

High-Performance Titanium Oxynitride Thin Films for Electrocatalytic Water Oxidation

Nikhil Reddy Mucha, Jacob Som, Jonghyun Choi, Surabhi Shaji, Ram Krishan Gupta, Harry M. Meyer, Corson L. Cramer, Amy M Elliot, and Dhananjay Kumar

ACS Appl. Energy Mater., Just Accepted Manuscript • DOI: 10.1021/acsaem.0c00988 • Publication Date (Web): 04 Aug 2020

Downloaded from pubs.acs.org on August 12, 2020

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

1
2
3 **High-Performance Titanium Oxynitride Thin Films for Electrocatalytic Water**
4 **Oxidation**
5
6

7 Nikhil Reddy Mucha¹, Jacob Som¹, Jonghyun Choi², Surabhi Shaji¹, Ram K. Gupta², Harry
8 M. Meyer³, Corson L. Cramer⁴, Amy M. Elliot⁴, Dhananjay Kumar^{1*}
9
10

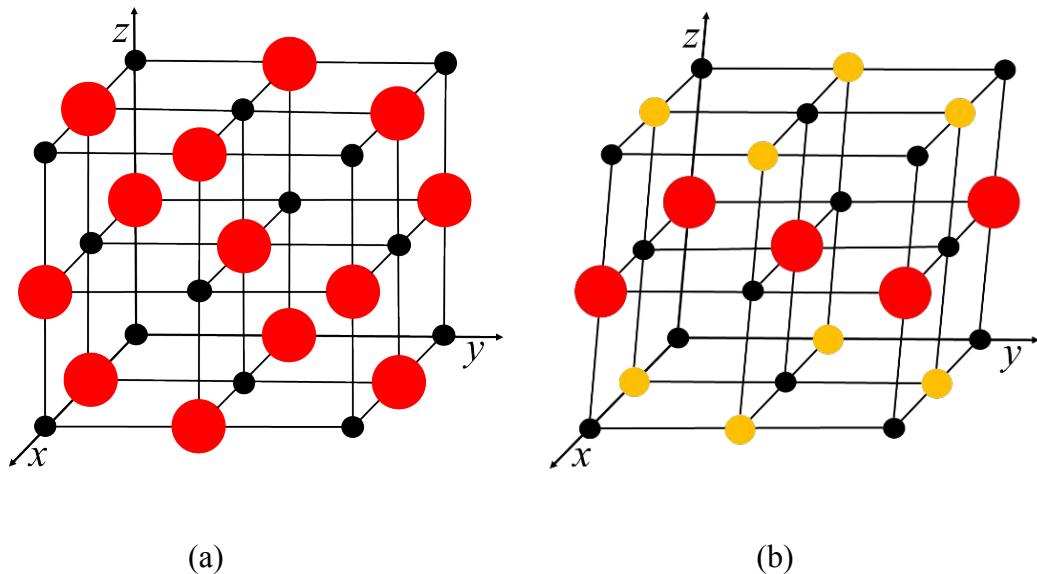
11 ¹Department of Mechanical Engineering, North Carolina Agricultural and Technical State
12 University, Greensboro, NC 27411
13
14

15 ²Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762
16
17

18 ³Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oakridge, TN
19 37831
20
21

22 ⁴Energy and Transportation Sciences Division, Oak Ridge National Laboratory, Oakridge, TN
23 37831
24
25

26 **Abstract**
27


28 TiN_xO_y (TiNO) thin films with superior electrochemical properties have been
29 synthesized *in situ* using a pulsed laser deposition method and a varied oxygen partial pressure
30 from 5 to 25 mTorr. The electrochemical overpotential of these TiNO films for water oxidation
31 was found to be as low as 290 mV at 10 mA/cm², which is amongst the lowest overpotential
32 values reported. The Tafel slopes, indicative of a rate of increase of electrode potential with
33 respect to current, for these films, are determined to be in the range of 85-57 mV/decade. These
34 results further demonstrate the superiority of TiNO thin film as electrocatalyst for water
35 oxidation to generate fossil-free fuels. The improvement in the electrocatalytic behavior of the
36 semiconducting TiNO thin films is explained based on an adjustment in the valence band
37 maximum edge and an enhancement in the number of electrochemically active sites. Both
38 effects are realized by the substitution of N by O forming, TiNO lattice which, is isostructural
39 with the rock-salt TiN lattice. These findings appear to assume significant importance in light
40 of water electrolysis to produce fuels for the development of environmentally friendly power
41 sources.
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Keywords: oxynitrides, oxygen evolution reaction, electrocatalysis, electrochemical
overpotential, water splitting, thin films, pulsed laser deposition

1. Introduction

5 The research efforts toward developing an easy-to-synthesize high conductivity anode
6 electrocatalysts that are relatively inexpensive, stable, and active at low overpotentials during
7 water splitting are challenging. The requirements for these developments are stringent and have
8 often hindered the practical use of the precious metals such as Pt, Pd, Ru, Ir, etc. and oxides
9 such as RuO₂, IrO₂ in the electrochemical systems. A large difference in the electronegativity
10 values between titanium (Ti) and oxygen (O) as well as nitrogen (N) enables Ti to react easily
11 with oxygen and nitrogen to form titanium dioxide (TiO₂) and titanium nitride (TiN). The
12 simplicity in the synthesis and the embodiment of myriads of unique properties in TiN and TiO₂
13 place these two compounds among the most widely studied and used materials. After the work
14 of Honda and Fujishima, TiO₂ has become a paradigm material in surface science and
15 catalysis.¹⁻⁷ TiN exhibits an unusual combination of covalent, metallic, and ionic properties:
16 ultra-hardness (close to that of the diamond), high thermal conductivity, high electrical
17 conductivity (higher than that of Ti), and even low- temperature superconductivity.⁸⁻¹⁶ Several
18 Ti-based oxynitrides (TiN_xO_y, abbreviated as TiNO) compounds, intermediate between
19 metallic TiN and insulating TiO₂, have gained enormous scientific and engineering attention
20 recently due to progressive and favorable change in their properties opening the doors for many
21 applications.^{2, 3, 9, 17-22} Oxynitride stabilities in air and moisture are greater than those of the pure
22 nitrides but have smaller bandgap than those of comparable oxides.^{20, 22-29} There is no
23 isostructural phase between TiN and TiO₂. However, TiN is isostructural with rock-salt
24 TiN_{0.5}O_{0.5} (obtained with 50 % substitution of N by O in TiN).^{19, 30, 31} The rock-salt structure of
25 TiN and TiN_{0.5}O_{0.5} are shown in Figure 1. Due to a random substitution of N by O and a
26 concomitant change in the valence state of Ti, and consequently, ionic radii, the lattice
27 parameters (a, b and, c) along the x-, y-, and z-axis do not remain same. Accordingly, the three
28 orthogonal angles (α , β , and γ) would also deviate from 90°. Thus, the oxidation of TiN is
29 expected to shift to monoclinic crystal symmetry from cubic. However, the base rock-salt type
30

structure remains intact. Hence, it is favorable to oxidize TiN to TiNO as the incorporated O atoms are already in their most stable structure, namely, rock-salt. Moreover, in this way, the main drawback of an extra-electron transfer during N-incorporation in TiO_2 is overcome.^{9, 30-32}

Figure 1. Unit cell crystal structures of (a) TiN, (b) $\text{TiN}_{0.5}\text{O}_{0.5}$. Ti^{3+} ● = 0.081 nm, N^{3-} ● = 0.132 nm, and O^{2-} ● = 0.100 nm.

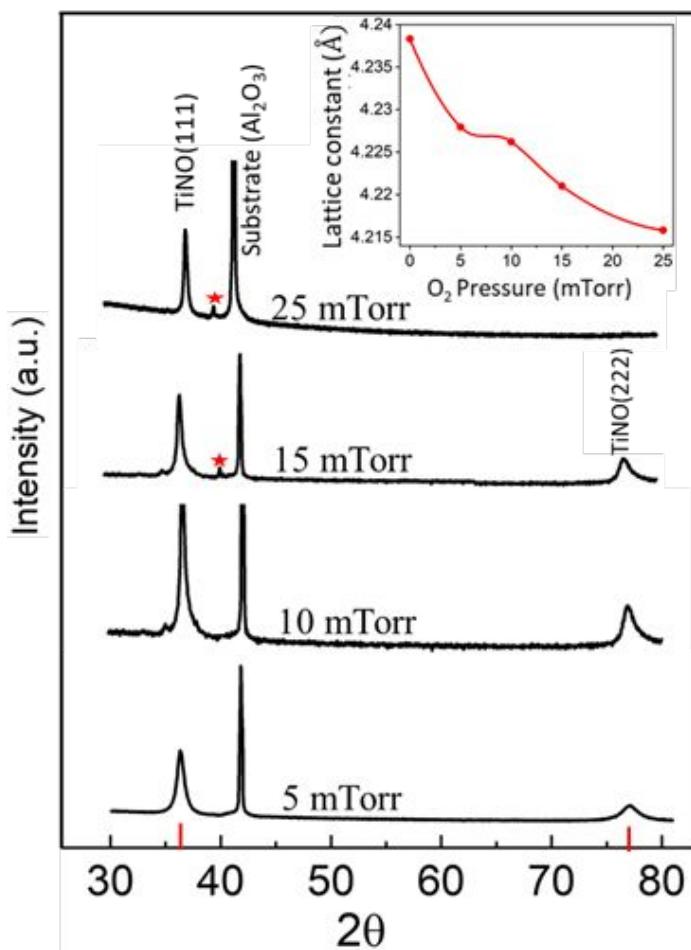
The present study has focused on the synthesis of TiN_xO_y thin films with varying x and y and the study of their performance in water splitting for oxygen evolution. The overpotentials for oxygen evolution reaction (OER; $4\text{OH}^- = \text{O}_2 + 2\text{H}_2\text{O} + 4\text{e}^-$)³³ realized for these films are in the range of 320 to 290 mV (at 10 mA/cm²) which are amongst the lowest values reported for metal alloys, oxynitrides, and oxide systems, designed using extrinsic as well as intrinsic approaches.^{3, 17, 27, 34} The materials design via the extrinsic approach is generally based on increasing the loading capacity of the electrocatalysts via defect engineering and/or surface modification, while the intrinsic approach is based on exploring novel materials with an enhanced electroactivity.³⁵⁻³⁷ The improvement in the electrocatalytic behavior of TiNO thin films is explained based on the enhanced number of electrochemically active sites realized by the substitution of anionic N sites by O and a favorable alignment of valence band with respect

1
2
3 to the redox potential of electrolyte medium.^{19, 27} These findings are of significant importance
4
5 in light of water electrolysis to produce fossil-free fuels for the development of environmentally
6
7 friendly power sources.^{35, 38} Although there are some reports on the electrocatalytic activity of
8
9 TiNO system, the majority of the reports are focused on TiNO system in the polycrystalline
10
11 bulk form.^{3, 39-42} The significance of TiNO thin film research arises from better possibilities in
12
13 precisely controlling the orientation, crystallinity, composition, grain size, and grain
14
15 distribution, which are well known to critically affect the film's properties.^{9, 18, 19, 43-45} The TiNO
16
17 material system in thin film form has also a strong potential for integration with technologically
18
19 important substrates such as silicon and sapphire due to the small mismatch in lattice constants
20
21 and thermal expansion coefficients.^{46, 47}

22
23
24
25
26 2. Experimental Section
27

28 TiNO films were deposited on single crystal c-plane sapphire (0001 orientation)
29 substrates using a pulsed laser deposition (PLD) method. A high purity (99.99%) titanium
30 nitride composite target was used to deposit TiNO films by controlling the oxygen pressure,
31 substrate temperature, laser energy density, laser repetition rate, etc. An excimer laser (Coherent
32 Complex Pro) with krypton fluoride (KrF) radiation (wavelength 248 nm, pulse duration 30 ns)
33 was used during the PLD experiments. The frequency of the laser beam was 10 Hz. A fixed
34 number of laser pulses (shots) of 20,000 (deposition time = 2,000 s) was used. Some other
35 parameters specific to our PLD experiments include substrate temperatures of 400 °C, oxygen
36 pressure in the range of 5 to 25 m Torr, the laser energy density of 2 J/cm². The details of our
37 PLD set-up are described elsewhere.^{9, 10, 48-50} The crystallographic studies and phase purity of
38 TiNO films were carried out using Bruker D8 advanced X-ray diffractometer. X-ray
39 photoelectron spectroscopy (XPS) was performed using a Thermo Scientific (Waltham, MA,
40 USA) Model k alpha XPS instrument. Survey spectra were acquired for qualitative and
41 quantitative analysis. High-resolution core level spectra were acquired for detailed chemical
42 analysis. The atomic percentage of the elements was calculated using the Shirley background
43 subtraction method. The binding energy of the core level spectra was calibrated using the C 1s
44 peak at 284.8 eV. The chemical state of the elements was determined by the deconvolution
45 of the core level spectra using the XPS peak fitting software (Thermo Scientific). The
46 atomic percentage of the elements was calculated using the Shirley background subtraction
47 method. The binding energy of the core level spectra was calibrated using the C 1s peak at
48 284.8 eV. The chemical state of the elements was determined by the deconvolution
49 of the core level spectra using the XPS peak fitting software (Thermo Scientific). The
50 atomic percentage of the elements was calculated using the Shirley background subtraction
51 method. The binding energy of the core level spectra was calibrated using the C 1s peak at
52 284.8 eV. The chemical state of the elements was determined by the deconvolution
53 of the core level spectra using the XPS peak fitting software (Thermo Scientific). The
54 atomic percentage of the elements was calculated using the Shirley background subtraction
55 method. The binding energy of the core level spectra was calibrated using the C 1s peak at
56 284.8 eV. The chemical state of the elements was determined by the deconvolution
57 of the core level spectra using the XPS peak fitting software (Thermo Scientific). The
58 atomic percentage of the elements was calculated using the Shirley background subtraction
59 method. The binding energy of the core level spectra was calibrated using the C 1s peak at
60 284.8 eV. The chemical state of the elements was determined by the deconvolution

1
2
3 state analysis. The surface morphology of TiNO films was studied using Hitachi SU8000
4
5 scanning electron microscopy (SEM).
6


7 The electrical resistance of TiNO films was measured using a Quantum Design Physical
8
9 Property Measurement System. The electrical resistivity (ρ) was determined using a standard
10
11 four-probe measurement which eliminates the contributions from the contact resistance. The
12
13 expression used in the calculation is: $\rho = \left(\frac{V}{I}\right)\left(\frac{w \cdot t}{l}\right)$, where V is the voltage developed across two
14
15 intermediate voltage probes, I is the current applied through the two extreme probes, w is the
16
17 width of the sample, t is the thickness of the sample, and l is the distance between the two
18
19 voltage probes. Thin gold wires (~0.1 mm diameter) were attached to four circular indium pads
20
21 placed on the top surface of TiNO films. In this method, no conductive layer is needed from the
22
23 bottom side of the TiNO films. In the calculation of ρ , the exact dimensions (l×w) of TiNO
24
25 samples were used which were measured to be 6.09 mm × 5.16 mm, 5.99 mm × 6.08 mm, 6.12
26
27 mm × 5.86 mm, 6.03 mm × 5.88 mm for samples deposited under 5 mTorr, 10 mTorr, 15 mTorr,
28
29 and 25 mTorr of oxygen, respectively.
30
31

32 The electrochemical activities of TiNO samples were analyzed using linear sweep
33
34 voltammetry (LSV), cyclic voltammetry, and electrochemical impedance spectroscopy. The
35
36 electrochemical properties were studied using Versatat 4-500 electrochemical workstation
37
38 (Princeton Applied Research, USA). A three-electrode system was used for all these
39
40 measurements: a reference electrode (Hg/HgO), a counter electrode (platinum), and a working
41
42 electrode (TiNO thin films). The electrolyte solution used was 1M KOH. LSV and CV were
43
44 performed at a rate of 5 and 50 mV/s, respectively. All EIS measurements were conducted in
45
46 an applied 10 mV of AC amplitude with the frequency range of 0.05 Hz to 10 kHz. The solution
47
48 temperature was maintained at 25 °C during all electrochemical measurements. In the
49
50 electrochemical measurements, contact was made from the TiNO side using a metallic
51
52 crocodile clip and the sample was dipped in the 1 M KOH solution carefully so that the clip did
53
54
55
56
57
58
59
60

1
2
3 not touch the solution. The electrical resistivity of the TiNO films is in milli ohm.cm (mΩ.cm)
4 range which is significantly low compared to those of conventional semiconductors. Hence
5 realizing the electrical contacts using metallic crocodile clips is believed not to adversely affect
6 any electrochemical measurements. The area of the sample submerged in the solution was
7 measured carefully to measure the electrochemical current density.
8
9
10
11
12
13

14 15 3. Results and Discussion

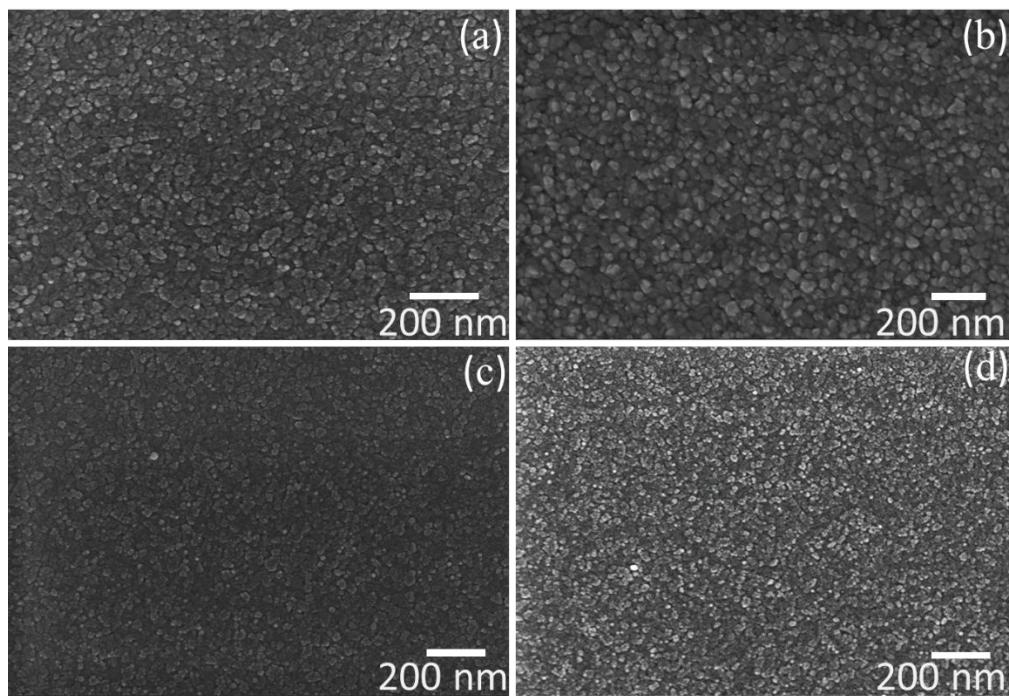
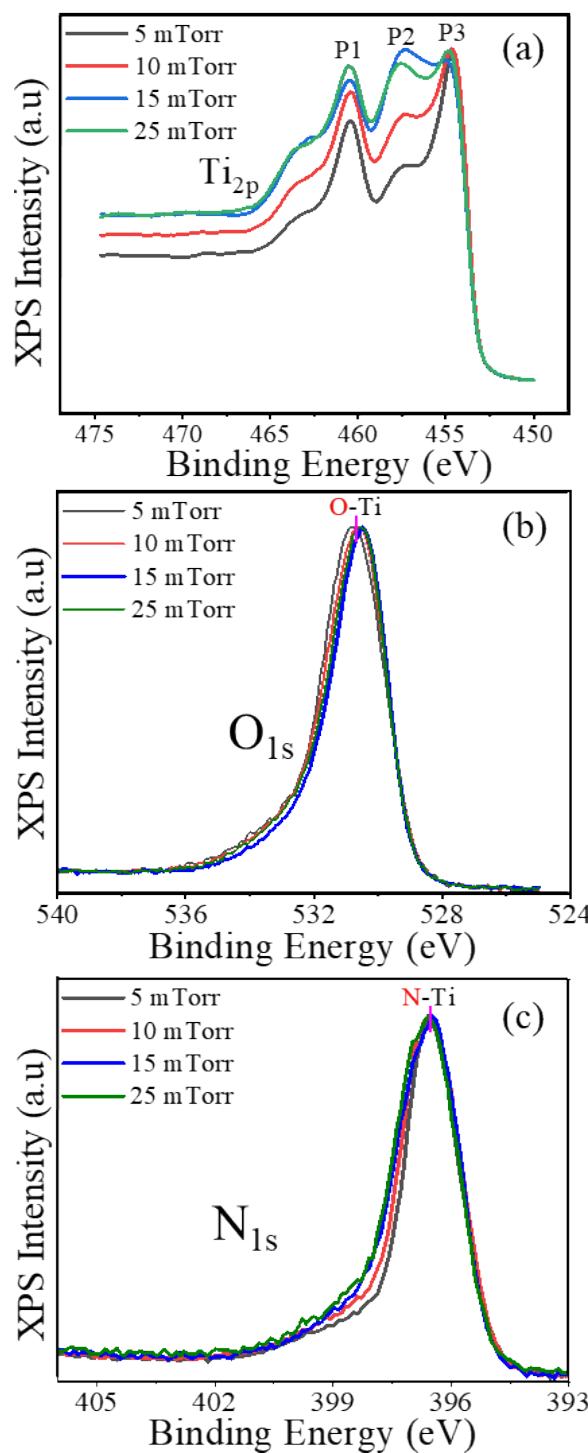

16 The XRD diffraction patterns recorded from TiNO thin films grown on single-crystal
17 sapphire substrates in an oxygen pressure of 5, 10, 15, and 25 mTorr are shown in Figure 2.
18 The thickness of these films, measured using cross-sectional scanning electron microscopy and
19 surface profilometry, was 265, 255, 250, and 240 nm, respectively. These thickness values are
20 also in agreement with the film thickness values inferred from the etch rate and time it takes to
21 reach the substrate surface while recording the depth profile in the XPS measurements. The
22 appearance of only a set of parallel planes (111) at 36.7 ° and (222) at 77.4°, suggests that all
23 the films are highly textured. Both (111) and (222) peaks match the JCPDS data of TiNO rock
24 salt structure. The increase in the full width at half maximum (FWHM) of (111) and (222) peaks
25 with increasing oxygen pressure is attributed to a decrease in the average TiNO grain size at
26 higher oxygen pressures.⁹ A decrease in the film grain size at higher pressures is thought to be
27 brought about by the enhanced vapor-phase collisions among the evaporated/ablated species.
28 This, in turn, results in reduced adatom mobility on the substrate surface. The decrease in TiNO
29 grain size and consequently, the increase in the grain boundary density is manifested in the rise
30 in electrical resistivity, as presented in the next section. A careful examination of the XRD
31 patterns has shown that with an increase in oxygen pressure, the positions of both (111) and
32 (222) peaks shifts rightward with respect to pure TiN film peak positions, marked by two red
33 lines on the x-axis. From the d-values of these peaks, lattice constants of the TiNO films were
34 calculated as a function of oxygen pressures employed during growth, which is plotted in the
35 inset of Figure 2.
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 2. X-ray diffraction patterns of TiNO thin films grown at different oxygen pressure.


As a reference, we have also plotted the lattice constant of a pure TiN film, which was grown in a vacuum of 1.6×10^{-7} Torr with no intentional bleeding of oxygen to the growth chamber. The lattice constant of the pure TiN film (0.424 nm), determined using the XRD d-values, matches well to the theoretical lattice constant of TiN (0.426 nm) calculated using the ionic radii of Ti³⁺ (0.081 nm) and N³⁻ (0.132 nm) and rock salt model of TiN lattice. The increase in the TiNO lattice constants progressively with an increase in the oxygen growth pressure (inset, Figure 2) is attributed to substitution of more N by O, which has smaller ionic radii (0.100 nm) with respect to that of N (0.132 nm). A minor peak corresponding to rutile TiO₂ has also been noticed at 41.2°, as marked by * in the diffraction patterns for TiNO films grown in oxygen pressures above 15 mTorr. The XPS results also confirm the trace presence

of TiO_2 phase in TiNO film grown in higher oxygen pressures; however, the predominant phase remains TiNO in all the oxygen pressure range employed in the present study.^{27, 28} The SEM images of the surface morphology of TiNO films are displayed in Fig. 3. All the images were recorded using the same magnification. It is clear from these images that all the films are smooth and are free from any particulate at this magnification. The TiNO grain size was found to be 100, 95, 80, and 65 nm in the TiNO films grown in 5, 10, 15, and 25 mTorr oxygen, respectively. The SEM grain size error was in the range of ± 5 nm. The inverse dependence of the grain size on the oxygen pressure used during the film growth is attributed to higher gas phase inelastic collisions of the ablated species. The enhanced gas phase inelastic collisions result in lowering of the velocities of the forward moving ablated species that is manifested in the reduced surface mobility of the ablated species eventually arriving at the substrate surface, and hence, in the reduction in the net TiNO grain size.

Figure 3. SEM images of TiNO films grown in oxygen pressures of (a) 5 mTorr, (b) 10 mTorr, (c) 15 mTorr, and (d) 25 mTorr.

The XPS spectra of $\text{Ti}_{2\text{p}}$, $\text{O}_{1\text{s}}$, and $\text{N}_{1\text{s}}$ recorded from the sputter clean TiNO samples are presented in Figure 4. The TiNO films were surface cleaned for 15 seconds by Argon (Ar) ion etching to remove carbon, nitrogen, and oxygen adsorbed on the film surface from the ambient after TiNO depositions.⁵¹ As seen in Figure 4a, the $\text{Ti}_{2\text{p}}$ spectrum consists of three distinct peaks. The $\text{Ti}_{2\text{p}}_{3/2}$ peak (labeled P3) around 455 eV is associated with the Ti-N bonding in TiN. The peak, labeled P2, around 457 eV is associated with oxynitride (Ti-O-N). The peak (labeled P1) around 460 eV refers to the oxide component in TiO_2 . The labeling of these peaks is based on the standard XPS peak parameters used for the evaluation of pure TiN and oxidized TiN samples.^{9, 51-54} TiN ($\text{Ti}_{2\text{p}}_{3/2}$ - 455.2 eV), Ti-N-O ($\text{Ti}_{2\text{p}}_{3/2}$ - 457.4 eV), O^{2-} ($\text{O}_{1\text{s}}$ - 530.1 eV), and N^{3-} ($\text{N}_{1\text{s}}$ - 397.2 eV). The intensity profile of these peaks indicates an overall decrease in P1 intensity coupled with an overall decrease in the intensity of P2 and P3 with increasing oxygen partial pressure used during the film deposition. The shift in the peak position from 530.78 eV to 530.48 eV for $\text{O}_{1\text{s}}$ (Figure 4b), and from 396.58 eV to 396.48 eV for $\text{N}_{1\text{s}}$ (Figure 3c) with an increase in oxygen pressure from 5 to 25 mTorr also lends credence to the increased level of oxidation of TiNO films. The XPS compositions of the TiNO film deposited in 5, 10, 15, and 25 mTorr oxygen pressures were found to be $\text{TiN}_{0.57}\text{O}_{0.76}$, $\text{TiN}_{0.44}\text{O}_{0.99}$, $\text{TiN}_{0.37}\text{O}_{1.19}$, and $\text{TiN}_{0.29}\text{O}_{1.25}$ after 15 s of Ar-ions surface etch. The variation in the XPS elemental composition in the TiNO films due to a change in oxygen pressure is very informative in the calculation of substitutional point defects in TiNO films.

Figure 4. XPS spectra of (a) Ti_{2p}, (b) O_{1s}, and (c) N_{1s} recorded from sputtered clean TiNO films grown at different oxygen pressures.

The variation of electrical resistivity of TiNO films, grown in different oxygen pressures keeping other deposition parameters constant, was studied as a function of temperature using a standard four-probe method and gold evaporated contacts. The normalized resistivity of TiNO

thin film samples versus the temperature of measurements is shown in Figure 5. The normalization was carried out with respect to room temperature resistivity of the respective TiNO film to capture the variation of resistivity in one graph as their resistivity differed hugely due to differences in the oxygen growth pressures. The normalized resistivity values for all the films appear to be zero at 300 K in Figure 5. However, the actual values of 300 K resistivity are 6, 19, 36, and 69 m Ω .cm for TiNO films deposited in 5, 10, 15, and 25 mTorr oxygen pressure, respectively. The values of resistivity of these films at 200, 100 K, and 10 K are listed in Table 1. The decrease in resistivity as temperature increases for all the films is indicative of their electrically semiconducting behavior. Shown, for comparison, is the resistivity plot for a TiN film grown under identical conditions but in high vacuum (2×10^{-7} Torr) with no external gas. The metallic characteristic (increase in resistivity as temperature increases) of a pure TiN film grown in a high vacuum condition is well reported.¹⁰

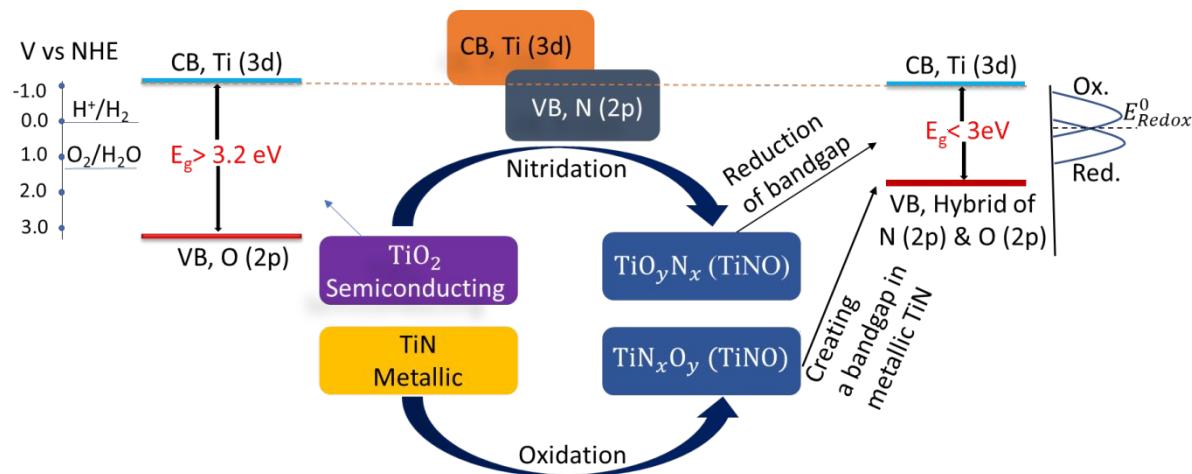


Figure 5. Normalized resistivity of TiNO thin films at various oxygen pressures with respect to temperature (inset) resistivity of pure TiN thin films.

Table 1: Resistivity data of TiNO films at different temperatures.

Oxygen Pressure	300K (mΩ.cm)	200K (mΩ.cm)	100K (mΩ.cm)	10K (mΩ.cm)
5 mTorr	6.4	12.3	34.3	408.0
10 mTorr	19.2	30.1	126.9	4481.0
15 mTorr	36.3	80.1	189.0	2504500.0
25 mTorr	69.3	313.9	5308.8	5383020.0

The conversion of metallic TiN to semiconducting TiNO films via oxygen doping is explained using a simple band diagram shown in Figure 6. The diagram shows that when N atoms in TiN are substituted by O atoms, the top edge of the valence band (VB) moves progressively up with respect to the valence band maximum edge position in the pure TiO_2 . The position of the conduction band (CB) minimum due to Ti(3d) remains unaffected in the process of alteration taking place at the anion sites. The upward shift of the VB maximum in the oxynitride system with respect to the VB position in pure TiO_2 can be understood by considering the fact that the VB in the oxynitride is the hybrid of O(2p) and N(2p) orbitals. This bandgap engineering can also be looked at in an alternative manner.^{19, 55, 56} The metallic characteristics of pure TiN are well explained due to an overlapping N(2p) VB and Ti(3d) CB, as represented in the central upper part of Figure 6. A substitution of N by O can lead to creating a gap between VB and CB that keeps increasing continually until the TiN phase is transformed to fully to an insulating TiO_2 phase with a bandgap of more than 3.0 eV; also shown in the band diagram the water oxidation and reduction potential (V) with respect to a normal hydrogen electrode (NHE). As illustrated in the right part of Figure 6, if the redox potential of an electrolyte is aligned well to either VB or CB, the water oxidation or reduction kinetics will be fast.^{29, 57, 58}

Figure 6. Band diagram showing a downward movement of VB via nitridation of TiO_2 and opening of a bandgap between overlapping valence and conduction band in a metallic TiN via oxidation of TiN.

The electrochemical performance of TiNO samples as efficient OER electrocatalyst has been investigated using linear sweep voltammetry (LSV) in 1M KOH. The results obtained are shown in Figure 7(a), where the current density is plotted as a function of sweeping potential for four samples that were made in oxygen pressures of 5 mTorr to 25 mTorr. Applying the standard 10 mA/cm² current density criterion, the overpotential of TiNO thin films deposited in 5, 10, 15, and 25 mTorr oxygen pressure are found to be 340, 320, 310, and 290 mV, respectively. The current density of 10 mA/cm² criterion is universally accepted because a device with 10% solar-to-hydrogen conversion efficiency produces this current density under 1-sun illumination.³⁴ A comparison of the overpotential values realized in the TiNO films with the reported values of OER overpotential in the recent workplaces the TiNO system among the well-established water oxidation catalysts in alkaline media. To name a few other examples metal alloys, nitrides, and oxides such as FeCoNi (291 mV),¹⁷ Co₂N (413 mV), Ni₃N (388 mV), FeCo (371 mV),¹⁷ CoNi (366 mV), FeNi (350 mV),¹⁷ Ir-C, RuO₂, and IrO₂,¹⁷ NiFe-LDH single-layer nanosheets (302 mV),⁵⁹ monolayer NiV-LDH (318 mV),⁶⁰ NiCo₂O₄ ultrathin nanosheets (320 mV),⁶¹ CoMnP nanoparticles (330 mV),⁶² Co₃O₄/NiCo₂O₄ double-shelled nanocages (340

1
2
3 mV),⁶³ single crystal Co₃O₄@CoO (430 mV),⁶⁴ O-NiCoFe-LDH (420 mV),⁶⁵ and Ni-Co mixed
4
5 oxide cages (380 mV).⁶⁶
6
7

8 The kinetics of the OER of these films have been analyzed using Tafel slopes. The Tafel
9 slopes are shown in Figure 7(b) that is obtained by plotting potential versus the log of the current
10 density. The Tafel slopes are calculated to be 85, 74, 70, and 57 mV/decade for the TiNO films
11 grown in 5, 10, 15, and 25 mTorr oxygen, respectively. These results also demonstrate the
12 advantage of TiNO thin film catalysts. The Tafel slopes for TiNO films grown in 15 and 25
13 mTorr oxygen are lower than those in FeCoNi (63.8 mV/decade),¹⁷ IrO₂ (87.3 mV), RuO₂
14 (136.1 mV/decade, and Pt/C (174.7 mV/decade), revealing its superior reaction kinetics.^{17, 27, 67}
15 The Nyquist plots obtained from the electrochemical impedance spectroscopy (EIS)
16 measurements at 1.55 vs RHE are shown in Figure 7 (c). A simplified equivalent electrical
17 circuit (EEC), shown in Figure 8, can be used to explain these EIS data. In the EEC, the
18 electrochemical impedance spectra are represented as combinations of circuit elements such as
19 resistors and capacitors. In this circuit, R₁ is the electrolyte resistance, R₂ is the charge transfer
20 resistance at the interface (electrical double layer) between electrolyte and TiNO electrode and,
21 R₃ is the resistance of the TiNO coating layer.⁶⁸⁻⁷⁰ C is the capacitance of the interfacial layer.
22 The circuit shows that R₁ and R₃ are connected in series with R₂ and C. R₂ and C are themselves
23 connected in parallel as indicated by the dotted circle in Figure 8. The equivalent
24 impedance/resistance of the circuit is given by
25
26

27

$$Z_{eq} = R_1 + \left(\frac{1}{\frac{1}{R_2} + \frac{1}{Z_C}} \right) + R_3 = R_1 + R_3 + \left(\frac{R_2}{1 + R_2 j \omega C} \right), \quad (1)$$

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 where Z_c is the capacitance of the impedance, $j = \sqrt{-1}$, and ω is the angular frequency. The
Nyquist plot arises from the electrical circuit contained in the dotted circle of Figure 7. The
semicircle is characteristic of a single time constant and its diameter (Z' in Figure 6 c) represents
the charge transfer resistance (R₂). Smaller is the diameter, smaller is the charge transfer

1
2
3 resistance, and hence faster is the reaction kinetics.⁷¹⁻⁷⁶ Thus, as seen in the Nyquist plots in
4 Figure 7 (c), the TiNO film grown in 25 mTorr oxygen has the smallest diameter among all the
5 films indicating the least charge transfer resistance, and hence, the best electrochemical
6 catalytic behavior.^{72, 74, 77} It should be noted that the diameter of the Nyquist plot is not affected
7 by the contact resistance of electrode materials since the diameter of the Nyquist plot is
8 calculated from the difference of the high and low-frequency x-axis data.
9
10
11
12
13
14

15
16
17 The improvement in the electrocatalytic behavior of TiNO thin films is explained based
18 on proliferation in the number of active sites on the electrode surface by means of substitutional
19 defects in the lattice.^{4, 78} As was seen in Figure 1, oxygen can substitute nitrogen positions fully
20 or partially in the TiN rock-salt lattice. Each substitutional site, a point defect in the lattice,
21 serves as an active site for the OER reaction with an enhanced reaction rate. Using the XPS
22 compositions described earlier ($\text{TiN}_{0.57}\text{O}_{0.76}$, $\text{TiN}_{0.44}\text{O}_{0.99}$, $\text{TiN}_{0.37}\text{O}_{1.19}$, and $\text{TiN}_{0.29}\text{O}_{1.25}$ films
23 grown in 5, 10, 15, and 25 mTorr, respectively), the volume substitutional point defect densities
24 in these films are calculated to be $2.2 \times 10^{22}/\text{cm}^3$, $2.9 \times 10^{22}/\text{cm}^3$, $3.4 \times 10^{22}/\text{cm}^3$, and $3.8 \times 10^{22}/\text{cm}^3$,
25 respectively. The calculation of the volume substitutional point defect density is based on the
26 maintenance of charge neutrality in the lattice and the protection of TiNO's rock salt structure.
27 To preserve these two conditions, oxygen in excess to the N and O stoichiometry additive value
28 of unity leaves the lattice. The excess oxygen combines with Ti, which is also forced to leave
29 the lattice to maintain the charge neutrality that comes in effect due to the substitution of
30 trivalent N ions with bivalent oxygen ions. To illustrate this point, let's take the last sample
31 with $\text{TiN}_{0.29}\text{O}_{1.25}$ composition. This composition could be alternatively be written as
32 $\text{TiN}_{0.29}\text{O}_{0.71+0.54}$. The first subscript number (0.71) on O stands for the fractional level of N
33 substitution, while the second subscript number (0.54) on O stands for excess oxygen. Now, to
34 maintain the charge neutrality in the lattice, 0.29 Ti ion per formula unit should leave the lattice,
35 creating Ti cation vacancies in the lattice. Subsequently, 0.29 Ti, and the excess 0.54 O is
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 believed to combine to form an almost stoichiometric titanium oxide, $\text{Ti}_{0.29}\text{O}_{0.54}$ ($\equiv \text{TiO}_{1.9}$). It
4
5 may be recalled that both XRD and XPS measurements have indeed shown the presence of
6
7 TiO_2 , especially for samples deposited in higher oxygen pressures. The surface densities of the
8 substitution defects or equivalently the surface-active sites on the TiNO film surfaces, grown
9 in 5, 10, 15, and 25 mTorr, are calculated by multiplying the volume density by film's thickness
10 assuming a uniform distribution of defects in the films' body. These values are found to be
11
12 $5.8 \times 10^{17}/\text{cm}^2$, $7.4 \times 10^{17}/\text{cm}^2$, $8.5 \times 10^{17}/\text{cm}^2$, and $9.1 \times 10^{17}/\text{cm}^2$, respectively. Even if this
13 calculation gives an approximate estimation of the surface density, a proportionality between
14 volume defect density and surface defect density is well accepted. Thus, we have seen that
15
16 TiNO film grown in 25 mTorr has the highest substitutional defects density among our samples,
17 which results in the realization of the smallest OER overpotential and the fastest reaction
18 kinetics.^{4, 78} Finally, the electrochemical stability of TiNO films has been tested by recording
19 the current density as a function of time in the same electrolytic solution at an applied voltage
20 of 1.55 V versus RHE. The results obtained are shown for all the four TiNO samples in Figure
21
22 9, which show that the current density decays almost negligibly for all the samples for 12 hours.
23 Though the time of this study is short, it demonstrates their stable electrochemical behavior
24 which is critical for their practical application.⁷⁹
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

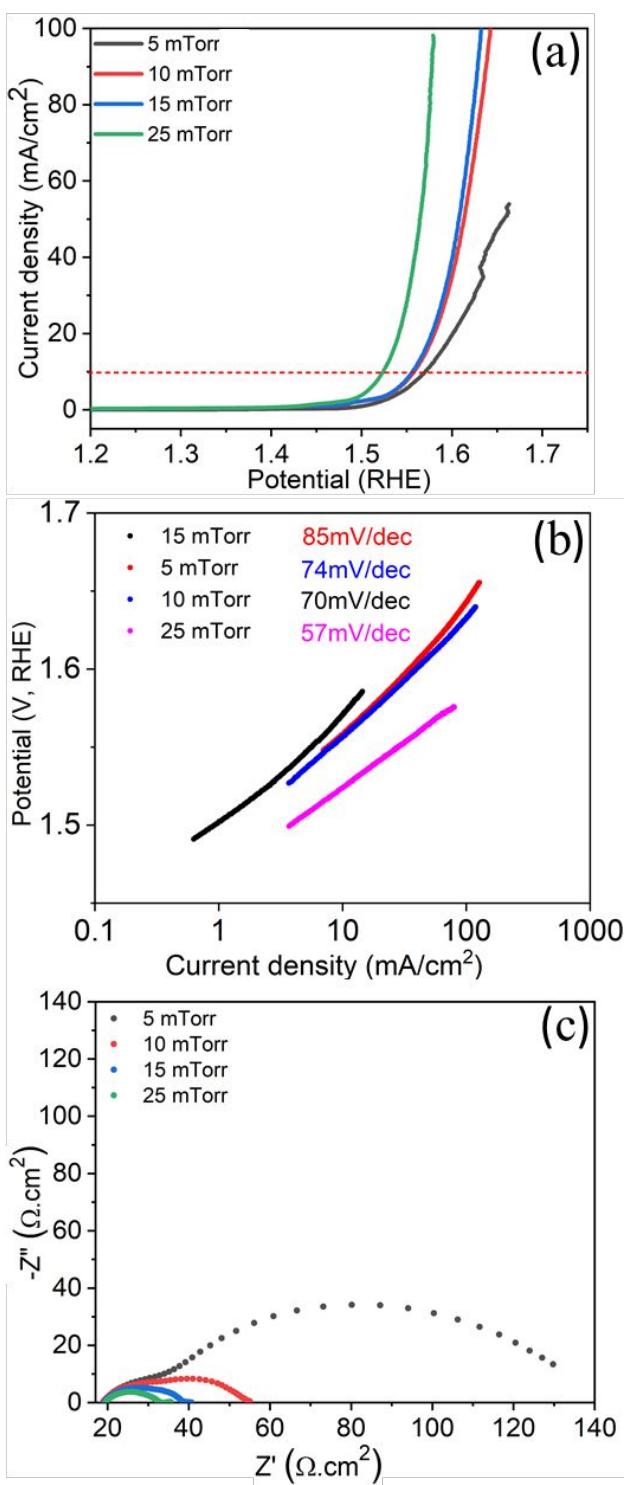
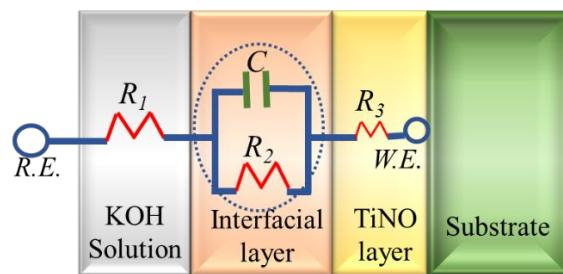
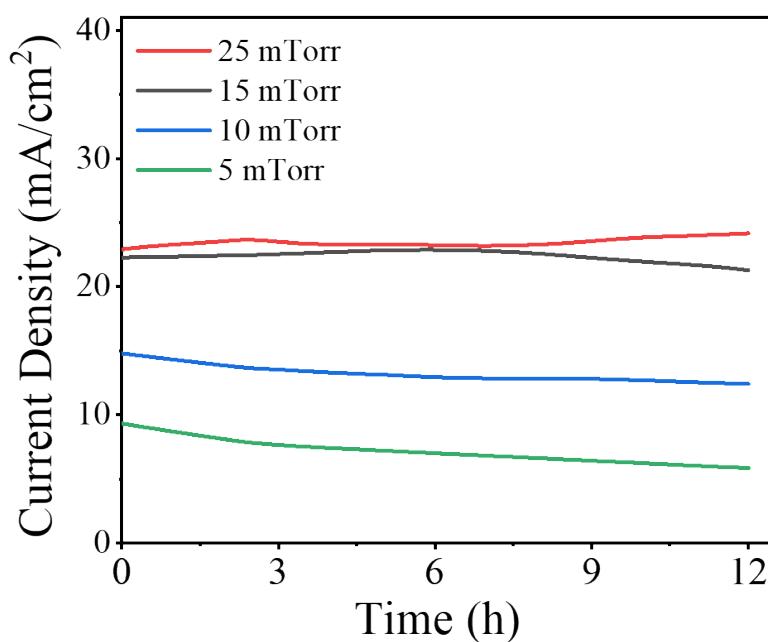




Figure 7. (a) Polarization curves (b) Tafel plots, and (c) Nyquist plots for TiN thin films grown in 5, 10, 15, and 25 m Torr of oxygen pressure.

Figure 8. Schematic representation of an equivalent electrical circuit used to explain Nyquist plots. Please note that image is not to the scale; for example, the dimension of interfacial and TiNO layers are several orders of magnitude smaller than that of the substrate. R.E. is the reference electrode and W.E. is the working electrode.

Figure 9. Time-dependent current density plots for TiNO films at 1.55 V vs RHE for 12 h.

4. Conclusions

In summary, a pulsed laser deposition method has been used to synthesize semiconducting thin film TiO_xN_y compounds with varying x and y by simply changing the oxygen pressure during the film growth. The overpotential for oxygen evolution reaction realized for these films is in the range of 320 -290 mV, which are amongst the lowest values reported for any oxynitride systems to date. The Tafel slopes for these films are determined to be in the range of 57-85 mv/decade. The improvement in the electrocatalytic behavior of TiNO thin films in terms of reduced OER overpotential and fast reaction kinetic is explained on the

1
2
3 basis of an enhanced number of electrochemically active sites realized by the substitution of
4 anionic N sites by O and a favorable alignment of valence band with respect to the redox
5 potential of electrolyte medium. These findings appear to assume significant importance in light
6 of water electrolysis to produce fossil-free fuels for the development of environmentally
7 friendly power sources.
8
9
10
11
12
13

14 AUTHOR INFORMATION

15

16 Corresponding Author

17
18
19 Dhananjay Kumar – Department of Mechanical Engineering, North Carolina
20 Agricultural and Technical State University, Greensboro, NC 27455; Phone: 336-285-
21
22 3227; Email: dkumar@ncat.edu
23
24
25

26 Authors

27
28 Nikhil Reddy Mucha – Department of Mechanical Engineering, North Carolina
29 Agricultural and Technical State University, Greensboro, NC 27455; Email:
30
31 nmuchha@aggies.ncat.edu
32
33
34

35 Jacob Som – Department of Mechanical Engineering, North Carolina Agricultural and
36 Technical State University, Greensboro, NC-27455; Email: jsom@aggies.ncat.edu
37
38

39 Jonghyun Choi – Department of Chemistry, Pittsburg State University, 1701 South
40 Broadway Street, Pittsburg, KS 66762; Email: jonghyun.choi@gus.pittstate.edu
41
42

43 Surabhi Shaji – Department of Mechanical Engineering, North Carolina Agricultural
44 and Technical State University, Greensboro, NC-27455; Email: sshaji@aggies.ncat.edu
45
46

47 Rama Krishna Gupta – Department of Chemistry, Pittsburg State University, 1701
48 South Broadway Street, Pittsburg, KS 66762; Email: rgupta@pittstate.edu
49
50

51 Harry M. Meyer – Center for Nanophase Materials Sciences, Oakridge National
52 Laboratory, Oakridge, TN-37831; Email: meyerhmiii@ornl.gov
53
54

55 Corson L. Cramer – Energy and Transportation Sciences Division, Oakridge National
56 Laboratory, Oakridge, TN-37831; Email: cramercl@ornl.gov
57
58
59
60

1
2
3 Amy M. Elliot – Energy and Transportation Sciences Division, Oakridge National
4
5 Laboratory, Oakridge, TN-37831; Email: elliottam@ornl.gov
6
7

8 Notes

9

10 The authors declare no competing financial interest.
11

12 Acknowledgements

13

14 DK would like to acknowledge the financial support from the National Science Foundation
15 (NSF) through the Nebraska Materials Research Science and Engineering Center (MRSEC)
16
17 Grant. No. DMR-1420645 and the University of North Carolina (UNC) system for the seed
18 funding via Interinstitutional Planning Grant (IPG). The graduate students, Nikhil Mucha,
19
20 Jacob Som, and Surabhi Shaji, were supported from the DMR-1420645 grant.
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4

References

5. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor
6. Electrode. *Nature* **1972**, *238*, 37.

7. Branco, J. J.; Bartlett, B. M., Challenges in Co-Alloyed Titanium Oxynitrides, a
8. Promising Class of Photochemically Active Materials. *Chemistry of Materials* **2015**, *27*
9. (21), 7207-7217.

10. Gebauer, C.; Fischer, P.; Wassner, M.; Diemant, T.; Jusys, Z.; Hüsing, N.; Behm, R.
11. J., Performance of titanium oxynitrides in the electrocatalytic oxygen evolution reaction.
12. *Nano Energy* **2016**, *29*, 136-148.

13. Kuraganti, V.; Jain, A.; Bar-Ziv, R.; Ramasubramaniam, A.; Bar-Sadan, M.,
14. Manganese doping of MoSe₂ promotes active defect sites for hydrogen evolution. *ACS
15. applied materials & interfaces* **2019**, *11* (28), 25155-25162.

16. Sinhamahapatra, A.; Jeon, J.-P.; Yu, J.-S., A new approach to prepare highly active and
17. stable black titania for visible light-assisted hydrogen production. *Energy &
18. Environmental Science* **2015**, *8* (12), 3539-3544.

19. Yang, J. Y.; Bullock, R. M.; DuBois, M. R.; DuBois, D. L., Fast and efficient molecular
20. electrocatalysts for H₂ production: Using hydrogenase enzymes as guides. *MRS Bulletin*
21. **2011**, *36* (1), 39-47.

22. Zou, X.; Zhang, Y., Noble metal-free hydrogen evolution catalysts for water splitting.
23. *Chemical Society Reviews* **2015**, *44* (15), 5148-5180.

24. Kumar, D.; Oh, S. H.; Pennycook, S. J.; Majumdar, A. K., Scaling exponent within the
25. side-jump mechanism of Hall effect size-dependence in Ni nanocrystals. *Applied
26. Physics Letters* **2008**, *93* (13), 133105.

27. Mucha, N. R.; Som, J.; Shaji, S.; Fialkova, S.; Apte, P. R.; Balasubramanian, B.;
28. Shield, J. E.; Anderson, M.; Kumar, D., Electrical and optical properties of titanium
29. oxynitride thin films. *Journal of Materials Science* **2020**, *55* (12), 5123-5134.

30. Roy, M.; Mucha, N. R.; Ponnam, R. G.; Jaipan, P.; Scott-Emuakpor, O.; Yarmolenko,
31. S.; Majumdar, A. K.; Kumar, D., Quantum interference effects in titanium nitride films
32. at low temperatures. *Thin Solid Films* **2019**, *681*, 1-5.

33. Jaipan, P.; Nannuri, C.; Mucha, N. R.; Singh, M. P.; Xu, Z.; Moatti, A.; Narayan, J.;
34. Fialkova, S.; Kotaka, R.; Yarmolenko, S.; Scott-Emuakpor, O.; Binek, C.; Kebede,
35. A.; Kumar, D., Influence of Gold Catalyst on the Growth of Titanium Nitride Nanowires.
36. *Jaipan, Panupong* **2018**, *7* (5), 720-725(6).

37. Narayan, J.; Biunno, N.; Singh, R.; Holland, O.; Auciello, O., Formation of thin
38. superconducting films by the laser processing method. *Applied physics letters* **1987**, *51*
39. (22), 1845-1847.

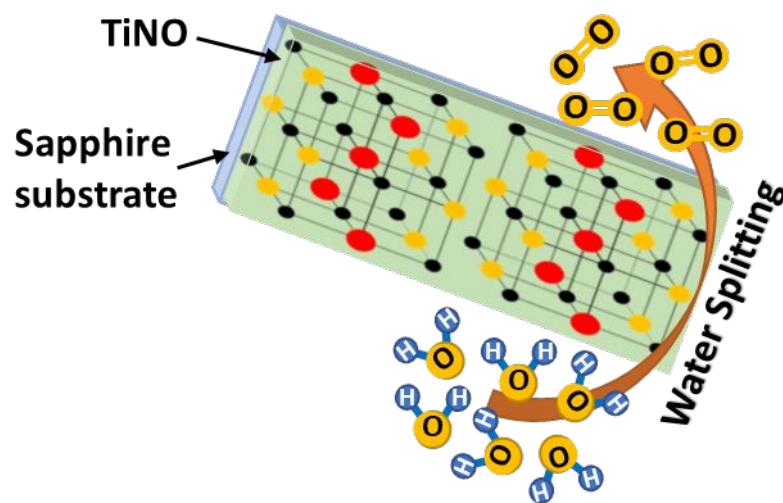
40. Rasic, D.; Sachan, R.; Chisholm, M. F.; Prater, J.; Narayan, J., Room Temperature
41. Growth of Epitaxial Titanium Nitride Films by Pulsed Laser Deposition. *Crystal
42. Growth & Design* **2017**, *17* (12), 6634-6640.

43. Faruque, M. K.; M-Darkwa, K.; Xu, Z.; Kumar, D., Fabrication, characterization, and
44. mechanism of vertically aligned titanium nitride nanowires. *Applied Surface Science*
45. **2012**, *260*, 36-41.

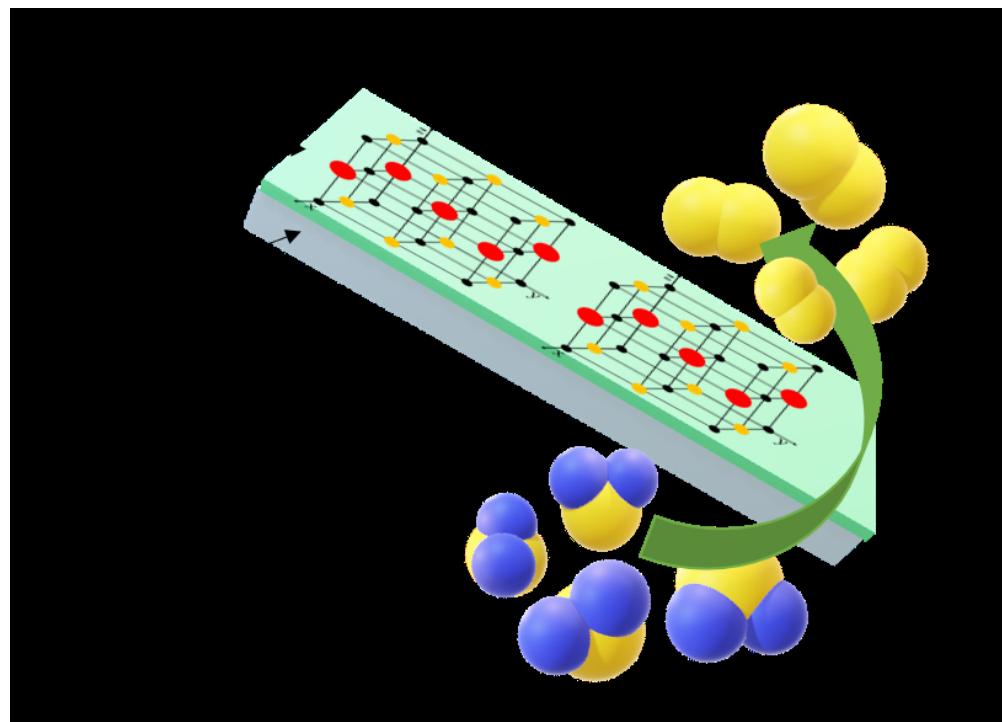
46. Gbordzoe, S.; Kotaka, R.; Craven, E.; Kumar, D.; Wu, F.; Narayan, J., Effect of
47. substrate temperature on the microstructural properties of titanium nitride nanowires
48. grown by pulsed laser deposition. *Journal of Applied Physics* **2014**, *116* (6), 064310.

49. Sarkar, K.; Jaipan, P.; Choi, J.; Haywood, T.; Tran, D.; Mucha, N. R.; Yarmolenko,
50. S.; Scott-Emuakpor, O.; Sundaresan, M.; Gupta, R. K., Enhancement in corrosion
51. resistance and vibration damping performance in titanium by titanium nitride coating.
52. *SN Applied Sciences* **2020**, *2*, 1-14.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


17. Di, J.; Zhu, H.; Xia, J.; Bao, J.; Zhang, P.; Yang, S.-Z.; Li, H.; Dai, S., High-performance electrolytic oxygen evolution with a seamless armor core–shell FeCoNi oxynitride. *Nanoscale* **2019**, *11* (15), 7239-7246.
18. Jia, L.; Lu, H.; Ran, Y.; Zhao, S.; Liu, H.; Li, Y.; Jiang, Z.; Wang, Z., Structural and dielectric properties of ion beam deposited titanium oxynitride thin films. *Journal of Materials Science* **2019**, *54* (2), 1452-1461.
19. Maeda, K.; Domen, K., Oxynitride materials for solar water splitting. *MRS Bulletin* **2011**, *36* (1), 25-31.
20. Rawal, S. K.; Chawla, A. K.; Chawla, V.; Jayaganthan, R.; Chandra, R., Effect of ambient gas on structural and optical properties of titanium oxynitride films. *Applied Surface Science* **2010**, *256* (13), 4129-4135.
21. Sowińska, M.; Brizzi, S.; Das, C.; Kärkkänen, I.; Schneidewind, J.; Naumann, F.; Gargouri, H.; Henkel, K.; Schmeißer, D., Analysis of nitrogen species in titanium oxynitride ALD films. *Applied Surface Science* **2016**, *381*, 42-47.
22. Yoo, J. B.; Yoo, H. J.; Jung, H. J.; Kim, H. S.; Bang, S.; Choi, J.; Suh, H.; Lee, J.-H.; Kim, J.-G.; Hur, N. H., Titanium oxynitride microspheres with the rock-salt structure for use as visible-light photocatalysts. *Journal of Materials Chemistry A* **2016**, *4* (3), 869-876.
23. Shi, X.; Xu, L.; Le, T. B.; Zhou, G.; Zheng, C.; Tsuru, K.; Ishikawa, K., Partial oxidation of TiN coating by hydrothermal treatment and ozone treatment to improve its osteoconductivity. *Materials Science and Engineering: C* **2016**, *59*, 542-548.
24. Shin, P.-K.; Mikolajick, T., Alkali- and hydrogen ion sensing properties of LPCVD silicon oxynitride thin films. *Thin Solid Films* **2003**, *426* (1), 232-237.
25. Takeshi, M.; Ryoji, A.; Takeshi, O.; Koyu, A.; Yasunori, T., Band-Gap Narrowing of Titanium Dioxide by Nitrogen Doping. *Japanese Journal of Applied Physics* **2001**, *40* (6A), L561.
26. Tompkins, H. G., The initial stages of the oxidation of titanium nitride. *Journal of Applied Physics* **1992**, *71* (2), 980-983.
27. Wang, W.; Savadogo, O.; Ma, Z.-F., Preparation of new titanium oxy nitride based electro catalysts using an anhydrous sol-gel method for water electrolysis in acid medium. *International Journal of Hydrogen Energy* **2012**, *37* (9), 7405-7417.
28. Wu, Z.; Dong, F.; Zhao, W.; Guo, S., Visible light induced electron transfer process over nitrogen doped TiO₂ nanocrystals prepared by oxidation of titanium nitride. *Journal of Hazardous Materials* **2008**, *157* (1), 57-63.
29. Zhang, J. Z., Metal oxide nanomaterials for solar hydrogen generation from photoelectrochemical water splitting. *MRS Bulletin* **2011**, *36* (1), 48-55.
30. Graciani, J.; Hamad, S.; Sanz, J. F., Changing the physical and chemical properties of titanium oxynitrides TiN 1– x O x by changing the composition. *Physical Review B* **2009**, *80* (18), 184112.
31. McKenna, K. P., Structure, electronic properties, and oxygen incorporation/diffusion characteristics of the $\Sigma 5$ TiN(310)[001] tilt grain boundary. *Journal of Applied Physics* **2018**, *123* (7), 075301.
32. Haydous, F.; Döbeli, M.; Si, W.; Waag, F.; Li, F.; Pomjakushina, E.; Wokaun, A.; Gökce, B.; Pergolesi, D.; Lippert, T., Oxynitride Thin Films versus Particle-Based Photoanodes: A Comparative Study for Photoelectrochemical Solar Water Splitting. *ACS Applied Energy Materials* **2019**, *2* (1), 754-763.
33. Chang, S. H.; Danilovic, N.; Chang, K.-C.; Subbaraman, R.; Paulikas, A. P.; Fong, D. D.; Highland, M. J.; Baldo, P. M.; Stamenkovic, V. R.; Freeland, J. W., Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution. *Nature communications* **2014**, *5* (1), 1-9.

1
2
3 34. Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.;
4 Vojvodic, A.; Hwang, H. Y.; Norskov, J. K., A highly active and stable IrO_x/SrIrO₃
5 catalyst for the oxygen evolution reaction. *Science* **2016**, *353* (6303), 1011-1014.
6 35. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo,
7 T. F., Combining theory and experiment in electrocatalysis: Insights into materials
8 design. *Science* **2017**, *355* (6321), eaad4998.
9 36. Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F.,
10 Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide
11 Nanomaterials. *ACS Catalysis* **2014**, *4* (11), 3957-3971.
12 37. Benck, J. D.; Chen, Z.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F., Amorphous
13 Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into
14 the Origin of their Catalytic Activity. *ACS Catalysis* **2012**, *2* (9), 1916-1923.
15 38. Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M., Catalysts
16 and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. *The
17 Journal of Physical Chemistry Letters* **2015**, *6* (20), 4073-4082.
18 39. Wen, Z.; Cui, S.; Pu, H.; Mao, S.; Yu, K.; Feng, X.; Chen, J., Metal Nitride/Graphene
19 Nanohybrids: General Synthesis and Multifunctional Titanium Nitride/Graphene
20 Electrocatalyst. *Advanced Materials* **2011**, *23* (45), 5445-5450.
21 40. Avasarala, B.; Haldar, P., Electrochemical oxidation behavior of titanium nitride based
22 electrocatalysts under PEM fuel cell conditions. *Electrochimica Acta* **2010**, *55* (28),
23 9024-9034.
24 41. Suhadolnik, L.; Lašić Jurković, D.; Likozar, B.; Bele, M.; Drev, S.; Čeh, M.,
25 Structured titanium oxynitride (TiO_xN_y) nanotube arrays for a continuous
26 electrocatalytic phenol-degradation process: Synthesis, characterization, mechanisms
27 and the chemical reaction micro-kinetics. *Applied Catalysis B: Environmental* **2019**,
28 *257*, 117894.
29 42. Dutta, S.; Indra, A.; Feng, Y.; Han, H.; Song, T., Promoting electrocatalytic overall
30 water splitting with nanohybrid of transition metal nitride-oxynitride. *Applied Catalysis
31 B: Environmental* **2019**, *241*, 521-527.
32 43. Chen, X.; Lou, Y.-B.; Samia, A. C. S.; Burda, C.; Gole, J. L., Formation of Oxynitride
33 as the Photocatalytic Enhancing Site in Nitrogen-Doped Titania Nanocatalysts:
34 Comparison to a Commercial Nanopowder. *Advanced Functional Materials* **2005**, *15*
35 (1), 41-49.
36 44. Chisaka, M.; Ando, Y.; Yamamoto, Y.; Itagaki, N., A Carbon-Support-Free Titanium
37 Oxynitride Catalyst for Proton Exchange Membrane Fuel Cell Cathodes.
38 *Electrochimica Acta* **2016**, *214*, 165-172.
39 45. Kim, S. Y.; Han, D. H.; Kim, J. N.; Lee, J. J., Titanium oxynitride films for a bipolar
40 plate of polymer electrolyte membrane fuel cell prepared by inductively coupled plasma
41 assisted reactive sputtering. *Journal of Power Sources* **2009**, *193* (2), 570-574.
42 46. Punugupati, S.; Kumar, R.; Nori, S.; Hunte, F.; Narayan, J., Structural, magnetic and
43 magnetotransport properties of bi-epitaxial La_{0.7}Sr_{0.3}MnO₃ (110) thin films integrated
44 on Si (001). *Acta Materialia* **2016**, *106*, 40-47.
45 47. Kumar, D.; Chattopadhyay, S.; Gilmore, W. M.; Lee, C. B.; Sankar, J.; Kvit, A.;
46 Sharma, A. K.; Narayan, J.; Pietambaram, S. V.; Singh, R. K., Structural and
47 magnetoresistance properties of La_{2/3}Ca_{1/3}MnO₃ thin films on buffered silicon
48 substrates. *Applied Physics Letters* **2001**, *78* (8), 1098-1100.
49 48. Shaji, S.; Mucha, N. R.; Fialkova, S.; Kumar, D., Morphological data on soft
50 ferromagnetic Fe₉₀Ta₁₀ thin films. *Data in Brief* **2019**, *27*, 104714.
51 49. Shaji, S.; Mucha, N. R.; Majumdar, A.; Binek, C.; Kebede, A.; Kumar, D., Magnetic
52 and electrical properties of Fe₉₀Ta₁₀ thin films. *Journal of Magnetism and Magnetic
53 Materials* **2019**, *489*, 165446.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

50. Shaji, S.; Mucha, N. R.; Giri, P.; Binek, C.; Kumar, D., Magnetic and magnetocaloric properties of Fe₂Ta thin films. *AIP Advances* **2020**, *10* (2), 025222.
51. Kuznetsov, M. V.; Zhuravlev, J. F.; Zhilyaev, V. A.; Gubanov, V. A., XPS study of the nitrides, oxides and oxynitrides of titanium. *Journal of Electron Spectroscopy and Related Phenomena* **1992**, *58* (1), 1-9.
52. Jaeger, D.; Patscheider, J., Single crystalline oxygen-free titanium nitride by XPS. *Surface Science Spectra* **2013**, *20* (1), 1-8.
53. Kuznetsov, M. V.; Zhuravlev, J. F.; Gubanov, V. A., XPS analysis of adsorption of oxygen molecules on the surface of Ti and TiNx films in vacuum. *Journal of Electron Spectroscopy and Related Phenomena* **1992**, *58* (3), 169-176.
54. Miloš, I.; Strehblow, H. H.; Navinšek, B.; Metikoš-Huković, M., Electrochemical and thermal oxidation of TiN coatings studied by XPS. *Surface and interface analysis* **1995**, *23* (7-8), 529-539.
55. Martin, D. J.; Reardon, P. J. T.; Moniz, S. J.; Tang, J., Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. *Journal of the American Chemical Society* **2014**, *136* (36), 12568-12571.
56. Maeda, K.; Domen, K., Photocatalytic Water Splitting: Recent Progress and Future Challenges. *The Journal of Physical Chemistry Letters* **2010**, *1* (18), 2655-2661.
57. Thorne, J. E.; Li, S.; Du, C.; Qin, G.; Wang, D., Energetics at the Surface of Photoelectrodes and Its Influence on the Photoelectrochemical Properties. *The Journal of Physical Chemistry Letters* **2015**, *6* (20), 4083-4088.
58. Kudo, A., Z-scheme photocatalyst systems for water splitting under visible light irradiation. *MRS Bulletin* **2011**, *36* (1), 32-38.
59. Song, F.; Hu, X., Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. *Nature communications* **2014**, *5* (1), 1-9.
60. Fan, K.; Chen, H.; Ji, Y.; Huang, H.; Claesson, P. M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F.; Luo, Y., Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation. *Nature communications* **2016**, *7* (1), 1-9.
61. Bao, J.; Zhang, X.; Fan, B.; Zhang, J.; Zhou, M.; Yang, W.; Hu, X.; Wang, H.; Pan, B.; Xie, Y., Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. *Angewandte Chemie International Edition* **2015**, *54* (25), 7399-7404.
62. Li, D.; Baydoun, H.; Verani, C. u. N.; Brock, S. L., Efficient water oxidation using CoMnP nanoparticles. *Journal of the American Chemical Society* **2016**, *138* (12), 4006-4009.
63. Hu, H.; Guan, B.; Xia, B.; Lou, X. W., Designed formation of Co₃O₄/NiCo₂O₄ double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. *Journal of the American Chemical Society* **2015**, *137* (16), 5590-5595.
64. Tung, C.-W.; Hsu, Y.-Y.; Shen, Y.-P.; Zheng, Y.; Chan, T.-S.; Sheu, H.-S.; Cheng, Y.-C.; Chen, H. M., Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. *Nature communications* **2015**, *6*, 8106.
65. Qian, L.; Lu, Z.; Xu, T.; Wu, X.; Tian, Y.; Li, Y.; Huo, Z.; Sun, X.; Duan, X., Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis. *Advanced Energy Materials* **2015**, *5* (13), 1500245.
66. Han, L.; Yu, X. Y.; Lou, X. W., Formation of prussian-blue-analog nanocages via a direct etching method and their conversion into ni–co-mixed oxide for enhanced oxygen evolution. *Advanced materials* **2016**, *28* (23), 4601-4605.
67. Mavrokefalos, C. K.; Patzke, G. R., Water Oxidation Catalysts: The Quest for New Oxide-Based Materials. *Inorganics* **2019**, *7* (3), 29.
68. Bard, A. J.; Faulkner, L. R., Fundamentals and applications. *Electrochemical Methods* **2001**, *2* (482), 580-632.

1
2
3 69. Orazem, M. E.; Tribollet, B., *Electrochemical impedance spectroscopy*. John Wiley &
4 Sons: 2017.
5 70. Wilson, J.; Schwartz, D.; Adler, S. B., Nonlinear electrochemical impedance
6 spectroscopy for solid oxide fuel cell cathode materials. *Electrochimica Acta* **2006**, *51*
7 (8-9), 1389-1402.
8 71. Akram, R.; Khan, M. D.; Zequine, C.; Zhao, C.; Gupta, R. K.; Akhtar, M.; Akhtar,
9 J.; Malik, M. A.; Revaprasadu, N.; Bhatti, M. H., Cobalt sulfide nanoparticles:
10 Synthesis, water splitting and supercapacitance studies. *Materials Science in*
11 *Semiconductor Processing* **2020**, *109*, 104925.
12 72. Ayom, G. E.; Khan, D. M.; Ingsel, T.; Lin, W.; Gupta, R.; Zamisas, S.; Van Zyl, W.;
13 Revaprasadu, N., Flexible Molecular Precursors for Selective Decomposition to Nickel
14 Sulfide or Nickel Phosphide for Water Splitting and Supercapacitance. *Chemistry—A*
15 *European Journal*.
16 73. Guragain, D.; Zequine, C.; Poudel, T.; Neupane, D.; Gupta, R.; Mishra, S., Facile
17 Synthesis of Bio-Templated Tubular Co₃O₄ Microstructure and Its Electrochemical
18 Performance in Aqueous Electrolytes. *Journal of nanoscience and nanotechnology*
19 **2020**, *20* (5), 3182-3194.
20 74. Zequine, C.; Bhoyate, S.; Wang, F.; Li, X.; Siam, K.; Kahol, P. K.; Gupta, R. K.,
21 Effect of solvent for tailoring the nanomorphology of multinary CuCo₂S₄ for overall
22 water splitting and energy storage. *Journal of Alloys and Compounds* **2019**, *784*, 1-7.
23 75. Gupta, R. K.; Mensah-Darkwa, K.; Kumar, D., Corrosion Protective Conversion
24 Coatings on Magnesium Disks Using a Hydrothermal Technique. *Journal of Materials*
25 *Science & Technology* **2014**, *30* (1), 47-53.
26 76. Mitchell, E.; Gupta, R. K.; Mensah-Darkwa, K.; Kumar, D.; Ramasamy, K.; Gupta,
27 B. K.; Kahol, P., Facile synthesis and morphogenesis of superparamagnetic iron oxide
28 nanoparticles for high-performance supercapacitor applications. *New Journal of*
29 *Chemistry* **2014**, *38* (9), 4344-4350.
30 77. Fernández-Ibáñez, P.; de las Nieves, F. J.; Malato, S., Titanium Dioxide/Electrolyte
31 Solution Interface: Electron Transfer Phenomena. *Journal of Colloid and Interface*
32 *Science* **2000**, *227* (2), 510-516.
33 78. Zhao, Y.; Balasubramanyam, S.; Sinha, R.; Lavrijsen, R.; Verheijen, M.; Bol, A.;
34 Bieberle-Hütter, A., Physical and chemical defects in WO₃ thin films and their impact
35 on photoelectrochemical water splitting. *ACS Applied Energy Materials* **2018**, *1* (11),
36 5887-5895.
37 79. Lian, J.; Zhang, F.; Lu, S.; Jiang, W.; Hu, Q.; Li, D.; Zhang, B., Amorphous
38 Fe–Co–P–C Film on a Carbon Fiber Paper Support as an Efficient Electrocatalyst for
39 the Oxygen Evolution Reaction. *Chem Electro Chem* **2019**, *6* (15), 3976-3981.
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Table of Content Graphic Only

137x98mm (150 x 150 DPI)