACKGROUND AND RELATED WORK

The experiments in this paper were conducted on the Titan

system at the Oak Ridge National Laboratory. Titan is a

Cray XK7 system with 18,688 compute nodes. Its parallel

file system is Spider II [8], which is based on the Lustre

technology [3] and one of the world’s fastest and largest

POSIX-compliant parallel file systems. It is configured and

deployed as two independent and non-overlapping file systems,

each with 144 Lustre Object Storage Servers (OSSs) and 1,008

Lustre Object Storage Targets (OSTs). The OSSes currently

run the Lustre parallel file system version 2.8.0.

Resource contention has a negative impact on the perfor-

mance and scalability in high-performance storage systems. As

emphasized by Wang et al. [5], a significant variation in usage

across system resources has been identified on a large-scale file

and storage system. This variation and the resulting contention

is due to the lack of a system-wide I/O load organizer on

modern distributed large-scale HPC systems. Parallel file and

storage systems supporting these large-scale systems only have

a partial view of the overall I/O activity and can only try

to optimize the resource usage at one end of the I/O path.

Also, Xie et al. [4] observed that most I/O load imbalances are

the result of improper resource allocation within a given job

(i.e., scientific application), which makes this work particularly

relevant.

The end-to-end resource contention problem can be ad-

dressed by different approaches. One possibility would be

the improvement of the Lustre OST allocation scheme. But,

this only addresses one end of the problem (ignoring the rest

of the resources on the end-to-end I/O paths) and therefore,

is disregarded. Another way to achieve balanced resource

utilization is the deployment of a centralized, system-wide I/O

coordination and control mechanism. For example, Fastpass

[9] is a network framework that aims for high utilization with

zero queuing for data centers. For large-scale scientific HPC

systems, this approach is not feasible. Multiple applications

are running concurrently, with a variety of different I/O pat-

terns and workloads. A system-wide I/O organizer requires to

coordinate between different subsystems (often designed and

provided by different vendors), as well as scientific application

code changes to participate in system-wide coordinated I/O.

Therefore, even though it is possible to design a system-wide

I/O coordinator, it is practically prohibited to be deployed on

a large-scale HPC system. The system-wide, balanced I/O re-

quest coordination would lead to a tremendous communication

overhead, and therefore, it likely would lead to a sub-optimal

utilization of the available computational resources.

The third approach is to balance the I/O workload on an

end-to-end and per job basis. This technique is adopted by the

Balanced Placement I/O (BPIO) library [5]. BPIO intelligently

allocates I/O paths for a parallel file system. The library

employs a placement strategy that provides a binding between

an I/O client (compute node or MPI rank ID) and a storage

target while aiming at an evenly I/O traffic distribution across

resource components to avoid points of contention. The library

utilizes the Fine-Grained Routing (FGR) congestion avoidance

method [10]. FGR organizes I/O paths to minimize end-to-end

hop counts and congestion. This is done by pairing clients

with their closest possible, and in the case of Titan, optimal

LNET router. The BPIO placement algorithm uses a placement

cost function that takes a weighted average of how frequently

different file system resources have been used by previous I/O

requests issued by the same application. The most general case

is defined by

C “ w1R1 ` w2R2 ` ...` wnRn (1)

where C is the cost of an I/O path, Ri is a resource component,

and wi is the weight factor with
řn

i“1 wi “ 1. For Lustre,

possible resource components are logical I/O routers (i.e.,



LNET), or actual file system and networking resources (i.e.,

Lustre I/O routers, OSSs, and OSTs). The algorithm loops

over all reachable storage targets to choose one with the lowest

placement cost per compute node. This is repeated for all I/O

clients allotted to the application once before it enters the I/O

write phase. An initial performance evaluation of the library

was performed on the Titan supercomputer [11] at OLCF.

Aequilibro [6], an ADIOS-based middleware, attempts to

resolve the load imbalance by utilizing the BPIO library.

ADIOS [12] is a flexible middleware that provides a simple I/O

application programming interface (API) with portable, fast,

scalable, metadata-rich output. An initial performance evalua-

tion has been carried out on the Titan system. Drawbacks are

that the usage is limited to specific ADIOS transport methods,

namely POSIX and MPI_AGGREGATE, and the overhead

added by ADIOS limits the performance improvement com-

pared to a direct BPIO integration into an application.

As we move towards the exascale era, resource contention

and performance variability in HPC systems remain a major

challenge. I/O workload imbalance paired with the increasing

gap between compute capabilities of HPC systems and the

underlying storage system are known issues in the HPC

domain [13], [14]. Several research studies have addressed

these problems to provide better I/O techniques. For example,

Gainaru et al. [15] introduce a global scheduler that minimizes

congestion caused by I/O interference by considering the

application’s past behaviors when scheduling I/O requests.

Herbein et al. [16] present a job scheduling technique that

reduces contention by integrating I/O-awareness into schedul-

ing policies. As shown by Yildiz et al. [14], scheduler-level

solutions not always lead to improved performance even

though it helps to control the level of interferences.

Some research efforts consider network contention as the

major contributor to I/O load imbalance. Luo et al. [17]

introduce a preemptive, core stateless optimization approach

based on open loop end-point throttling. Jiang et al. [18] in-

troduce new endpoint congestion-control protocols to address

the differentiation between network and endpoint congestion

more properly. Li et al. [19] present ASCAR, a storage traffic

management system for improving the bandwidth utilization

and fairness of resource allocation. This is not feasible for

large-scale HPC systems like Titan. There are too many appli-

cations and the I/O patterns change drastically depending upon

the run. Another area takes a file and storage-system centric

view. Zhu et al. [20] present CEFT-PVFS, a modification to the

PVFS file system [21] to achieve a better I/O load balancing.

Luu et al. [22] analyze the problem of low I/O performance on

leading HPC systems. They use Darshan [23] logs of over a

million jobs representing a combined total of six years of I/O.

Liu et al. [24] present a set of dynamic and proactive ADIOS

transport methods that are able to shift workloads dynamically

to lightly used areas of the storage system while applying a

throttling technique that limits how much data can be re-routed

during writing.

This paper complements previous work by bridging the gap

between the interconnect level, and file and storage-system

centric view. It provides users with a transparent auto-tuning

framework that takes full advantage of the optimizations done

at the interconnect level and the load balancing done at the

file system level. We argue that by designing a pre-loadable

BPIO-inspired framework, we translate the benefits of BPIO

transparently into an application without any source code

modification.

Resource allocation has also been researched in the context

of commercial data centers, such as Pulsar [25] and Baraat
[26]. Many of the assumptions made for commercial data

center performance optimizations are not applicable to large-

scale scientific simulation systems. For example, scientific

HPC systems do not have a global view on all available

system resources and allocations. Commercial and scientific

applications have different requirements [27]. While commer-

cial codes can be classified as high-throughput computing,

scientific workloads are categorized as latency-sensitive, large-

scale, and tightly coupled computations. They assume the

presence of a high-bandwidth, low-latency interconnect, a

shared parallel file system between compute nodes, and a head

node that can submit MPI jobs to all worker nodes. Therefore,

TAPP-IO was developed for a scientific HPC environment and

tested on a system optimized for large-scale simulations.

III. TAPP-IO FRAMEWORK

TAPP-IO is designed to work with parallel file systems

and does not require any modifications to application or I/O

library source code. It is implemented as a user space library,

based on an improved placement algorithm (as detailed in

section 3.1) for intelligently allocating resources along I/O

paths. The TAPP-IO framework works with both dynamically

and statically linked applications and supports both file-per-

process and single-shared-file I/O modes. It also supports three

major I/O interfaces: POSIX I/O, MPI-IO, and HDF5 I/O. As

pointed out by a recent study of petascale supercomputers [22],

between 50% and 95% of HPC applications use the POSIX

I/O library. The remaining jobs use MPI-IO directly or libraries

built atop MPI-IO, such as HDF5. This ensures that we have

a broad application compatibility support.

A. Parallel I/O Support

The TAPP-IO framework proposes a file placement strat-

egy that supports both file-per-process and single-shared-file

I/O access patterns. File-per-process scales the single writer

I/O pattern to encompass all processes instead of just one

process. Each process performs I/O operations on their own

separate file. Thus, for an application run of N processes, N
or more files are created. In a single-shared-file application

I/O pattern, multiple processes perform I/O operations either

independently or concurrently to the same file. The possible

HPC application I/O patterns can roughly be classified as

follows (the ratio can be read as writer count : file count):
1) N : N , stripe count “ 1
2) N : N , stripe count ą 1
3) N : M , stripe count ě 1, M ă N
4) N : 1, stripe count ą 1



Fig. 1. Two possible shared file layouts.

Case 1) and 2) describe file-per-process I/O patterns, case

3) presents a strategy where the writing is aggregated in

M shared files, and case 4) is the single-shared-file strategy

where multiple clients write to multiple ranges within the

same file. With a file-per-process I/O pattern, it is best to

use no striping (stripe count of 1). This limits the storage

target contention when dealing with a large number of files /

processes. Therefore, case 2) is disregarded for the TAPP-IO

framework. Case 3) is a special case of case 4) where multiple

writers are aggregated in multiple shared files. TAPP-IO cur-

rently supports cases 1), 3), and 4) with the limitation that the

balancing algorithm needs the expected file size for the shared

files. For single shared files, TAPP-IO tries to minimize both

the overhead associated with splitting an operation between

storage targets and contention between writing processes over

a single storage target. For example, Figure 1 displays two

possible shared file layouts for 32 writing processes. Layout

#1 keeps the data from a process in a contiguous block,

while Layout #2 strides the data throughout the file. When

accessing a single shared file from many processes, the stripe

count should equal the number of processes, if possible. The

size and location of I/O operations from the processes should

be carefully managed to allow as much stripe alignment

as possible resulting in each writing process accessing only

a single storage target. Analogous to file-per-process, the

algorithm follows the placement strategy implied by Layout

#1, i.e., stripe count “ number of writers and stripe size “ pfile
size / stripe countq. With these parameters, the algorithm tries

to achieve high levels of performance while mitigating storage

targets contention at large process counts. The placement

algorithm is invoked only once for every I/O write phase which

adds minimal overhead. The optimal set of storage targets is

determined similarly to the Balanced Placement procedure [5].

For each stripe of a shared file, the optimal stripe to storage

target assignment is calculated with the help of the BPIO

placement cost function. Algorithm 1 displays a simplified

version of the TAPP-IO balancing algorithm. TAPP-IO extends

prior work [5], [6] by introducing a support for transparent

function interpositioning, HDF5 I/O, and single shared files.

Algorithm 1 TAPP-IO Balancing Algorithm (simplified)

1: /* I/O call, e.g. open(), triggers balancing */

2: /* Update NID/OST binding with BPIO cost function */

3: osts Ð Balanced Placement (NIDs, OSTs)

4: /* Determine placement parameters */

5: if (File-per-process) then
6: start_ost Ð osts[my_rank]

7: stripe size Ð 1 MB

8: stripe count Ð 1
9: else if (Single shared File) && (my_rank ““ 0) then

10: stripe count Ð #writing processes
11: stripe size Ð file size / stripe count
12: ost_list Ð osts
13: end if
14: /* Initialize Lustre file descriptor via llapi */

15: if (File-per-process) then
16: llapi_file_create(...);

17: else if (Single shared File) && (my_rank ““ 0) then
18: llapi_file_open_param(...);

19: end if

The implementation of the TAPP-IO balancing framework

has been deployed and tested on Titan’s Spider II file system.

In order to specify the striping information for the file-per-

process strategy, it is sufficient to set a file descriptor’s Lustre

striping information via the llapi library before opening the

file via the corresponding I/O interface (MPI_File_open()
or H5Fcreate()). llapi_file_create() allows us to

specify the stripe size, stripe count, and OST offset of a file

via the logical object volumn (LOV) manager. When MPI-IO

or HDF5 try to create a file, the I/O layers transparently realize

that the Lustre file descriptor was already created. Therefore,

the existing descriptor is used to open the corresponding file.

Historically, Spider II was based on Lustre 2.4 which lacked

the ability to provide fine-grained control of object placement.

Spider II is now running Lustre version 2.8. With Lustre 2.7

[28], a new feature was introduced that provides the user with

the ability to explicitly specify the striping pattern via an

ordered list of OSTs. We utilize the Lustre llapi to specify

the Lustre striping parameter struct llapi_stripe_param where

a list of OSTs can be passed to the LOV manager. Unlike the

file-per-process strategy, llapi_file_open_param() is

called by MPI rank 0 to create the Lustre file descriptor.

The TAPP-IO library returns a list of MPI rank ID to OST

assignments which is used to specify the striping pattern.

Currently, the balancing algorithm for single shared files needs

the expected file size from the application in order to match the

stripes with the writing processes. Via MPI_Info_set(),

the application can forward the file size by specifying a value

pair (fileSize,value). To utilize TAPP-IO for multiple-

shared files, the framework also needs the number of writ-

ing tasks per file and the corresponding MPI communicator.

TAPP-IO extracts the information from the info object and

calculates the stripe size. The stripe size is matched to keep

data from a process in a contiguous block. Processes can



Application: MPI_File_open(MPI_COMM_WORLD,
“testfile”, MPI_MODE_CREATE, info, fd)

TAPP-IO

1. Obtain the address of MPI_File_open using dlsym()
2. Create Lustre file descriptor for balanced data placement via TAPP-IO
3. Call real_MPI_File_open(comm, filename, amode, info, fh)

MPI-IO Library: int MPI_File_open(MPI_Comm comm, 
char *filename, int amode, MPI_Info info, MPI_File *fh)

Application: open(“testfile”, flags, 0664)
TAPP-IO

1. Obtain the address of open using dlsym()
2. Create Lustre file descriptor for balanced data placement via TAPP-IO
3. Call real_open(filename, flags, mode)POSIX Library: int open(const char *pathname, 

int flags, mode_t mode)

MPI-IO Library (unmodified)

C POSIX Library (unmodified)

Application: H5Fcreate(“testfile.h5”,
H5F_ACC_TRUNC, H5P_DEFAULT, plist_id)

TAPP-IO

1. Obtain the address of H5Fcreate using dlsym()
2. Create Lustre file descriptor for balanced data placement via TAPP-IO
3. Call real_H5Fcreate(filename, flags, create_id, new_access_id)

High-Level I/O Library: hid_t H5Fcreate(const char *filename, 
unsigned flags, hid_t create_id, hid_t access_id)

HDF5 Library (unmodified)

Fig. 2. Dynamic interception of I/O functions at runtime.

concurrently access a single shared file. Still, this feature

lacks the flexibility to dynamically re-size a file. For the time

being, dynamic re-striping or re-sizing of a file comes with an

enormous overhead. The basic idea would be to re-create the

file with the new striping pattern. But, this involves the copying

(i.e, reading into memory and then writing out of the memory)

of the file to the client and back to the parallel file system. This

procedure is resource consuming and therefore, not feasible. It

is expected that the introduction of the progressive file layouts

[29] which is based on composite layouts with Lustre 2.10

will provide the means to efficiently enhance the balancing

algorithm for single shared files.

B. Function Interpositioning

TAPP-IO uses function interpositioning, similar to Recorder

[30] and Darshan [23], to prioritize itself over standard func-

tions. For dynamically linked applications, the framework is

built as a shared, dynamic library. Once TAPP-IO is specified

as the preloading library via LD_PRELOAD, it intercepts

POSIX I/O, MPI-IO, and HDF5 file creation calls issued by

the application and reroutes them to the balancing framework.

For statically linked applications, the library requires no source

code modifications, but has to be added transparently during

the link phase of MPI compiler scripts such as mpicc or

mpif90. This approach is a compromise in that existing

binaries must be recompiled (or relinked) in order to use

MPI_Init(), MPI_Finalize()I/O call, e.g. open()

TAPP-IO Library

System Libraries

Fig. 3. TAPP-IO runtime environment.

TAPP-IO. POSIX routines are intercepted by inserting wrapper

functions via the GNU linker’s --wrap argument. After

rerouting the function calls to the TAPP-IO framework, the

library evenly places the data on the available storage targets.

This balancing approach is transparent to the user because

alterations are made without changes to application and library

source code.

For both dynamically and statically linked applications,

TAPP-IO intercepts MPI-IO routines using the profiling

(PMPI) interface to MPI. Figure 3 illustrates the TAPP-IO

runtime environment. The framework consists of three main

components: TAPP-IO Core, TAPP-IO Common, and TAPP-IO
I/O Modules. The core of the framework handles the initial-

ization and clean up of the library. Before any I/O call can be

rerouted to TAPP-IO, the internal data structures need to be

initialized. This happens during MPI_Init(). The common

module hosts the balancing algorithm and helper functions to

maintain module specific I/O characterization data. In addition,

there is an I/O module for every supported I/O interface.

The I/O modules implement the wrapper functions. Figure 2

displays the dynamic interception of I/O routines at runtime.

The following sequence illustrates the mode of operation of

TAPP-IO for HDF5:

1) TAPP-IO intercepts and reroutes H5Fcreate() to the

corresponding I/O module.

2) TAPP-IO Common provides a list of NID/OST bindings.

3) A Lustre file descriptor is allocated with the balancing

information.

4) The function returns by calling real_H5Fcreate().

The mechanism is the same for the MPI-IO and

POSIX I/O. It offers per job and end-to-end I/O per-

formance improvement in the most transparent way. Cur-

rently, the framework supports the following I/O calls:

open[64](), creat[64](), MPI_File_open(), and

H5Fcreate[64](). These mechanisms have been tested

with the MPICH MPI implementation for both GNU and Cray



TABLE I
IOR BENCHMARK VARIANTS FOR THE FILE-PER-PROCESS STRATEGY.

Index Variant Description
(I) Default The original IOR benchmark.
(II) BPIO A modified version of IOR that utilizes the BPIO

library for balanced data placement.
(III) ADIOS An IOR benchmark where all I/O calls are

replaced with the ADIOS API for I/O handling.
(IV) Aequilibro Same code base as IOR ADIOS, but utilizes the

BPIO library for balanced data placement.
(V) TAPP-IO Unmodified IOR benchmark utilizing TAPP-IO

via LD_PRELOAD.

C, C++, and Fortran compilers. It also works correctly for both

static and dynamic compilation, requires no additional support-

ing infrastructure for instrumentation, and is compatible with

other MPI implementations and compilers.

IV. EVALUATION

In this section, we evaluate and analyze the effectiveness

of our load balancing framework using a synthetic benchmark

tool and a real-world HPC workload running on Titan.

A. Methodology

The I/O evaluation methodology is based on two bench-

marks, the Interleaved Or Random (IOR) benchmark and

Genarray, a benchmark that emulates I/O workload similar to

S3D [31]. In addition, we describe benchmark parameters that

need to be specified to model HPC workload behavior.

1) IOR Benchmark: IOR [32] provides a flexible way of

measuring I/O performance with different parameter config-

urations, including I/O interfaces ranging from traditional

POSIX to advanced parallel I/O interfaces like MPI-IO and

differentiates parallel I/O strategies between file-per-process

and single-shared-file. Shan et al. [33] demonstrated that IOR

can be used to characterize and predict the I/O performance

on HPC systems at scale. Table I displays the IOR benchmark

variants used with the file-per-process strategy. The evaluation

is divided into three different I/O performance comparisons.

First, the original version of BPIO is directly used for the

data placement by modifying the IOR source code, referred

to as IOR BPIO. Before creating a file with Lustre’s llapi, the

BPIO library is used to determine the compute node (NID) to

OST assignment. The results are compared to the unmodified

IOR benchmark IOR Default. Second, all I/O interface calls

are replaced by the ADIOS API. We use IOR as a workload

generator to drive the ADIOS framework, denoted as IOR
ADIOS. Using ADIOS with IOR provides an easy way to stress

the file system while handling file I/O with the ADIOS API.

A side benefit is that Aequilibro can be tested without any

additional code modification. The third part of the evaluation

provides the comparison of IOR Default and IOR TAPP-IO.

For the single shared file (SSF) I/O strategy, we use three

different variants of the IOR benchmark setups: (I) IOR
Default SSF, (II) IOR Optimized SSF, and (III) IOR TAPP-IO
SSF. Variant (I) uses the Lustre default striping (stripe count

= 4, stripe size = 1MB). Variant (II) uses optimized a striping

information (stripe count = numberOfWriters, stripe size =

fileSize / numberOfWritingTask), but the Lustre default OST

placement. Variant (III) uses the same stripe count and size

as (II), but utilizes the BPIO balancing algorithm to obtain

MPI process ID to OST binding. This list is used to set the

specific striping information. The metrics of interest include

the overall execution time and the end-to-end I/O performance
improvement gained by using either BPIO, Aequilibro or

TAPP-IO. It is provided in percentage and calculated with the

following equation:

Performance Improvement “ 100 ˚
ˆ

BWbalanced

BWdefault
´ 1

˙
(2)

2) HPC Workload: S3D is a combustion code simulation

that is widely used on HPC systems. It generates a large

amount of I/O requests. Verifying the I/O performance im-

provement of S3D with TAPP-IO provides us with a good

indicator of the impact on other large-scale applications.

Genarray is an S3D workload simulator provided by ADIOS.

We utilize the pre-loadable version of TAPP-IO to demon-

strate its effectiveness. This requires a small modification in

the ADIOS source code. By default, the MPI_AGGREGATE
transport method sets the striping information for files. In order

to run ADIOS with TAPP-IO, we remove the part that specifies

the striping information. In Genarray, three dimensions of a

global array are partitioned among MPI processes along X-

Y-Z dimensions in the same block-block-block fashion. Each

process writes an N3 partition. The size of each data element is

4 bytes, leading to the total data size of N3˚P ˚4 bytes, where

P is the number of processes. One key difference between the

IOR benchmark tool and Genarray is that by default Genarray

utilizes all cores present on a compute node. This improves

the computational efficiency of the simulation. On the other

hand, Genarray generates pressure on single storage targets,

because each compute node hosts its own operating system

with a single mount point per file system.

3) Benchmarking Parameters: In order to accurately model

an HPC workload behavior, the benchmark parameters need

to be aligned with the desired workload. The IOR benchmark

provides a wide range of parameters including API, FilePer-
Proc, WriteFile, NumTasks, BlockSize, and TransferSize. On

Titan, the memory size per node is 32 GB with 2 GB per

processor. We run the IOR with different blocksizes to evaluate

the impact of caching effects and a TransferSize of 1 MB.

For POSIX I/O, the fsync and useO_DIRECT options are set.

O_DIRECT bypasses I/O and file system buffers. For MPI-

IO, the same effect can be achieved by enabling the direct_io
MPI-IO optimization hint. For Lustre-specific settings, each

file is created with a stripe size of 1 MB and in the case

of file-per-process mode, a StripeCount of 1. The stripe size

should be aligned with the TransferSize in order to get the

best performance. StripeCount specifies the number of OSTs

where the data is striped across while StripeSize defines the

size of one stripe. The default Lustre stripe count is 4.

4) Experimental Setup: All tests were performed on the

Titan supercomputer. In order to get representative results,



Fig. 4. Performance improvements for IOR large-scale runs.

two major issues are addressed. First, all experiments are

conducted in a busy production environment. No tests are

run during the quiet maintenance mode. The results show that

performance gains can be achieved in an active production

environment. Second, a broad set of compute nodes are used

instead of just a certain subset of nodes. This demonstrates

that independently from any specific node set on Titan, an

application can readily benefit from the presented balancing

framework. The application level placement scheduler (ALPS)

on Titan returns a node allocation list where nodes tend

to be logically close to each other. There are two attempts

to get a higher node coverage. The first one is to submit

scaling tests one after another independently, in the hope that

a different set of compute nodes is covered with every run.

The second attempt is to submit scaling runs in parallel to

occupy a larger set of nodes. Both approaches are used to get

a broader coverage. All of our experiments are conducted in a

noisy, active production environment. Therefore, performance

numbers may not always be conclusive. To cope with this

issue and to draw consistent observation, multiple tests are

performed with at least three repetitions per run. Different

runs are allocated on different sets of nodes, enabling us to

cover a broad set of compute nodes on Titan.

B. Synthetic Benchmark Results

The results of the scaling runs with a 4 GB file size per

writing process and file-per-process strategy are summarized

in Figure 4 for 64, 512, 2,048, and 4,096 nodes. Over a period

of four months, more than 30 scaled runs per node allocation

size were obtained. Each sub-figure represents a particular

node allocation. The X-axis represents the enumeration of runs

with the same count of node allocation, but for different sets

of nodes. We compare the bandwidth performance of IOR

Default and IOR BPIO (denoted as Default vs. BPIO), IOR

Default and IOR TAPP-IO (denoted as Default vs. TAPP-IO),

and IOR ADIOS and IOR Aequilibro (denoted as ADIOS vs.

Aequilibro) utilizing Equation 2. In all cases, it can be seen

that the balancing provides significant performance improve-

ments for small-, medium-, and large-scale runs. An exception

is the performance for Aequilibro at smaller scales for POSIX

I/O. IOR BPIO and IOR TAPP-IO show similar performance

improvement trends. For POSIX I/O, TAPP-IO provides about

40% of performance improvement for 2,048 nodes and about

50% for 4,096 nodes. Similar trends can be observed for HDF5

and MPI-IO at large-scale. For 4,096 nodes, TAPP-IO provides

up to 89% of performance improvement for MPI-IO and 54%

for HDF5. It is noteworthy that the performance improvement

achieved by Aequilibro is inferior to BPIO and TAPP-IO.

The additional overhead introduced by the I/O middleware

framework lowers the overall I/O performance. While there

are variations across different runs, it can be observed that

the trend remains the same. There are consistent performance

gains across multiple runs and iterations. Optimizing the

overall I/O cost leads to a reduced application execution time

(especially for large-scale runs) and therefore, to a reduced

operational cost per executed application.

Figure 5 summarizes the IOR bandwidth results for different

file sizes scaling from 8 to 4,096 nodes for file-per-process.

The results illustrate the average bandwidth per second from

over more than 40 scaled runs with at least three repeti-

tions per IOR variant (refer to Table I) per node allocation

within one run. The results were collected over the period

of four months. From the throughput results, we make the

following observations. First, starting from small-scale runs

with at least 16 nodes, our load balancing framework TAPP-



Fig. 5. IOR bandwidth performance for IOR (I) to (V) for different file sizes.

IO and the BPIO library both provide consistent bandwidth

improvements. Aequilibro does not provide any significant

improvement for less than 128 nodes. Second, as we scale

up in terms of I/O processes and allocated computing nodes,

POSIX, MPI-IO, and HDF5 benefit from utilizing TAPP-

IO with IOR. For example, IOR TAPP-IO with POSIX I/O

achieves up to 202.7 GB/s on average for a 4,096 node

allocation and a 4 GB file size per writing process. This can be

translated to 54% performance improvement compared to the

default data placement with IOR Default. For smaller file sizes,

the maximum bandwidth is less, but the average performance

improvement trend remains the same compared with the

default data placement. This consistent improvement can be

observed for MPI-IO and HDF5 as well. Another noteworthy

aspect is that the expected caching effects for smaller file

sizes were non-existent. In summary, it can be said that all

IOR variants utilizing a data balancing algorithm are able to

provide similar performance results. But, TAPP-IO makes the

application independent from the need to actively adopt the

Fig. 6. Average performance gains (in %): TAPP-IO vs. Default placement.

BPIO mechanism by integrating it into the application or using

an I/O framework such as Aequilibro. Note, the performance

varieties that could be observed in previous work [6], [34]

are leveled for POSIX I/O and MPI-IO. We think that this

is the effect of only creating the Lustre file descriptor for

MPI-IO instead of pre-creating a file via the POSIX interface.

Figure 6 shows the performance improvement averaged over

all completed runs for file-per-process I/O and a 4 GB file size

per writing process (see also Figure 4). It confirms that TAPP-

IO consistently provides a higher throughput with the balanced

placement algorithm. The only exceptions are MPI-IO for 8

nodes and HDF5 for 32 nodes.

Figure 7 presents the average application execution time

of IOR Default and IOR TAPP-IO for MPI-IO with file-per-

process. The percentage on top of the bars describes the time

improvement. A similar trend can be observed for POSIX I/O

and HDF5. The results are not displayed due to the brevity

of the paper. From the results, we conclude that resolving

resource contention at the storage system level directly impacts

Fig. 7. Average application execution time for MPI-IO with 4 GB block size.



the overall execution time of the application. With the prospect

of big data and the increasing amount of defensive I/O in

mind, we expect that the balancing mechanism will have a

tremendous effect on an application’s performance.

The IOR benchmark output provides the standard deviation

and mean calculated from the performance results of the

executed repetitions per run. While evaluating the collected

benchmarks results, we constantly were able to make the

following observation for all IOR variants utilizing a balancing

algorithm independently from the I/O interface. For TAPP-

IO, the standard deviation is tremendously lower for all tested

file sizes. The standard deviation is a measure to quantify the

amount of variation of a set of data values. In other words,

when utilizing the BPIO, the achieved bandwidth of each

repetition is relatively close while using the Lustre default

data placement leads to a huge variation among repetitions.

Fig. 8. IOR bandwidth performance for MPI-IO and single shared file.

Figure 8 displays initial performance results of TAPP-

IO with the single shared file balancing algorithm for IOR

with MPI-IO for different block sizes. The result present the

average bandwidth out of 30 scaled runs with node allocations

ranging from 8 to 1,024 nodes with one writing process per

allocated node. Similar to the file-per-process mode, TAPP-IO

provides significant performance improvement starting with a

node allocation as minimal as 32 nodes. The default Lustre

striping pattern throttles the throughput tremendously. The

default striping pattern distributes the file over 4 OSTs with

a striping size of 1. Multiple writing processes try to access

the same OST at the same time. The optimized IOR version

provides an increasing bandwidth compared to the default

variant, but still utilizes the Lustre default OST placement like

the file-per-process results. The observed performance gain

by distributing stripes of the same file evenly among available

storage targets is consistent with the observations made for the

file-per-process I/O pattern. For example, TAPP-IO provides

a performance improvement of about 75.8% compared to

the optimized placement for 256 nodes. Another consistent

observation that should be noted is that the standard deviation

results obtained from different iterations within the same run

was relatively small for TAPP-IO compared to the results

obtained with the Lustre default data placement.

C. HPC Application Results

We perform scaled runs with 128, 256, 512, 1,024, 2,048,

and 4,096 nodes which correspond to 2,048, 4,096, 8,192,

16,384, 32,768, and 65,536 MPI processes, respectively. We

Fig. 9. Average I/O bandwidth improvement for S3D workload.

use weak scaling of the problem size grid such that each

process generates an 8 MB output/checkpoint file periodically

(10 checkpoints in each run). The I/O bandwidth measure-

ment is performed for default (ADIOS) and balanced data

placement (ADIOS with TAPP-IO) by running three Genarray

simulations within the same allocation. Figure 9 displays the

summary of the I/O bandwidth improvements observed for

S3D-IO. The improvements are averaged over ten runs for

each configuration. It can be observed that even for small node

count runs the performance can be improved. For large-scale

runs, we observe that TAPP-IO significantly improves the I/O

bandwidth. This is consistent with the IOR synthetic bench-

mark performance results. For large node/processor counts,

applications can directly benefit from TAPP-IO without any

additional code changes.

V. CONCLUSIONS

This work attempts to resolve I/O contention in busy HPC

environments, by introducing TAPP-IO, a dynamic, shared

data placement framework that mitigates resource contention

and load imbalance at the lowest level, thereby improving the

application-level performance. TAPP-IO introduces a balanc-

ing algorithm for the file-per-process and single-shared-file

I/O patterns and supports HDF5, MPI-IO, and POSIX I/O.

It does not require any source code modifications and acts as

a transparent auto-tuning layer for parallel I/O performance.

The effectiveness of the TAPP-IO framework is evaluated

in comparison to our past work for POSIX I/O, MPI-IO,

and HDF5. We utilize IOR, a synthetic benchmark, and a

real-world HPC workload. Our results show that TAPP-IO

translates the benefits of BPIO transparently into an appli-

cation while providing consistent performance improvements

for different node allocations. For example, POSIX I/O MPI-

IO can be improved by up to 50% on per job basis while

HDF5 shows performance improvements of up to 32%. The

simplicity of the integration shows that TAPP-IO is a viable

solution for improving the overall I/O performance.

Future work will include the performance evaluation with

scientific HPC workloads, especially for the single-shared-file

strategy. Although our evaluation is centered around Titan

and Spider II, load imbalance and resource contention are a

common problem in large-scale HPC systems. We believe that

TAPP-IO and our proposed techniques can be applied to HPC

platforms that lack a centralized resource manager.



ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable feed-

back. This research used resources of the Oak Ridge Lead-

ership Computing Facility, located in the National Center for

Computational Sciences at the Oak Ridge National Laboratory,

which is supported by the Office of Science of the Department

of Energy under Contract DE-AC05-00OR22725.

REFERENCES

[1] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An
Overview of the HDF5 Technology Suite and its Applications,” in
EDBT/ICDT 2011 Workshop on Array Databases (AD ’11), 2011, pp.
36–47.

[2] R. Thakur, W. Gropp, and E. Lusk, “On Implementing MPI-IO Portably
and with High Performance,” in 6th Workshop on I/O in Parallel and
Distributed Systems, 1999, pp. 23–32.

[3] P. J. Braam et al., “The Lustre Storage Architecture,” 2004.
[4] B. Xie, Y. Huang, J. S. Chase, J. Y. Choi, S. Klasky, J. Lofstead,

and S. Oral, “Predicting Output Performance of a Petascale Supercom-
puter,” in Proceedings of the 26th International Symposium on High-
Performance Parallel and Distributed Computing (HPDC), 2017, pp.
181–192.

[5] F. Wang, S. Oral, S. Gupta, D. Tiwari, and S. Vazhkudai, “Improv-
ing Large-scale Storage System Performance via Topology-aware and
Balanced Data Placement,” in 20th IEEE International Conference on
Parallel and Distributed Systems (ICPADS), 2014, pp. 656–663.

[6] S. Neuwirth, F. Wang, S. Oral, S. Vazhkudai, J. Rogers, and U. Bru-
ening, “Using Balanced Data Placement to Address I/O Contention in
Production Environments,” in 2016 28th International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD),
Oct 2016, pp. 9–17.

[7] S. Neuwirth, S. Oral, F. Wang, and U. Bruening, “An I/O Load Balancing
Framework for Large-scale Applications (BPIO 2.0),” Poster at 2016
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis (SC16), 2016.

[8] S. Oral, D. A. Dillow, D. Fuller, J. Hill, D. Leverman, S. S. Vazhkudai,
F. Wang, Y. Kim, J. Rogers, J. Simmons et al., “OLCF’s 1 TB/s, Next-
generation Lustre File System,” in Cray User Group Conference (CUG
2013), 2013.

[9] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A Centralized “Zero-queue” Datacenter Network,” in 2014
ACM Conference on SIGCOMM (SIGCOMM ’14), 2014, pp. 307–318.

[10] M. Ezell, D. Dillow, S. Oral, F. Wang, D. Tiwari, D. E. Maxwell,
D. Leverman, and J. Hill, “I/O Router Placement and Fine-Grained
Routing on Titan to Support Spider II,” in Cray User Group Conference
(CUG 2014), 2014.

[11] A. S. Bland, J. C. Wells, O. E. Messer, O. R. Hernandez, and J. H.
Rogers, “Titan: Early Experience with the Cray XK6 at Oak Ridge
National Laboratory,” in Cray User Group Conference (CUG), 2012.

[12] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,
“Flexible IO and Integration for Scientific Codes Through The Adaptable
IO System (ADIOS),” in 6th International Workshop on Challenges of
Large Applications in Distributed Environments, 2008, pp. 15–24.

[13] S. Ahern et al., “Scientific Discovery at the Exascale: Report from
the DOE ASCR 2011 Workshop on Exascale Data Management,
Analysis and Visualization,” http://science.energy.gov/~/media/ascr/pdf/
program-documents/docs/Exascale-ASCR-Analysis.pdf, 2011.

[14] O. Yildiz, M. Dorier, S. Ibrahim, R. Ross, and G. Antoniu, “On the Root
Causes of Cross-Application I/O Interference in HPC Storage Systems,”
in 2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), May 2016, pp. 750–759.

[15] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir,
“Scheduling the I/O of HPC Applications Under Congestion,” in 2015
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2015, pp. 1013–1022.

[16] S. Herbein, D. H. Ahn, D. Lipari, T. R. Scogland, M. Stearman,
M. Grondona, J. Garlick, B. Springmeyer, and M. Taufer, “Scalable
I/O-Aware Job Scheduling for Burst Buffer Enabled HPC Clusters,”

in Proceedings of the 25th ACM International Symposium on High-
Performance Parallel and Distributed Computing, ser. HPDC ’16. New
York, NY, USA: ACM, 2016, pp. 69–80.

[17] M. Luo, D. K. Panda, K. Z. Ibrahim, and C. Iancu, “Congestion
Avoidance on Manycore High Performance Computing Systems,” in
26th ACM International Conference on Supercomputing (ICS ’12), 2012,
pp. 121–132.

[18] N. Jiang, L. Dennison, and W. J. Dally, “Network Endpoint Congestion
Control for Fine-grained Communication,” in Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis (SC15), ser. SC ’15. New York, NY, USA: ACM,
2015, pp. 35:1–35:12.

[19] Y. Li, X. Lu, E. L. Miller, and D. D. Long, “ASCAR: Automating
contention management for high-performance storage systems,” in 31st
Symposium on Mass Storage Systems and Technologies (MSST). IEEE,
2015, pp. 1–16.

[20] Y. Zhu, H. Jiang, X. Qin, D. Feng, and D. R. Swanson, “Improved
Read Performance in a Cost-effective, Fault-tolerant Parallel Virtual File
System (CEFT-PVFS),” in 3rd IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGrid), 2003, pp. 730–735.

[21] R. B. Ross, R. Thakur et al., “PVFS: A Parallel File System for Linux
Clusters,” in 4th Annual Linux Showcase and Conference, 2000, pp.
391–430.

[22] H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms, M. Prabhat,
S. Byna, and Y. Yao, “A Multiplatform Study of I/O Behavior on
Petascale Supercomputers,” in 24th International Symposium on High-
Performance Parallel and Distributed Computing (HPDC ’15), 2015,
pp. 33–44.

[23] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross, “Understanding and Improving Computational Science Storage
Access through Continuous Characterization,” ACM Transactions on
Storage (TOS), vol. 7, no. 3, pp. 8:1–8:26, October 2011.

[24] Q. Liu, N. Podhorszki, J. Logan, and S. Klasky, “Runtime I/O Re-
Routing + Throttling on HPC Storage,” in 5th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage ’13), 2013.

[25] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and E. Thereska, “End-
to-end Performance Isolation Through Virtual Datacenters,” in 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’14), 2014, pp. 233–248.

[26] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentralized
Task-aware Scheduling for Data Center Networks,” in ACM SIGCOMM
Computer Communication Review, vol. 44, no. 4, 2014, pp. 431–442.

[27] K. Yelick et al., “The Magellan Report on Cloud Computing
for Science,” http://science.energy.gov/~/media/ascr/pdf/
program-documents/docs/Magellan_Final_Report.pdf, 2011.

[28] OpenSFS, “Lustre 2.7.0 Released,” http://lustre.org/
lustre-2-7-0-released/, March 2015.

[29] R. Mohr, M. J. Brim, S. Oral, and A. Dilger, “Evaluating Progressive
File Layouts For Lustre,” in Cray User Group Conference (CUG 2016),
2016.

[30] H. Luu, B. Behzad, R. Aydt, and M. Winslett, “A multi-level approach
for understanding I/O activity in HPC applications,” in 2013 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE,
2013, pp. 1–5.

[31] J. H. Chen, A. Choudhary, B. De Supinski, M. DeVries, E. Hawkes,
S. Klasky, W. Liao, K. Ma, J. Mellor-Crummey, N. Podhorszki et al.,
“Terascale Direct Numerical Simulations of Turbulent Combustion using
S3D,” Computational Science & Discovery, vol. 2, no. 1, p. 015001,
January 2009.

[32] LLNL, “The Interleaved Or Random (IOR) Benchmark,” https://github.
com/LLNL/ior, May 2017.

[33] H. Shan, K. Antypas, and J. Shalf, “Characterizing and Predicting
the I/O Performance of HPC Applications using a Parameterized Syn-
thetic Benchmark,” in 2008 ACM/IEEE Conference on Supercomputing
(SC08), 2008, pp. 42:1–42:12.

[34] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf, “Managing Variability in the IO Perfor-
mance of Petascale Storage Systems,” in 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC10), 2010, pp. 1–12.


