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ABSTRACT

Medical imaging devices, such as X-ray machines, inherently produce images that suffer from visual noise. Our
objectives were to (i.) determine the effect of image denoising on a medical image classification task, and (ii.)
determine if there exists a correlation between image denoising performance and medical image classification
performance. We performed the medical image classification task on chest X-rays using the DenseNet-121
convolutional neural network (CNN) and used the peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) metrics as the image denoising performance measures. We first found that different denoising methods
can make a statistically significant difference in classification performance for select labels. We also found that
denoising methods affect fine-tuned models more than randomly-initialized models and that fine-tuned models
have significantly higher and more uniform performance than randomly-initialized models. Lastly, we found that
there is no significant correlation between PSNR and SSIM values and classification performance for our task.

Keywords: image denoising, image classification, X-ray image denoising, machine learning, deep learning

1 INTRODUCTION

Significant strides in computer vision have been made in recent years due to the rise of deep learning. With
the vast amount of data present in many computer vision tasks, the effect of denoising inputs to CNNs is
understudied. In fields such as medical imaging, where data is often sparse, any method that can increase
model performance without enlarging the dataset is of great use. One common method is pre-processing inputs.
Medical imaging devices, such as X-ray machines, inherently produce images with visual noise. While denoising
these images is undoubtedly helpful in improving radiologists’ diagnostic performance, some question its ability
to improve performance on computer-aided diagnosis tasks based on CNNs. Some may believe that denoising
these images will help the CNN recognize important image features, while others may argue that denoising
lowers the level of detail in an image or that the CNN can learn to handle the noise itself, even with a relatively
small training set. We set out to investigate this problem by selecting numerous image denoising methods, both
learning and non-learning-based methods and applied them to a medical image classification task. Additionally,
we set out to find if a denoising algorithm’s performance on an image with synthetic noise, measured by the
PSNR and SSIM metrics, can correlate with medical image classification performance. This correlation would
be useful in gaining an intuition whether a certain denoising method may increase classification performance
without training an entire model.
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2 LITERATURE REVIEW

Medical imaging differs from many other imaging tasks in that there is very strong attention to detail. Näıvely
denoising an X-ray image, for example, may lead to the misdiagnosis of a tumor. Often the signs for many
medical conditions are hard to recognize, so it is imperative to process such data carefully.

There have been very few works on the effects of image denoising on image classification tasks relative to the
amount of computer vision work being published in recent years. This applies to the medical imaging field, where
there has been even less work regarding this topic. There are two categories of work in this field, (i.) how noise
affects image classification performance and (ii.) how denoising methods can be used to improve classification
performance. Some works contain both.

In a study done by Dodge and Karam1, noise, blur, and contrast were shown to have a significant impact
on image classification performance. Specifically, it was shown that CNNs trained on images were vulnerable
to Gaussian noise. A similar study by Nazaré, et al.2 affirms this argument, while also showing that CNNs
struggle with types of noise they were not trained on. Additionally, this study shows that for certain types of
noise, training on denoised images helps increase classification performance on images from the same distribution.
Koziarski and Cyganek3 affirm the effect of noise on classification performance and show that denoising inputs
and augmenting training data with noise can increase classification performance. A work done by Diamond, et
al.4 proposes an end-to-end architecture for joint denoising, deblurring, and image classification. They create a
pipeline with an image preprocessing module that learns to denoise the images together with the CNN used for
classification. They show that, for emulated raw camera sensor data, this architecture is superior to separating
the preprocessing and classification stages. They also discover that denoised images that look better to the
human eye do not necessarily correlate with superior image classification performance for their task. Given that
CNNs tend to have low noise-resilience, Dodge and Karam5 propose an ensemble of VGG166 CNNs, each trained
on a specific type of added noise. Then, given an input image, a gating network determines the weight to give
to each CNN for classification. This produces a model that is resilient to many different kinds of noise, solving
the noise-resiliency problem. Yim and Sohn7 propose a dual-channel CNN model based on Inception-v38. They
have one model that takes in the original, unprocessed image, and another model that takes in a denoised image,
denoised by various algorithms. The outputs are combined via either feature summation or concatenation, and
a fully connected layer is used to convert these features into classification results. The purpose and result of this
were to retain performance on the original dataset using the model that takes in the raw image, while providing
better classification accuracy on noisy images, using the denoising module. Lastly, a notable work by Elhoseny
and Shankar9 shows that for medical imaging tasks, denoising has the potential to improve medical image clas-
sification performance. They propose a system that preprocesses images with a bilateral filter with parameters
optimized for best image denoising performance. Using the Inception-v48 CNN for classification, they show that
denoising inputs may increase medical image classification performance. However, they do not compare their
results with a CNN without a denoised dataset, which we do in this paper.

3 METHODS

3.1 Effect of Image Denoising on Medical Image Classification Performance

We examined the effect of image denoising on a medical image classification task and determined the optimal
denoising methods for this task. The denoising methods used can be separated into learning-based and non-
learning-based methods. All learning-based methods utilize CNNs. The non-learning-based group consists of
the Wiener filter10, moving average filter, median filter, and opening morphological filter. These filters were
picked since they are frequently used in image denoising and provide a good distribution of linear, nonlinear,
and morphological filters. The learning-based group consists of the DnCNN11 by Kai Zhang, et al. and the
Noise2Noise12 CNN by NVIDIA Research. These two CNNs were picked since they are among the most popular
CNNs used for image denoising. For the sample medical image classification task, we used the ChestX-ray1413

(CXR14) dataset, a dataset of chest X-rays with 14 possible diagnoses provided by the NIH. We then preprocessed
all the images in CXR14 through these denoising methods at its native resolution, 1024x1024. This produced six
datasets containing 112,120 images each, resulting in a total of seven datasets including the one with no denoising



applied. All the non-learning-based methods used a window size of three pixels, as sizes higher made images
undiscernable to the human eye. We used the provided, pre-trained models for the denoising CNNs. DnCNN
was trained on images with synthetic Gaussian noise of standard deviation σ=25 and the Noise2Noise CNN was
trained uniformly on images with synthetic Gaussian noise of standard deviations between σ=0 and σ=50. The
datasets were split into train, validation, and test sets by the NIH, stratified by label and patient name. We
then trained the DenseNet-12114 CNN on each dataset twice, once with randomly-initialized weights, and once
by fine-tuning a model pre-trained on ImageNet15. We used PyTorch16 to train these models for its speed and
debugging capabilities. We trained these models with the AdaDelta17 optimization algorithm, using: an early
stop with a maximum of 100 epochs and a patience of 10 epochs, validation loss as the performance metric, and
data augmentation. Data augmentation consisted of resizing the images to 256x256, randomly cropping them
to 224x224, then randomly rotating, shifting, scaling, and (horizontally and vertically) flipping them. Lastly,
we normalized the images to be in the range [0, 1]. The model was trained with a batch size of 115 images on
a single NVIDIA Tesla V100 with 16GB of memory. After training these models, we calculated the area under
the receiver operating characteristic curve (AUC) for each label on the test set for each model, using that as the
classifier’s performance measure. The classification pipeline is shown in figure 1.

3.2 PSNR and SSIM Correlation with Medical Image Classification Performance
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Figure 1. Chest X-
Ray Image Classification
Pipeline

We examined the correlation between the PSNR and SSIM metrics and our medical
image classification task. To achieve this, we added Gaussian noise to the Shepp-
Logan phantom image18 at standard deviations of σ=5, σ=15, and σ=25. We then
ran these three images through each of the denoising methods mentioned in section 3.1
to calculate the PSNR and SSIM values, using the original images as base references.
For the non-learning-based methods, we used a window size of five pixels and used
the provided pre-trained models for the learning-based methods. We determined the
level of correlation by calculating the R2 values between each denoising algorithm’s
PSNR or SSIM and its mean AUC computed over all labels.

4 RESULTS

4.1 Effect of Image Denoising on Medical Image Classification
Performance

Looking at figures 2 and 3, we find that fine-tuning a pre-trained model delivers higher
and more uniform results than training a model from scratch (i.e., with randomly-
initialized weights). Nonetheless, we find that different denoising methods can make
a noticeable difference in classification performance for both models. Table 1 shows
which method performs the best for each model and label, with the method bolded
if it improves the AUC by a statistically significant amount. Statistical significance
is calculated between the model without denoising and the highest performing model
with denoising for a specific label, using 95% confidence intervals. These confidence
intervals were computed by bootstrapping, using 1,000 samples. Interestingly, the
fine-tuned model benefits more from denoising than the randomly-initialized one, with
three statistically-significant increases in AUCs caused by denoising in the former com-
pared to one in the latter. The fine-tuned model experienced these increases with the
Wiener filter for two of the labels and the moving average filter for the other. The
randomly-initialized model actually experienced two statistically-significant increases,
but one was due to using no denoising! The other was due to using the Noise2Noise
CNN. Additionally, the same denoising algorithm does not maintain its relative per-
formance between the fine-tuned and randomly-initialized model. The top-performing
denoising algorithm for the randomly-initialized model was never observed to be the
same for the fine-tuned one. Lastly, we observed that the classification performance
when using the non-learning-based filters is similar to when using the denoising CNNs.
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Figure 2. AUCs for a Randomly-Initialized Model
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Figure 3. AUCs for Fine-Tuned Model

4.2 PSNR and SSIM Correlation with Medical Image Classification Performance

As mentioned in section 3.2, we compute the correlation between each denoising algorithm’s PSNR or SSIM and
its mean AUC computed over all labels. Given that the standard deviations of these means are fairly close in
value (with standard deviation 0.004), we will dismiss them for this analysis.



Table 1. Best Performing Methods by Label (Bold Denotes Statistically Significant Improvement)

Best Perfoming Methods List, labels 1-7
Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia

Randomly-
Initialized

Noise2Noise
CNN

Median Fil-
ter

Noise2Noise
CNN

Noise2Noise
CNN

No De-
noising

No Denois-
ing

No Denois-
ing

Fine-
Tuned

No Denois-
ing

DnCNN No Denois-
ing

Wiener
Filter

Moving Av-
erage Filter

Median Fil-
ter

Moving Av-
erage Filter

Best Perfoming Methods List, labels 8-14
Pneumothorax Consolidation Edema Emphysema Fibrosis Pleural

Thickening
Hernia

Randomly-
Initialized

Noise2Noise
CNN

Median Fil-
ter

Median Fil-
ter

Median Fil-
ter

Noise2Noise
CNN

Noise2Noise
CNN

Noise2Noise
CNN

Fine-
Tuned

Moving
Average
Filter

No Denois-
ing

Moving Av-
erage Filter

Wiener
Filter

No Denois-
ing

No Denois-
ing

Wiener Fil-
ter

4.2.1 PSNR Correlation

Table 2 shows the correlation between PSNR and mean AUC for the fine-tuned and randomly-initialized models.
We see that there is a very low level of correlation, increasing monotonically over σ. Lastly, we see that the
randomly-initialized model is strictly more correlated to the PSNR for all values of σ.

Table 2. Correlation between PSNR and Mean AUC
R2 Correlation Values for PSNR

σ= 5 σ= 15 σ= 25
Randomly-Initialized 0.000674 0.055038 0.069913

Fine-Tuned 0.000064 0.012432 0.046050

4.2.2 SSIM Correlation

Table 3 shows the correlation between SSIM and mean AUC for the fine-tuned and randomly-initialized models.
Like PSNR, we see quite a low level of correlation. Unlike PSNR, however, the correlation value monotonically
increases with decreasing σ. Additionally, we do not see that any of the models have strictly higher correlation
values than the other. Lastly, we see that the greatest correlation values globally are obtained when using SSIM
with σ= 5 for both fine-tuned and randomly-initialized models.

Table 3. Correlation between SSIM and Mean AUC
R2 Correlation Values for SSIM

σ= 5 σ= 15 σ= 25
Randomly-Initialized 0.233217 0.067192 0.006726

Fine-Tuned 0.367492 0.006997 0.011114

5 LIMITATIONS OF RESEARCH

This study is meant to give an introduction to the effects of image denoising on medical image classification
performance. As such, multiple variables should be considered for future work.

First, we did not account for Poisson noise in our CNN denoisers. These denoisers were trained only to fil-
ter Gaussian noise. With low-dose X-ray imaging becoming more popular because of its increased safety, it is
important to study this, as low-dose X-ray images produce more noise that follows a mixed Poisson-Gaussian
model19.

Second, we did not tune any of the denoising algorithms’ parameters jointly with the classification CNN to
ensure that we are using these algorithms to their fullest extent, similar to the work previously mentioned by



Diamond, et al.4, which showed improvement in performance for raw camera sensor data.

Lastly, this study should be repeated on many different types of medical image classification tasks, in order
to generalize beyond chest X-ray image classification.

6 DISCUSSION

6.1 Effect of Image Denoising on Medical Image Classification Performance
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Figure 5. SSIM vs. Standard Deviation for Different Denoising Methods

We found in section 4.1 that the fine-
tuned model delivers better performance
across denoising methods. This shows
us that that transfer learning can be
useful in a medical imaging scenario,
as would be expected for most im-
age classification tasks. Specifically,
it not only raises overall performance
but also makes it more uniform across
different denoising algorithms. Given
the low AUC variances, the CNN has
built robustness to variances in im-
ages introduced by the denoising meth-
ods. Interestingly, there are more sta-
tistically significant differences in the
fine-tuned model than the randomly-
initialized one. This is because the
confidence intervals for the fine-tuned
model are so small, due to its robust-
ness.

Nonetheless, we see that using denoising
can make a statistically significant im-
provement for select labels, using either the
fine-tuned or randomly-initialized model!
This experiment should be redone with the
classification CNNs trained on 1024x1024,
CXR1413’s native resolution. Additionally,
an ensemble of models should be created,
such that the models best at predicting a
specific label have the most weight on the
classification result for that label. These
label weights should be determined separately for the fine-tuned and randomly-initialized model, as we noted
that the best performing preprocessing methods were not consistent between the two. It may be of greatest
benefit to train a denoising framework jointly with the classification CNN so that the parameters are tuned
for best classification performance, not best visual look, similar to the work previously mentioned by Diamond,
et al.4. This would better utilize a CNN’s ability to learn, which would likely break the tie in classification
performance with non-learning based methods. Lastly, an experiment should be done that shrinks the size of
the training set and determines if there is a change in the importance of using denoising algorithms. This would
give a useful relationship of how useful denoising is given the size of the training set.

6.2 PSNR and SSIM Correlation with Medical Image Classification Performance

We found in section 4.2 that there appears to be no significant correlation between chest X-ray classification
performance and PSNR or SSIM. This is a similar result to the work previously mentioned by Diamond, et al.4,



which found that visually better-looking images did not necessarily mean better classification accuracy for raw
camera sensor data.

Nonetheless, we found that the SSIM metric with Gaussian noise of standard deviation σ= 5 had the highest cor-
relation. Unlike PSNR, which focuses on how close the pixel values are together, SSIM focuses more on structure
preservation in the image. This would be expected, as preserving critical structures is crucial in medical imaging.

A metric that could estimate medical image classification performance could greatly increase efficiency. If no
other existing metrics are found that can do this, one should be created. This metric could be CNN-based,
taking in an image (or a sequence of them as a 3-dimensional CNN), and predicting how good classification
performance would be.

7 CONCLUSION & FUTURE WORK

We found that our medical image classification task can be affected by using a denoised dataset and that different
denoising methods outperform others for certain labels. Second, we found that using a fine-tuned model benefits
more from denoised datasets than a randomly-initialized model while also bringing greater and more uniform
performance for our task. As the amount of data in a medical scenario is often scarce, using a fine-tuned model
is a simple way to boost performance. Lastly, there is no significant correlation between PSNR and SSIM and
our classification task. This work should be extended by:

1. Training the CNN on CXR1413’s native resolution, 1024x1024.

2. Not only taking into account Gaussian noise, but also Poisson noise.

3. Training denoising algorithm parameters jointly with the classification CNN.

4. Repeating this study on different medical image classification tasks.

5. Forming an ensemble model where each individual CNN is trained on a specific type of denoised data, and
assigning weights to each of the models based on its performance on each label.

6. Shrinking the training set and analyzing the difference in performance made by denoising.

7. Developing a new metric or using an existing one that gives an idea of how a denoising algorithm will affect
medical image classification performance without training the model.

These works would help gain a much broader intuition on the effect of image denoising on medical image
classification.
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