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Abstract—Big data generated by large-scale scientific and
industrial applications need to be transferred between differ-
ent geographical locations for remote storage, processing, and
analysis. High-speed dedicated connections provisioned in High-
performance Networks (HPNs) are increasingly utilized to carry
out such big data transfer. HPN management highly relies on
an important capability of performance (mainly throughput)
prediction to reserve sufficient bandwidth and meanwhile avoid
over-provisioning that may result in unnecessary resource waste.
This capability is critical to improving the resource (mainly band-
width) utilization of dedicated connections and meeting various
user requests for data transfer. Conventional methods conduct
performance prediction by fitting prior observed transfer history
with predefined loss functions, without considering unobservable
latent factors such as competing loads on end hosts. Such latent
factors also have a significant impact on the application-level
data transfer performance, which may result in an inaccurate
prediction model. In this paper, we first investigate the impact of
latent factors and propose a clustering-based method to eliminate
their negative impact on performance prediction. We then de-
velop a robust machine learning-based performance predictor by:
i) incorporating the proposed latent factor elimination method
into data preprocessing, and ii) adopting a customized domain-
guided loss function. Extensive experimental results show that
our predictor achieves significantly higher prediction accuracy
than several other state-of-the-art methods.

Index Terms—Performance prediction, big data transfer, ma-
chine learning, latent variables, high-performance networks.

I. INTRODUCTION

Next-generation scientific applications and extreme-scale

industrial data analytics require fast and reliable network-

ing services to support big data transfer. High-performance

Networks (HPNs) featuring high-speed dedicated connections

and advance bandwidth reservation have been developed and

deployed in a rapidly expanding scope to provide such ser-

vices. For example, OSCARS [2] provides advance reservation

of secure virtual circuits with guaranteed bandwidth within

ESnet [1], and AL2S enables similar reservation services

within Internet2 [4] and across other networks. Google’s

B4 [20] is a private software-defined application-friendly

wide-area network (WAN) platform that can be leveraged for

big data sciences and industrial applications at the planet scale.

Computer systems such as Data Transfer Nodes (DTNs) in

Science DMZ [5] have also been widely deployed and used

to support geographically distributed scientific applications to

reap the benefits brought by dedicated connections of HPNs.

The provisioning agents of such network service providers

typically ask end users to submit networking requirements

such as desired bandwidth in their data transfer requests

in advance, and then allocate resources accordingly over

dedicated end-to-end network connections that are dynami-

cally computed and established. During the decision-making

process for planning resource allocation and granting usage

permission, a resource scheduling strategy is needed to ensure

adequate bandwidth while minimizing resource waste. Such

a strategy critically relies on the ability to accurately predict

real-time data transfer performance. Typically, in HPNs, once

the connections with reserved bandwidths are allocated and

granted, they become unavailable to other user requests during

a certain time frame. This motivates us to build a robust

performance predictor for big data transfer in HPNs since

a proper resource allocation scheme should not only meet

the bandwidth requirements of data transfer requests but also

minimize the chance of over-provisioning resources that would

be otherwise wasted.

Data transfer is a complex process whose throughput per-

formance is affected by many factors, including not only

hardware specifications of both network segments and end

hosts, but also software configurations of operating systems

and data transfer applications [7]. In addition, there exist a

plethora of data transfer methods, including TCP variants such

as CUBIC [10], UDP-based protocols such as UDT [9], and

utility- or learning-based approaches such as Remy [21], which

employ different congestion control mechanisms and are de-

signed for their respective scenarios. Therefore, developing an

accurate performance prediction model, even in HPNs where

network conditions are relatively more stable in comparison

with shared IP networks, is still very challenging.

Most existing methods for performance prediction fit histor-

ical performance measurements of data transfer under certain

predefined loss functions [11], [12], [14]. Although achieving

remarkable success, these methods typically use a limited set

of static properties of network paths, end hosts, and appli-

cations as predicting features without considering dynamic

latent factors such as competing loads and system dynamics

on end hosts. These latent factors may also have a significant

impact on the performance of big data transfer and are the

main cause of inaccuracy for these prediction models in HPN

environments.

In this work, we conjecture that the performance prediction

model could be biased or overfitted if not excluding the

abnormal behaviors of data transfer caused by latent variables.



Therefore, we conduct in-depth analysis of the effects of

latent factors based on extensive performance measurements

collected in the past several years from a large number of

data transfer tests using different protocols and applications

between various end sites in several real-life HPN testbeds.

We then propose a clustering-based method to eliminate the

negative impact of latent factors on performance prediction.

We further develop a robust performance predictor by incorpo-

rating the proposed elimination method into data preprocessing

and customizing domain-specific loss functions. Extensive

experimental results show that our predictor achieves signif-

icantly higher accuracy in comparison with several state-of-

the-art methods.

The rest of the paper is organized as follows. In Section II,

we present a brief survey of related work. In Section III,

we describe in detail the transport performance prediction

problem in HPN environments. In Section IV, we conduct

a thorough analysis of the impact of latent factors on trans-

port performance and propose a clustering-based method to

eliminate their negative impact on performance prediction. We

design a performance predictor and evaluate its performance

in Section VI. Section VII concludes our work and sketches

a plan for future research.

II. RELATED WORK

The significance of high-speed dedicated connections provi-

sioned by HPNs has been widely recognized in both research

and industrial communities due to the rapidly growing big data

transfer needs of data- and network-intensive applications. In

the past decade, a great deal of research efforts have been made

to predict data transfer performance using different methods.

A. Profiling-Based Performance Prediction
Transport performance profiling employs an empirical ap-

proach to study the behaviors of different data transfer ap-

plications and their underlying transport protocols. A profile

of transport performance in response to control parameters

of transport methods and network environments is obtained

by running data transfer tests with a sweep of the parameter

space and collecting corresponding performance measure-

ments. Such profiles can help us understand the network

behaviors, facilitate the design of an effective performance

predictor, and also be used as benchmarks.

Rao et al. in [16] provided large-scale TCP measurements

over a set of 10 Gbps dedicated connections with emulated

delays ranging from 0 ms to 366 ms, and further in [17]

showed that TCP throughput is very sensitive to the connection

delay and behaves in a combination of concave and convex

functions. Performance profiling of UDT [9], another widely-

used data transfer protocol in HPN community [6], is con-

ducted in [7], where UDT behaviors with respect to various

application settings and protocol socket options are measured

and analyzed. These measurements and analyses show that

control parameter settings also significantly affect throughput

performance of big data transfer in HPNs. Unfortunately,

such effects are not taken into consideration in conventional

performance prediction methods. Liu et al. conducted similar

research on performance profiling of data transfer methods

in [19]. While profiling-based approaches offer better inter-

pretability and explainability as they provide a deeper insight

into the behaviors of data transfer methods under various cir-

cumstances, they typically incur high overhead. For example,

to obtain a fully-covered transport profile of a given protocol

over a given connection, an exhaustive sweeping of the entire

parameter space may take hours or even days to complete.

B. Learning-Based Performance Prediction
Along with the emergence of HPN technologies and the ac-

cumulation of performance measurements of big data transfer,

machine learning has been increasingly used to investigate and

reveal the behavioral patterns of data transfer protocols and the

underlying host and network infrastructures.
Mirza et al. in [14] considered a set of properties of

historical data transfer over network paths as features to train

machine learning models, and then used various combinations

of subsets of these features for evaluation. Although this

work was focused on predicting TCP performance in shared

networks, some important features in such environments such

as cross traffic were not directly considered when building the

model. Liu et al. employed regression models to explain the

observed performance patterns extracted from the log files of

disk-to-disk wide-area file transfer powered by GridFTP [11].

They further in [12] expanded the feature set and developed

a model selection strategy for performance prediction of file

transfer in wide-area networks. Based on a retraining process,

their approach showed promising prediction accuracy, which

is verified by a comparative evaluation using Globus logs [3].

III. PROBLEM STATEMENT

The throughput performance y of a data transfer over a

dedicated connection is considered as a function f of a vector

of feature variables x involving different segments including

end hosts, network connections, and applications, i.e., y =
f(x). The analytical form of f is typically unknown, and thus

we propose to employ machine learning to build a model to

approximate f based on historical performance measurements

of big data transfer.
More formally, we collect a set of measurements used as

the training dataset T = {(x1, y1), (x2, y2), . . . , (xn, yn)},
where xi (i = 1, 2, . . . , n) is a specific set of values of the

feature vector x that collectively determine the correspond-

ing throughput yi. We aim to estimate f based on T , i.e.,

f̂(xi) ≈ f(xi) such that f̂(xi) is close enough to the “true”

value yi for all training examples in T and can be used to

predict yi with high accuracy given a future arbitrary xi.
The feature vector x in this context is in the form of a

list of observable variables in the three segments of an end-

to-end data transfer path: i) end host configurations such as

CPU speed, RAM size, etc.; ii) connection properties such

as round-trip time (RTT), connection bandwidth, etc.; and

iii) control parameters of data transfer applications such as

socket buffer size, number of data streams, etc. However, there

exist certain unforeseeable and unobservable latent factors

including competing loads (since the end hosts are usually

shared by multiple users), system dynamics on end hosts,
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Fig. 1. Illustration of impact of application-accessible parameters on TCP per-
formance: (a) performance vs. stream number and RTT; and (b) performance
vs. stream number and buffer size.

and instabilities along the network connection, all of which

may also significantly affect the end-to-end data transfer

performance. This is mainly because when the network speed

reaches a certain high rate, as in the case of HPNs, the speed

of (mainly incoming) traffic may keep the end hosts (mainly

the receiver) constantly busy and any perturbation under such

conditions caused by any latent factor may overwhelm the end

host, leading to unpredictable performance.

From the perspective of performance prediction, the above

“abnormal” behaviors may result in large noise in the training

dataset T . Considering the number of observable factors in

x and the complexity and randomness caused by the latent

factors and other unknowns, it is extremely difficult to build a

robust performance predictor for HPN resource management,

which is critical to satisfying bandwidth requirements of user

requests and minimizing resource waste.

Hence, in addition to normal (well-behaving) performance

measurements y, the training dataset T typically also contains

some “corrupted” performance measurements y′ under the

effects of both feature vector x and unobservable factors α,

i.e., y′ = f(x) + f ′(α), where f ′(α) represents the collective

(negative) effects imposed by the latent variables and other

unknowns. In other words, the performance measurements in

T are sampled from a combined set of {y} and {y′}.

Our work has two technical components: i) use a generic

clustering-based method in data preprocessing to eliminate the

“latent-variable-corrupted” data points from the training set;

and ii) employ machine learning methods to build an accurate

performance predictor based on the cleaned training set.

IV. ANALYSIS OF FEATURE VARIABLES AND LATENT

FACTORS

Our performance dataset is collected by measuring the

throughput performance of repeated data transfer tests over

dedicated connections with different application-accessible

parameter values. Many of the properties of a given dedicated

connection such as delay and capacity can be considered as

constants, and we study their impact on transport performance

by running the same set of data transfer tests over different

connections of different delays and capacities. We first ana-

lyze the effects of application-accessible variables, and then

identify the (negative) impact of unobservable latent factors

based on comparative experimental studies.

A. Effects of Application-Accessible Parameters
Here, we focus on three representative control parameters,

i.e., buffer size, number of streams, and round trip time

(RTT), and show their impact on throughput performance.

More comprehensive profiling results are provided in [16], [19]

for both TCP and UDT [9].
The throughput performance measurements with respect

to number of streams and RTT are plotted in Fig. 1(a),

which shows that, over a 10 Gbps dedicated connection, using

multiple streams help achieve better transport performance, es-

pecially for a long connection delay. This observation actually

has motivated the design of many data transfer toolkits and

services such as Globus GridFTP [3] that are being widely

used for big data transfer. The behavior under different RTTs

indicates that achieving satisfactory performance over a long-

haul connection is difficult even for a dedicated channel with

sufficient bandwidth.
The performance measurements in response to buffer size

and number of streams are plotted in Fig. 1(b), which shows

that, over short connections, using a large number of parallel

streams only brings a limited performance gain in comparison

with an appropriately set buffer size. In such cases, they

jointly dominate the throughput performance of TCP: the

performance generally increases as the buffer size increases;

however, as the number of streams increases, the performance

gains from increasing the buffer size are diminishing, which is

probably due to the resource demand of a large stream number

overwhelming the end host system.

B. Effects of Unknowns
The results presented in Sec. IV-A suggest the use of

machine learning methods for performance predication of big

data transfer in HPNs. This is because: i) the performance

patterns are qualitatively consistent and stable across different

connections, e.g., the throughput increases as the buffer size

and number of streams increase and the achievable throughput

decreases as the connection delay increases; and ii) such

patterns cannot be modeled analytically, e.g., the slope of

performance increase with respect to buffer size increase may

vary across different connections, and the optimal number of

data streams may depend on not only the network environ-

ments but also the end host system configurations. Such multi-

dimensional accessible control parameters or features make it

difficult, if not at all possible, to derive an analytical form to

describe their relationship with the throughput performance.
However, during our extensive experimentation, we found

that there may exist certain latent variables that also sig-

nificantly affect the throughput performance. These latent

variables are not easily observable while the data transfer is

being performed due to the data transfer application’s limited

access to the end host system and other unpredictable factors

such as competing loads and system dynamics. Such latent

effects, if not excluded, could make machine learning-based

prediction biased or overfitted.
To show such latent effects, we compare the performance

measurements of the same set of data transfer tests conducted

on two different testbeds: i) a production HPN testbed where
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Fig. 2. TCP performance vs. buffer size without and with latent effects.

the end hosts of data transfer are computing servers shared

by many users (thus competing loads are significant), and ii)

our local testbed where the experimental conditions are strictly

controlled and competing loads from other users are forbidden.

Fig. 2 plots the difference in TCP performance with respect

to buffer size with and without the effects of latent variables.

As shown in Fig. 2(a), TCP throughput almost linearly in-

creases with the increase of buffer size before reaching the

peak. In Fig. 2(b), the maximal achievable TCP performance

follows a similar pattern, i.e., increases linearly as the buffer

size increases till reaching the peak. In addition, there also

appear a non-negligible number of performance measurements

below the maximal ones, which may cause inaccuracy in

performance prediction for bandwidth scheduling in HPNs.

Figs. 2(a) and 2(b) show that in addition to the impact

of data transfer applications and network environments, there

are a certain number of unobservable factors such as system

dynamics and competing loads from “hidden” users that could

undermine the performance. Such latent factors originate from

unknown features and are very difficult to estimate due to their

unpredictable nature and randomness. They may generate a

bias towards the “abnormal” data points during the training

process, leading to inaccurate prediction eventually.

In this work, we propose to use machine learning methods to

eliminate the (negative) effects of such latent variables during

data preprocessing and further build a robust machine learning

model for big data transfer performance prediction in HPNs.

V. ELIMINATION OF LATENT EFFECTS USING CLUSTERING

We first describe our approach to eliminate latent effects

using clustering-based methods, and then compare different

clustering algorithms.

A. Rationale on the Use of Clustering Algorithms
In our prediction problem, the throughput y of a data

transfer over a dedicated connection is determined by a

combined setting of accessible control parameters and network

properties, i.e., the feature vector x, and there is a function

f(x) that maps x to the achievable throughput. The perfor-

mance observations are data points sampled from a certain

Gaussian distribution with mean f(x) and variance σ(x).
For a specific x, the corresponding variance of σ(x) from a

number of repeated measurements should be limited to some

bounded scale. In other words, significant differences observed

in repeated measurements with the same set of parameter

values and network environments may be caused by latent

variables and the corresponding effects must be eliminated for

accurate prediction.
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Fig. 3. UDT performance correspond-
ing to buffer size diverges due to latent
effects.

These effects are also il-

lustrated by UDT perfor-

mance in Fig. 3, where

we fix all other parameters

and only vary the buffer

size. It shows that the UDT

throughput with respect to

buffer size diverges to two

different patterns with and

without latent effects. These

latent factors would seri-

ously impair the quality of

a prediction model. This phenomenon motivates us to use

a clustering-based method to eliminate the measurements

that are observed under the conditions with significant latent

effects. Other research (e.g., [12]) also pointed out the negative

effects of such latent factors and a threshold-based method

is adopted in [12] to eliminate the effects, which, although

simple, may introduce an unexpected bias into the performance

prediction model.
In addition, due to the nature of the problem, f(x) is

considered to be smooth. In other words, with a slight change

to any parameter, e.g., buffer size, the change in the throughput

performance should be bounded. If we have a sufficient num-

ber of data points for different values of control parameters,

we are able to see a smooth pattern of throughput performance,

as shown in Fig. 3.
As stated previously, our dataset is a combination of perfor-

mance observations including both y and y′, which are subject

to different mapping functions. Our goal is to differentiate the

divergence of different performance patterns and rule out the

one that is manifested by the “abnormal” data points and is

thus less frequently observed, as the regular pattern (exhibited

by the normal data points) would appear more frequently in

real-life bandwidth scheduling. This can be achieved by using

clustering-based methods to categorize y and y′ into different

clusters with a certain distance measure such that the data

points within the same cluster are closer to each other and

thus are more likely to be measured under similar conditions

with similar latent effects.

B. Comparison of Different Clustering Algorithms
To choose an appropriate clustering algorithm to separate

“abnormal” data points from normal ones, we compare sev-

eral well-known and commonly-used clustering algorithms, as

shown in Fig. 4. Conventional clustering methods based on Ex-

pectation Maximization (EM) such as K-means and Gaussian

Mixture Model (GMM) aim to maximize the log-likelihood

derived from previous estimates. As shown in Fig. 4, K-means

and GMM perform poorly in differentiating the data points

under different levels of latent effects, since they simply divide

the data points into two groups with a roughly equal radius.

Therefore, we propose to use the Density-Based Spatial Clus-

tering of Applications with Noise (DBSCAN) algorithm [13]

to eliminate the data points with latent effects and hence fa-
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Fig. 4. Comparison of different clustering algorithms (values are normalized).

0 0.2 0.4 0.6 0.8 1
Buffer Size

0

0.2

0.4

0.6

0.8

1

Pe
rf

.

Cluster 0
Cluster 1

(a) Block size: 8955 bytes

0 0.2 0.4 0.6 0.8 1
Buffer Size

0

0.2

0.4

0.6

0.8

1
Pe

rf
.

Cluster 0
Cluster 1

(b) Block size: 26867 bytes

Fig. 5. Clustering results of DBSCAN (values are normalized).

cilitate accurate performance prediction. DBSCAN categorizes

the data points into different clusters based on their densities,

where tightly-packed points are grouped together and those in

low-density regions are classified as outliers. The clustering

results of DBSCAN on the same datasets as used in Fig. 3 and

Fig. 4 are presented in Fig. 5(a) and Fig. 5(b), respectively,

which show the effectiveness of DBSCAN in differentiating

data points with latent effects.

VI. PREDICTION OF BIG DATA TRANSFER PERFORMANCE

IN HIGH-PERFORMANCE NETWORKS

In this section, we first describe a customized loss function

used for building a performance predictor and then present

prediction results using various machine learning models. The

performance predictors are all implemented in Python based

on the scikit-learn library [8].

A. Customized Loss Function
Different from traditional methods of supervised learn-

ing [12], [14] that seek an optimal label for a given feature

vector, for bandwidth scheduling, we aim to build a model

that provides a loosened prediction with a reasonable range.

Together with DBSCAN-based data preprocessing, which

eliminates negative latent effects, we build our performance

predictor based on a customized loss function, as motivated by

the domain knowledge of HPN management that requires the

reserved bandwidth over a dedicated connection to match the

bandwidth requirement of a data transfer request with minimal

waste. Therefore, the optimal predicted transfer performance

ŷ = f̂(xi) should lie within the range [yi, εyi], where ε ≥
1 is a small tunable positive number and yi is the ground

truth of the achievable performance with feature vector xi.

The predicted value should be slightly higher than what a data

transfer can utilize to satisfy the request and also minimize

the waste. Inspired by the ε-insensitive loss used by Support

Vector Regression (SVR) and other work [18], we customize

0 εε− 0 ε

Fig. 6. Loss functions: ε-intensive loss [18] (left), the customized loss (right).

the ε-insensitive loss function in Fig. 6 (left) by restricting the

tolerable errors to be positive only. As shown in Fig. 6 (right)

the optimal value is parameterized by an error tolerance ε and

our objective is to minimize the following loss

L(θ, ε) =
n∑

i=1

{
max(yi−f̂θ(xi), 0)+max(f̂θ(xi)−ε·yi, 0)

}
,

(1)

where the loss L(θ, ε) is 0 if the prediction f̂θ(xi) is larger

than the observed value yi but is within the tolerable range

bounded by ε; otherwise, L(θ, ε) is the distance between

f̂θ(xi) and the tolerable loss range of ε.

B. Evaluation Metric
We define a domain-oriented performance evaluation met-

ric, denoted by γ, similar to the Mean Absolute Percentage

Error (MAPE), which is a commonly-used accuracy metric

in statistics. Unlike MAPE that counts the absolute error,

γ counts only the positive errors that fall out of the range

governed by ε as in Eq. 1. This Customized Mean Absolute

Percentage Error (CMAPE) is defined as γ = 1
nL(θ, ε) =

1
n

∑n
i=1

{
max(yi−f̂θ(xi), 0)+max(f̂θ(xi)−ε·yi, 0)

}
, ε ≥ 1,

where f̂θ(xi) is the predicted value given feature xi, yi is

the corresponding ground truth, n is the total number of

test cases. A proper bandwidth allocation should satisfy the

user requirement with only an inevitable (as governed by ε)
amount of waste. In addition to γ, we also count the Effective

Prediction Percentage (EPP, denoted by β) among all test

cases, i.e., β = 1
n

∑n
i=1 I{yi ≤ f̂θ(xi) ≤ ε · yi}, where I(ψ)

is an indicator function that is equal to 1 if ψ is true, and 0,

otherwise.

C. Models in Comparison
We compare four models [15] with the customized loss

function defined in Eq. 1: i) linear models as represented by

Ridge Regression (RR); ii) non-linear models as represented

by Support Vector Regression (SVR); iii) Neural Networks

(NN), where we use a standard three-layer neural network with

ReLU as the activation function; and iv) ensemble models as

represented by Random Forest Regression (RFR).

D. Dataset
Our dataset contains about 100,000 records of throughput

performance measurements that are collected from big data

transfer tests conducted over local back-to-back connections

and in several other HPNs managed by different institutions.

E. Results
Our performance evaluation includes two parts: i) compare

the prediction results of SVR on the original dataset with and



without the DBSCAN-based preprocessing as introduced in

Sec. V-B; and ii) compare the performance of the four models

in Sec. VI-C and select the best one with data preprocessing.

1) SVR Prediction Accuracy With and Without Preprocessing
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Fig. 7. Comparison of SVR pre-
diction accuracy with and without
DBSCAN-based preprocessing.

We first run the DBSCAN-

based preprocessing to filter

out data points that are heav-

ily affected by latent fac-

tors and then perform pre-

diction using SVR. This pro-

cess is repeated without such

preprocessing for comparison.

As shown in Fig. 7, the ac-

curacy of SVR-based perfor-

mance prediction based on

the cleaned dataset consistently

outperforms the prediction ac-

curacy based on the original dataset. Note that the dataset used

in these tests is collected from a production HPN, where high-

end servers used as the sender/receiver of data transfer tests

are concurrently used by many other scientists to run their

scientific computing jobs.

2) Prediction Accuracy of Various Models
We use the filtered dataset to compare the prediction

accuracy of various models as mentioned in Sec. VI-C in

terms of different performance criteria including Root Mean

Square Error (RMSE), Mean Absolute Error (MAE), EPP

(i.e., β), and CMAPE (i.e., γ). As shown in Fig. 8, the

linear RR model performs poorly for all four criteria due to

the limited richness of its hypothesis function set. The NN

model performs even worse than RR for RMSE and MAE,

which indicates extensive tuning or more network layers (thus

higher overhead) are needed. RFR and SVR perform almost

equally well for RMSE and MAE. SVR has the best overall

performance since it outperforms all other models for both of

the metrics defined for bandwidth scheduling, i.e., CMAPE

and EPP. Therefore, we choose SVR with the customized loss

function for performance prediction in HPNs.

VII. CONCLUSION

In this work, we studied the prediction problem of big data

transfer performance in HPNs. We first identified the latent

factors and analyzed their negative impact on performance

prediction based on comparative experiments. We then pro-

posed a clustering-based method to eliminate such negative

impact and developed a performance predictor using various

machine learning algorithms with a domain-guided customized

loss function. Experimental results show that the SVR-based

predictor achieved significantly higher accuracy in comparison

with several other state-of-the-art methods in terms of various

performance evaluation criteria.

We plan to investigate other methods for latent effect elim-

ination and refine our models accordingly to further improve

prediction accuracy. It is also of our interest to establish a

performance bound of the selected machine learning model

for data transfer performance prediction in HPNs.

RR RFR SVR NN
Models

0

0.25

0.50

0.75

1.00

1.25

1.50

R
M

SE

(a) RMSE

RR RFR SVR NN
Models

0

0.25

0.50

0.75

1.00

1.25

1.50

R
M

SE

(b) MAE

RR RFR SVR NN
Models

0

1

2

3

4

C
M

A
PE

(c) CMAPE (γ)

RR RFR SVR NN
Models

0

0.05

0.10

0.15

0.20

0.25

0.30

E
PP

better

(d) EPP (β)

Fig. 8. Performance comparison of various models in terms of different
metrics.
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