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Abstract—Big data generated by large-scale scientific and
industrial applications need to be transferred between differ-
ent geographical locations for remote storage, processing, and
analysis. High-speed dedicated connections provisioned in High-
performance Networks (HPNs) are increasingly utilized to carry
out such big data transfer. HPN management highly relies on
an important capability of performance (mainly throughput)
prediction to reserve sufficient bandwidth and meanwhile avoid
over-provisioning that may result in unnecessary resource waste.
This capability is critical to improving the resource (mainly band-
width) utilization of dedicated connections and meeting various
user requests for data transfer. Conventional methods conduct
performance prediction by fitting prior observed transfer history
with predefined loss functions, without considering unobservable
latent factors such as competing loads on end hosts. Such latent
factors also have a significant impact on the application-level
data transfer performance, which may result in an inaccurate
prediction model. In this paper, we first investigate the impact of
latent factors and propose a clustering-based method to eliminate
their negative impact on performance prediction. We then de-
velop a robust machine learning-based performance predictor by:
i) incorporating the proposed latent factor elimination method
into data preprocessing, and ii) adopting a customized domain-
guided loss function. Extensive experimental results show that
our predictor achieves significantly higher prediction accuracy
than several other state-of-the-art methods.

Index Terms—Performance prediction, big data transfer, ma-
chine learning, latent variables, high-performance networks.

I. INTRODUCTION

Next-generation scientific applications and extreme-scale
industrial data analytics require fast and reliable network-
ing services to support big data transfer. High-performance
Networks (HPNs) featuring high-speed dedicated connections
and advance bandwidth reservation have been developed and
deployed in a rapidly expanding scope to provide such ser-
vices. For example, OSCARS [2] provides advance reservation
of secure virtual circuits with guaranteed bandwidth within
ESnet [1], and AL2S enables similar reservation services
within Internet2 [4] and across other networks. Google’s
B4 [20] is a private software-defined application-friendly
wide-area network (WAN) platform that can be leveraged for
big data sciences and industrial applications at the planet scale.
Computer systems such as Data Transfer Nodes (DTNs) in
Science DMZ [5] have also been widely deployed and used
to support geographically distributed scientific applications to
reap the benefits brought by dedicated connections of HPNs.

The provisioning agents of such network service providers
typically ask end users to submit networking requirements

such as desired bandwidth in their data transfer requests
in advance, and then allocate resources accordingly over
dedicated end-to-end network connections that are dynami-
cally computed and established. During the decision-making
process for planning resource allocation and granting usage
permission, a resource scheduling strategy is needed to ensure
adequate bandwidth while minimizing resource waste. Such
a strategy critically relies on the ability to accurately predict
real-time data transfer performance. Typically, in HPNs, once
the connections with reserved bandwidths are allocated and
granted, they become unavailable to other user requests during
a certain time frame. This motivates us to build a robust
performance predictor for big data transfer in HPNs since
a proper resource allocation scheme should not only meet
the bandwidth requirements of data transfer requests but also
minimize the chance of over-provisioning resources that would
be otherwise wasted.

Data transfer is a complex process whose throughput per-
formance is affected by many factors, including not only
hardware specifications of both network segments and end
hosts, but also software configurations of operating systems
and data transfer applications [7]. In addition, there exist a
plethora of data transfer methods, including TCP variants such
as CUBIC [10], UDP-based protocols such as UDT [9], and
utility- or learning-based approaches such as Remy [21], which
employ different congestion control mechanisms and are de-
signed for their respective scenarios. Therefore, developing an
accurate performance prediction model, even in HPNs where
network conditions are relatively more stable in comparison
with shared IP networks, is still very challenging.

Most existing methods for performance prediction fit histor-
ical performance measurements of data transfer under certain
predefined loss functions [11], [12], [14]. Although achieving
remarkable success, these methods typically use a limited set
of static properties of network paths, end hosts, and appli-
cations as predicting features without considering dynamic
latent factors such as competing loads and system dynamics
on end hosts. These latent factors may also have a significant
impact on the performance of big data transfer and are the
main cause of inaccuracy for these prediction models in HPN
environments.

In this work, we conjecture that the performance prediction
model could be biased or overfitted if not excluding the
abnormal behaviors of data transfer caused by latent variables.



Therefore, we conduct in-depth analysis of the effects of
latent factors based on extensive performance measurements
collected in the past several years from a large number of
data transfer tests using different protocols and applications
between various end sites in several real-life HPN testbeds.
We then propose a clustering-based method to eliminate the
negative impact of latent factors on performance prediction.
We further develop a robust performance predictor by incorpo-
rating the proposed elimination method into data preprocessing
and customizing domain-specific loss functions. Extensive
experimental results show that our predictor achieves signif-
icantly higher accuracy in comparison with several state-of-
the-art methods.

The rest of the paper is organized as follows. In Section II,
we present a brief survey of related work. In Section III,
we describe in detail the transport performance prediction
problem in HPN environments. In Section IV, we conduct
a thorough analysis of the impact of latent factors on trans-
port performance and propose a clustering-based method to
eliminate their negative impact on performance prediction. We
design a performance predictor and evaluate its performance
in Section VI. Section VII concludes our work and sketches
a plan for future research.

II. RELATED WORK

The significance of high-speed dedicated connections provi-
sioned by HPNs has been widely recognized in both research
and industrial communities due to the rapidly growing big data
transfer needs of data- and network-intensive applications. In
the past decade, a great deal of research efforts have been made
to predict data transfer performance using different methods.

A. Profiling-Based Performance Prediction

Transport performance profiling employs an empirical ap-
proach to study the behaviors of different data transfer ap-
plications and their underlying transport protocols. A profile
of transport performance in response to control parameters
of transport methods and network environments is obtained
by running data transfer tests with a sweep of the parameter
space and collecting corresponding performance measure-
ments. Such profiles can help us understand the network
behaviors, facilitate the design of an effective performance
predictor, and also be used as benchmarks.

Rao et al. in [16] provided large-scale TCP measurements
over a set of 10Gbps dedicated connections with emulated
delays ranging from Oms to 366ms, and further in [17]
showed that TCP throughput is very sensitive to the connection
delay and behaves in a combination of concave and convex
functions. Performance profiling of UDT [9], another widely-
used data transfer protocol in HPN community [6], is con-
ducted in [7], where UDT behaviors with respect to various
application settings and protocol socket options are measured
and analyzed. These measurements and analyses show that
control parameter settings also significantly affect throughput
performance of big data transfer in HPNs. Unfortunately,
such effects are not taken into consideration in conventional
performance prediction methods. Liu et al. conducted similar

research on performance profiling of data transfer methods
in [19]. While profiling-based approaches offer better inter-
pretability and explainability as they provide a deeper insight
into the behaviors of data transfer methods under various cir-
cumstances, they typically incur high overhead. For example,
to obtain a fully-covered transport profile of a given protocol
over a given connection, an exhaustive sweeping of the entire
parameter space may take hours or even days to complete.
B. Learning-Based Performance Prediction

Along with the emergence of HPN technologies and the ac-
cumulation of performance measurements of big data transfer,
machine learning has been increasingly used to investigate and
reveal the behavioral patterns of data transfer protocols and the
underlying host and network infrastructures.

Mirza et al. in [14] considered a set of properties of
historical data transfer over network paths as features to train
machine learning models, and then used various combinations
of subsets of these features for evaluation. Although this
work was focused on predicting TCP performance in shared
networks, some important features in such environments such
as cross traffic were not directly considered when building the
model. Liu et al. employed regression models to explain the
observed performance patterns extracted from the log files of
disk-to-disk wide-area file transfer powered by GridFTP [11].
They further in [12] expanded the feature set and developed
a model selection strategy for performance prediction of file
transfer in wide-area networks. Based on a retraining process,
their approach showed promising prediction accuracy, which
is verified by a comparative evaluation using Globus logs [3].

III. PROBLEM STATEMENT

The throughput performance y of a data transfer over a
dedicated connection is considered as a function f of a vector
of feature variables x involving different segments including
end hosts, network connections, and applications, i.e., y =
f(x). The analytical form of f is typically unknown, and thus
we propose to employ machine learning to build a model to
approximate f based on historical performance measurements
of big data transfer.

More formally, we collect a set of measurements used as
the training dataset 7 = {(x1,v1), (X2,%2),- -, (Xn,¥Yn)},
where x; (i = 1,2,...,n) is a specific set of values of the
feature vector x that collectively determine the correspond-
ing throughput ;. We aim to estimate f based on 7T, i.e.,
f(xi) &~ f(x;) such that f(x;) is close enough to the “true”
value y; for all training examples in 7 and can be used to
predict y; with high accuracy given a future arbitrary x;.

The feature vector x in this context is in the form of a
list of observable variables in the three segments of an end-
to-end data transfer path: i) end host configurations such as
CPU speed, RAM size, etc.; ii) connection properties such
as round-trip time (RTT), connection bandwidth, etc.; and
iii) control parameters of data transfer applications such as
socket buffer size, number of data streams, etc. However, there
exist certain unforeseeable and unobservable latent factors
including competing loads (since the end hosts are usually
shared by multiple users), system dynamics on end hosts,
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Fig. 1. Illustration of impact of application-accessible parameters on TCP per-
formance: (a) performance vs. stream number and RTT; and (b) performance
vs. stream number and buffer size.

and instabilities along the network connection, all of which
may also significantly affect the end-to-end data transfer
performance. This is mainly because when the network speed
reaches a certain high rate, as in the case of HPNs, the speed
of (mainly incoming) traffic may keep the end hosts (mainly
the receiver) constantly busy and any perturbation under such
conditions caused by any latent factor may overwhelm the end
host, leading to unpredictable performance.

From the perspective of performance prediction, the above
“abnormal” behaviors may result in large noise in the training
dataset 7. Considering the number of observable factors in
x and the complexity and randomness caused by the latent
factors and other unknowns, it is extremely difficult to build a
robust performance predictor for HPN resource management,
which is critical to satisfying bandwidth requirements of user
requests and minimizing resource waste.

Hence, in addition to normal (well-behaving) performance
measurements y, the training dataset 7 typically also contains
some “corrupted” performance measurements 1y’ under the
effects of both feature vector x and unobservable factors o,
ie., vy = f(x)+ f'(a), where f’(«) represents the collective
(negative) effects imposed by the latent variables and other
unknowns. In other words, the performance measurements in
T are sampled from a combined set of {y} and {y'}.

Our work has two technical components: i) use a generic
clustering-based method in data preprocessing to eliminate the
“latent-variable-corrupted” data points from the training set;
and ii) employ machine learning methods to build an accurate
performance predictor based on the cleaned training set.

IV. ANALYSIS OF FEATURE VARIABLES AND LATENT
FACTORS

Our performance dataset is collected by measuring the
throughput performance of repeated data transfer tests over
dedicated connections with different application-accessible
parameter values. Many of the properties of a given dedicated
connection such as delay and capacity can be considered as
constants, and we study their impact on transport performance
by running the same set of data transfer tests over different
connections of different delays and capacities. We first ana-
lyze the effects of application-accessible variables, and then
identify the (negative) impact of unobservable latent factors
based on comparative experimental studies.

A. Effects of Application-Accessible Parameters

Here, we focus on three representative control parameters,
i.e., buffer size, number of streams, and round trip time
(RTT), and show their impact on throughput performance.
More comprehensive profiling results are provided in [16], [19]
for both TCP and UDT [9].

The throughput performance measurements with respect
to number of streams and RTT are plotted in Fig. 1(a),
which shows that, over a 10 Gbps dedicated connection, using
multiple streams help achieve better transport performance, es-
pecially for a long connection delay. This observation actually
has motivated the design of many data transfer toolkits and
services such as Globus GridFTP [3] that are being widely
used for big data transfer. The behavior under different RTTs
indicates that achieving satisfactory performance over a long-
haul connection is difficult even for a dedicated channel with
sufficient bandwidth.

The performance measurements in response to buffer size
and number of streams are plotted in Fig. 1(b), which shows
that, over short connections, using a large number of parallel
streams only brings a limited performance gain in comparison
with an appropriately set buffer size. In such cases, they
jointly dominate the throughput performance of TCP: the
performance generally increases as the buffer size increases;
however, as the number of streams increases, the performance
gains from increasing the buffer size are diminishing, which is
probably due to the resource demand of a large stream number
overwhelming the end host system.

B. Effects of Unknowns

The results presented in Sec. IV-A suggest the use of
machine learning methods for performance predication of big
data transfer in HPNs. This is because: i) the performance
patterns are qualitatively consistent and stable across different
connections, e.g., the throughput increases as the buffer size
and number of streams increase and the achievable throughput
decreases as the connection delay increases; and ii) such
patterns cannot be modeled analytically, e.g., the slope of
performance increase with respect to buffer size increase may
vary across different connections, and the optimal number of
data streams may depend on not only the network environ-
ments but also the end host system configurations. Such multi-
dimensional accessible control parameters or features make it
difficult, if not at all possible, to derive an analytical form to
describe their relationship with the throughput performance.

However, during our extensive experimentation, we found
that there may exist certain latent variables that also sig-
nificantly affect the throughput performance. These latent
variables are not easily observable while the data transfer is
being performed due to the data transfer application’s limited
access to the end host system and other unpredictable factors
such as competing loads and system dynamics. Such latent
effects, if not excluded, could make machine learning-based
prediction biased or overfitted.

To show such latent effects, we compare the performance
measurements of the same set of data transfer tests conducted
on two different testbeds: i) a production HPN testbed where
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Fig. 2. TCP performance vs. buffer size without and with latent effects.

the end hosts of data transfer are computing servers shared
by many users (thus competing loads are significant), and ii)
our local testbed where the experimental conditions are strictly
controlled and competing loads from other users are forbidden.

Fig. 2 plots the difference in TCP performance with respect
to buffer size with and without the effects of latent variables.
As shown in Fig. 2(a), TCP throughput almost linearly in-
creases with the increase of buffer size before reaching the
peak. In Fig. 2(b), the maximal achievable TCP performance
follows a similar pattern, i.e., increases linearly as the buffer
size increases till reaching the peak. In addition, there also
appear a non-negligible number of performance measurements
below the maximal ones, which may cause inaccuracy in
performance prediction for bandwidth scheduling in HPNs.

Figs. 2(a) and 2(b) show that in addition to the impact
of data transfer applications and network environments, there
are a certain number of unobservable factors such as system
dynamics and competing loads from “hidden” users that could
undermine the performance. Such latent factors originate from
unknown features and are very difficult to estimate due to their
unpredictable nature and randomness. They may generate a
bias towards the “abnormal” data points during the training
process, leading to inaccurate prediction eventually.

In this work, we propose to use machine learning methods to
eliminate the (negative) effects of such latent variables during
data preprocessing and further build a robust machine learning
model for big data transfer performance prediction in HPNs.
V. ELIMINATION OF LATENT EFFECTS USING CLUSTERING

We first describe our approach to eliminate latent effects
using clustering-based methods, and then compare different
clustering algorithms.

A. Rationale on the Use of Clustering Algorithms

In our prediction problem, the throughput y of a data
transfer over a dedicated connection is determined by a
combined setting of accessible control parameters and network
properties, i.e., the feature vector x, and there is a function
f(x) that maps x to the achievable throughput. The perfor-
mance observations are data points sampled from a certain
Gaussian distribution with mean f(x) and variance o(x).
For a specific x, the corresponding variance of o(x) from a
number of repeated measurements should be limited to some
bounded scale. In other words, significant differences observed
in repeated measurements with the same set of parameter
values and network environments may be caused by latent

variables and the corresponding effects must be eliminated for
accurate prediction.

These effects are also il-
lustrated by UDT perfor- 8000
mance in Fig. 3, where
we fix all other parameters
and only vary the buffer :
size. It shows that the UDT
throughput with respect to 0
buffer size diverges to two 0
different patterns with and
without latent effects. These
latent factors would seri-
ously impair the quality of
a prediction model. This phenomenon motivates us to use
a clustering-based method to eliminate the measurements
that are observed under the conditions with significant latent
effects. Other research (e.g., [12]) also pointed out the negative
effects of such latent factors and a threshold-based method
is adopted in [12] to eliminate the effects, which, although
simple, may introduce an unexpected bias into the performance
prediction model.

In addition, due to the nature of the problem, f(x) is
considered to be smooth. In other words, with a slight change
to any parameter, e.g., buffer size, the change in the throughput
performance should be bounded. If we have a sufficient num-
ber of data points for different values of control parameters,
we are able to see a smooth pattern of throughput performance,
as shown in Fig. 3.

As stated previously, our dataset is a combination of perfor-
mance observations including both 3 and y’, which are subject
to different mapping functions. Our goal is to differentiate the
divergence of different performance patterns and rule out the
one that is manifested by the “abnormal” data points and is
thus less frequently observed, as the regular pattern (exhibited
by the normal data points) would appear more frequently in
real-life bandwidth scheduling. This can be achieved by using
clustering-based methods to categorize y and y' into different
clusters with a certain distance measure such that the data
points within the same cluster are closer to each other and
thus are more likely to be measured under similar conditions
with similar latent effects.

B. Comparison of Different Clustering Algorithms

To choose an appropriate clustering algorithm to separate
“abnormal” data points from normal ones, we compare sev-
eral well-known and commonly-used clustering algorithms, as
shown in Fig. 4. Conventional clustering methods based on Ex-
pectation Maximization (EM) such as K-means and Gaussian
Mixture Model (GMM) aim to maximize the log-likelihood
derived from previous estimates. As shown in Fig. 4, K-means
and GMM perform poorly in differentiating the data points
under different levels of latent effects, since they simply divide
the data points into two groups with a roughly equal radius.
Therefore, we propose to use the Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) algorithm [13]
to eliminate the data points with latent effects and hence fa-
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cilitate accurate performance prediction. DBSCAN categorizes
the data points into different clusters based on their densities,
where tightly-packed points are grouped together and those in
low-density regions are classified as outliers. The clustering
results of DBSCAN on the same datasets as used in Fig. 3 and
Fig. 4 are presented in Fig. 5(a) and Fig. 5(b), respectively,
which show the effectiveness of DBSCAN in differentiating
data points with latent effects.
VI. PREDICTION OF BIG DATA TRANSFER PERFORMANCE
IN HIGH-PERFORMANCE NETWORKS

In this section, we first describe a customized loss function
used for building a performance predictor and then present
prediction results using various machine learning models. The
performance predictors are all implemented in Python based
on the scikit-learn library [8].
A. Customized Loss Function

Different from traditional methods of supervised learn-
ing [12], [14] that seek an optimal label for a given feature
vector, for bandwidth scheduling, we aim to build a model
that provides a loosened prediction with a reasonable range.

Together with DBSCAN-based data preprocessing, which
eliminates negative latent effects, we build our performance
predictor based on a customized loss function, as motivated by
the domain knowledge of HPN management that requires the
reserved bandwidth over a dedicated connection to match the
bandwidth requirement of a data transfer request with minimal
waste. Therefore, the optimal predicted transfer performance
§ = f(x;) should lie within the range [y;, ey;], where e >
1 is a small tunable positive number and y; is the ground
truth of the achievable performance with feature vector x;.
The predicted value should be slightly higher than what a data
transfer can utilize to satisfy the request and also minimize
the waste. Inspired by the e-insensitive loss used by Support
Vector Regression (SVR) and other work [18], we customize
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Fig. 6. Loss functions: e-intensive loss [18] (left), the customized loss (right).

>

the e-insensitive loss function in Fig. 6 (left) by restricting the
tolerable errors to be positive only. As shown in Fig. 6 (right)
the optimal value is parameterized by an error tolerance e and
our objectivrsa is to minimize the following loss

L@, =3 { max(yi—fg(xi),0)+max(f9(xi)—e-yi,0)},

i=1
) ()

where the loss £(0,¢) is 0 if the prediction fy(x;) is larger
than the observed value y; but is within the tolerable range
bounded by ¢; otherwise, L£(f,¢) is the distance between
fo(x;) and the tolerable loss range of €.
B. Evaluation Metric

We define a domain-oriented performance evaluation met-
ric, denoted by +, similar to the Mean Absolute Percentage
Error (MAPE), which is a commonly-used accuracy metric
in statistics. Unlike MAPE that counts the absolute error,
v counts only the positive errors that fall out of the range
governed by € as in Eq. 1. This Customized Mean Absolute
Percentage Error (CMAPE) is defined as v = 1L(f,¢) =
% S { max(yi—fg(xi), O)—i—max(fg(xi)—e-yi, 0)}, e>1,
where fg (x;) is the predicted value given feature x;, y; is
the corresponding ground truth, n is the total number of
test cases. A proper bandwidth allocation should satisfy the
user requirement with only an inevitable (as governed by ¢)
amount of waste. In addition to v, we also count the Effective
Prediction Percentage (EPP, denoted by () among all test
cases, ie, f =230 T{y; < fo(xi) < e-y;}, where Z(¢))
is an indicator function that is equal to 1 if v is true, and 0,
otherwise.
C. Models in Comparison

We compare four models [15] with the customized loss
function defined in Eq. 1: i) linear models as represented by
Ridge Regression (RR); ii) non-linear models as represented
by Support Vector Regression (SVR); iii) Neural Networks
(NN), where we use a standard three-layer neural network with
ReLU as the activation function; and iv) ensemble models as
represented by Random Forest Regression (RFR).
D. Dataset

Our dataset contains about 100,000 records of throughput
performance measurements that are collected from big data
transfer tests conducted over local back-to-back connections
and in several other HPNs managed by different institutions.
E. Results

Our performance evaluation includes two parts: i) compare
the prediction results of SVR on the original dataset with and



without the DBSCAN-based preprocessing as introduced in
Sec. V-B; and ii) compare the performance of the four models
in Sec. VI-C and select the best one with data preprocessing.
1) SVR Prediction Accuracy With and Without Preprocessing

We first run the DBSCAN-
based preprocessing to filter 1.00
out data points that are heav-
ily affected by latent fac-
tors and then perform pre- §0450
d1ct19n using SVR: This pro- 025 Ev -
cess is repeated without such
preprocessing for comparison. % 5 10 15 20 25 30
As shown in Fig. 7, the ac- ‘/T/‘ % 100%
curacy of SVR-based perfor-
mance prediction based on
the cleaned dataset consistently
outperforms the prediction ac-
curacy based on the original dataset. Note that the dataset used
in these tests is collected from a production HPN, where high-
end servers used as the sender/receiver of data transfer tests
are concurrently used by many other scientists to run their
scientific computing jobs.

Fig. 7. Comparison of SVR pre-
diction accuracy with and without
DBSCAN-based preprocessing.

2) Prediction Accuracy of Various Models

We use the filtered dataset to compare the prediction
accuracy of various models as mentioned in Sec. VI-C in
terms of different performance criteria including Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), EPP
(i.e., B8), and CMAPE (i.e., 7). As shown in Fig. 8, the
linear RR model performs poorly for all four criteria due to
the limited richness of its hypothesis function set. The NN
model performs even worse than RR for RMSE and MAE,
which indicates extensive tuning or more network layers (thus
higher overhead) are needed. RFR and SVR perform almost
equally well for RMSE and MAE. SVR has the best overall
performance since it outperforms all other models for both of
the metrics defined for bandwidth scheduling, i.e., CMAPE
and EPP. Therefore, we choose SVR with the customized loss
function for performance prediction in HPNs.

VII. CONCLUSION

In this work, we studied the prediction problem of big data
transfer performance in HPNs. We first identified the latent
factors and analyzed their negative impact on performance
prediction based on comparative experiments. We then pro-
posed a clustering-based method to eliminate such negative
impact and developed a performance predictor using various
machine learning algorithms with a domain-guided customized
loss function. Experimental results show that the SVR-based
predictor achieved significantly higher accuracy in comparison
with several other state-of-the-art methods in terms of various
performance evaluation criteria.

We plan to investigate other methods for latent effect elim-
ination and refine our models accordingly to further improve
prediction accuracy. It is also of our interest to establish a
performance bound of the selected machine learning model
for data transfer performance prediction in HPNs.
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Fig. 8. Performance comparison of various models in terms of different
metrics.

ACKNOWLEDGMENTS
This research is sponsored by U.S. National Science Foundation
under Grant No. CNS-1828123 with New Jersey Institute of Tech-
nology and the Presidential Research Grant of Harrisburg University.
REFERENCES

[1] Energy Sciences Network. http://www.es.net.

[2] ESnet OSCARS Service. https://bit.ly/20u9qVe.

[3] Globus Data Transfer. https://bit.ly/2m10qLI.

[4] Internet2 AL2S. https://goo.gl/4iAbQn.

[5] Science DMZ DTNs. https://bit.ly/2k3qBQM.

[6] UDT-Powered Projects. https:/bit.ly/2JZtA7n.

[7]1 D. Yun et al. Profiling optimization for big data transfer over dedicated

channels. In Proc. of ICCCN ’16.
[8] F. Pedregosa et al. Scikit-learn: Machine learning in python. Journal of
Machine Learning Research, 12:2825-2830, 2011.

[91 Y. Gu and R. Grossman. UDT: UDP-based data transfer for high-speed

wide area networks. Computer Networks, 51(7):1777-1799, 2007.

S. Ha, I. Rhee, and L. Xu. CUBIC: A new TCP-friendly high-speed

TCP variant. ACM SIGOPS Oper. Syst. Rev., 42(5):64-74, 2008.

[11] Z. Liu, P. Balaprakash, R. Kettimuthu, and I. Foster. Explaining wide
area data transfer performance. In Proc. of HPDC ’17, pages 167-178.

[12] Z. Liu, R. Kettimuthu, P. Balaprakash, and I. Foster. Building a wide-

area data transfer performance predictor: An empirical study. In Proc.

of the Ist Int’l Conf. on Machine Learning for Netw., 2018.

M. Ester et al. A density-based algorithm for discovering clusters in

large spatial databases with noise. In Proc. of KDD 96, pages 226-231.

M. Mirza, J. Sommers, P. Barford, and X. Zhu. A machine learning ap-

proach to TCP throughput prediction. [EEE/ACM Trans. on Networking,

18(4):1026-1039, 2010.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine

Learning. The MIT Press, 2nd edition, 2018.

N.S.V. Rao et al. TCP throughput profiles using measurements over

dedicated connections. In Proc. of HPDC ’17, pages 193-204.

[17] N.S.V. Rao et al. Learning concave-convex profiles of data transport

over dedicated connections. In Proc. of the Ist Int’l Conf. on Machine

Learning for Netw., 2018.

P. Ye et al. Customized regression model for Airbnb dynamic pricing.

In Proc. of KDD ’18, pages 932-940.

Q. Liu et al. Measurement-based performance profiles and dynamics of

UDT over dedicated connections. In Proc. of ICNP ’16.

S. Jain et al. B4: Experience with a globally-deployed software defined

WAN. ACM SIGCOMM Comput. Commun. Rev., 43(4):3—14, 2013.

K. Winstein and H. Balakrishnan. TCP ex machina: Computer-

generated congestion control. ACM SIGCOMM Comput. Commun. Rev.,

43(4):123-134, 2013.

[10]

[13]

[14]

[15]

[16]

[18]
[19]
[20]

[21]



