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Abstract—Gross primary production (GPP) measures the pho-
tosynthetic update of carbon by terrestrial ecosystems. Accu-
rately quantifying and simulating GPP and its extremes remains
a challenge in global carbon cycle sciences. Here, we evaluate
GPP extremes in a coupled biogeochemistry (BGC) simulation
by the Department of Energy’s Energy Exascale Earth System
Model (E3SMv1.1) using the Generalized Extreme Value (GEV)
distribution statistical model. The simulation is evaluated against
the Global Bio-Atmosphere Flux (GBAF) data. Temporal trends
and ENSO dependence are also investigated by using GEV
models where time and the Niño3.4 index are introduced as linear
covariates. The E3SMv1.1 model simulation generally predicts
stronger negative and positive GPP extremes as compared to
GBAF data. It also tends to simulate stronger temporal trends
of GPP extremes than GBAF data. While negative GPP extreme
trends are not significant in either E3SM or GBAF, positive
GPP trends are statistically significant over several regions
only for the E3SMv1.1 model simulation. ENSO dependence
is generally stronger in the E3SMv1.1 model simulation, but
ENSO dependence is found not to be significant for the time
period analyzed (1980-2006) to match GBAF data. For the longer
simulation period of 1900-2006, ENSO dependence is found to
be statistically significant over Amazon, the maritime continent
and Northern Australia for both negative and positive extremes.

Index Terms—carbon extremes, GEV statistical model, terres-
trial ecosystem, carbon cycle

I. INTRODUCTION

Continuous increases in the concentrations of radiatively

active greenhouse gases in the atmosphere, especially carbon

dioxide (CO2) caused by human activities, are greatly altering

the Earth’s climate [1] and significantly enhancing climate

extremes [2], [3], [4]. Furthermore, Baker et al. [5] suggested

that rising atmospheric CO2 concentration ([CO2]) may lead

to an increase in extreme weather and climate events even if

the increase in average global temperature remains at a certain

level.

The terrestrial ecosystem plays an important role in global

carbon cycle and dynamics as it is the third largest carbon

pool right after the ocean and geological pools [6]. More-

over, it generally uptakes atmospheric CO2 through vegetation

photosynthesis. This part of carbon is then cycled through

ecosystems and can be released back to the atmosphere

by autotrophic (plant) and heterotrophic (soil microbial and

animal) respiration and additional disturbances [7]. However

these processes are complex and highly uncertain [6] and could

lead to large biases in projections of future CO2 concentration

[8].

The terrestrial ecosystem usually is a net carbon sink.

Studies show that approximately 25–30% of anthropogenic

CO2 emission have been uptaken by it for the past 50

years since 1958 [6] [9]. Gross primary production (GPP)

measures the photosynthetic uptake of CO2 by the terrestrial

ecosystem and is strongly controlled by climate including

temperature, precipitation, and radiation. Moreover climate

extremes including drought, flood, heat wave and cold spell

have significant impacts on the carbon uptake capability of the

terrestrial ecosystem. For example, The 2010 Amazon drought

[10] killed tremendous trees and greatly reduced carbon uptake

by the vegetation. It caused the release of nearly 500 million

tons of carbon (1.8 billion tons of carbon dioxide) into the

atmosphere in Amazon during the event [11].

Therefore, better understanding the characteristics and

trends of carbon (like GPP) extremes is of great importance for

us to study complex biogeochemical feedbacks to climate for

accurately predicting the effects and extent of climate change

[1]. It could also improve representations of the interactions

between climate and the carbon cycle in Earth System Models

(ESMs) [3].

Here, we evaluate carbon extremes in a coupled climate-

carbon simulation by the Department of Energy (DOE)-

Energy Exascale Earth System Model (E3SM). We apply

the Generalized Extreme Value (GEV) statistical model on
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the monthly GPP outputs from the simulation. Generalized

Extreme Value (GEV) distribution is a family of continuous

and asymptotic limit probability distributions for maxima or

minima derived from a sequence of random variables with a

predefined fixed block size. It has been widely used in studying

climate extremes, e.g. precipitation, temperature, wind etc.

[12]–[18]. But, there are only a few studies that use the

GEV modeling approach on carbon extremes. For example,

Sippel et al. [19], [20] applied the GEV model to examine the

discrepancies of GPP extremes in the bias-corrected ensemble

simulations and observations. Some studies [21], [22] used

GEV to fit the normalized difference vegetation index (NDVI)

data from satellite remote sensing. NDVI generally is a good

proxy of GPP and highly correlated with it. Previous studies

of carbon extremes largely use percentile-based definitions of

extremes [23], [3], [24]. GEV models of extremes provide

a more comprehensive examination of extremes allowing for

extrapolation of extremes and computation of return period of

extreme events of different magnitudes.

We focus our study on (1) characterizing the stationary

and non-stationary statistics of GPP extremes using GEV;

and (2) quantifying the dependence of GPP extremes on an

important large scale climate variability (i.e. El Niño-Southern

Oscillation (ENSO)).

II. MODEL EXPERIMENTS, DATA AND METHODOLOGY

A. E3SM model

The DOE E3SM model is an earth system model that

can simulate states of the coupled climate containing the

atmosphere, ocean, cryosphere, land surface, and biogeochem-

istry (BGC). Its version 1.0 was used to simulate the full

suite of Diagnosis, Evaluation, and Characterization of Klima

(DECK) experiments of the sixth phase of coupled model

intercomparison project (CMIP6) [25], which was described

by [26]. Burrows et al. [27] introduced the E3SMv1.1-BGC

and described the coupled biogeochemical simulations using

it. Compared to the E3SMv1, the E3SMv1.1-BGC includes

some important bug fixes and major features of the carbon

cycle and biogeochemical processes including a land model

with prognostic carbon, nitrogen, and phosphorus in multiple

pools and nutrient regulations on photosynthesis. Beside the

above, it also includes an active, coupled ocean and sea ice

biogeochemistry model based on the Biogeochemical Elemen-

tal Cycling (BEC) model [28], [29]

Here, we analyze the monthly GPP outputs for the period

of 1900-2006 from the historical simulation by the coupled

E3SMv1.1-BGC model. The simulation accounted for the

effects of the atmospheric CO2 both on the radiative and

biogeochemical processes and defined the atmospheric CO2

concentration by its contemporary trajectory [8]. Other forc-

ings including nitrogen deposition, land use and land cover

changes and aerosols are included in the simulation too. The

coupled BGC simulation by the E3SMv1.1-BGC is hereafter

referred to as the E3SM-BGC.

B. Data

The Global Bio-Atmosphere Flux (GBAF) data, also known

as FLUXET-MTE, are global estimates of carbon and water

fluxes that empirically upscale FLUXNET eddy covariance

measurements using the multi-tree model (MTE) method and

the LundPotsdamJena Managed Land (LPJmL) model outputs

[30], [31]. We used the GBAF monthly GPP product in a

spatial resolution of 0.5 by 0.5 degree from 1982 to 2008 to

evaluate GPP extremes in the E3SM-BGC simulation.

C. GEV

We apply the generalized extreme value (GEV) distribution

statistical models to quantify GPP extremes and their non-

stationarity. To identify temporal trends in GPP extremes we

use time as a covariate in a GEV model. Additionally, we

quantify the impact of ENSO on carbon extremes by using

the Niño3.4 index in another GEV model. Here, we use the

block maximum/minimum approach to model extremes using

GEV. We fit GEV distributions to either annual (block size of

one year) maximum (or minimum) GPP anomalies of monthly

averages at each grid point using the R package ismev [32].

Here, the anomalies at each grid point refer to the remainder

after removing the annual cycle in monthly average GPP there.

Similar covariate-based block maxima/minima and peak over

threshold approaches using GEV are now commonly applied

to evaluate climate extremes and their non-stationarity [13]–

[15], [17].

Extreme value theory postulates that the block (defined as

non-overlapping segments of equal size of the data record,

for e.g. 1yr, 5yr, etc.) maximum or block minimum of inde-

pendently and identically distributed samples follow a family

of three parameter GEV distribution, GEV(μ, σ, ξ), which is

represented as:

G(z) = exp

{
−[1 + ξ(

z − μ

σ
)]−1/ξ

}
(1)

where μ, σ and ξ represent the location, scale and shape

parameter respectively of the distribution. For ξ = 0, the

function is computed as the limit of the equation as ξ → 0
[33]. Return periods of extremes can be easily from the GEV

parameters by inverting the equation [33]. Here, we compute

the parameters of the GEV(μ, σ, ξ) model by the maximum

log-likelihood method, which maximizes the probability of

the occurrence of each of the used block maximum (or

minimum) values in G(z). The sampling frequency of data

for estimating the GEV is chosen based on the availability

of data used. For the GBAF data, monthly averages of GPP

for the period of 1982-2008 were available. So, we used

annual maxima/minima of monthly anomalies for estimating

GEVs. We also quantify extremes in the E3SM simulations

in a similar way for the period of 1980-2006 to evaluate the

simulations against the GBAF data.

A GEV model is fit to data at each grid point. The base GEV

model with no covariates is termed as the BaseGEV model,

and is referred as such hereafter. A Kolmogrov-Smirnov (KS)

goodness of fit test is conducted at each grid point to evaluate



if a significant discrepancy exists between the fitted data

and the GEV model representing the data. Significant auto-

correlation may be present in annual maxima/minima of GPP

data which would imply that the data is not independent as

assumed for the GEV fit, which may result in a poor fit [18].

We do not evaluate the impact of auto-correlation on GEV

fits to GPP data here, which will be a subject of future study.

But, previous studies indicate that presence of auto-correlation

does not invalidate the use of GEV to study block extremes

of climate variables like temperature and precipitation, and it

also does not always lead to a poor GEV fit [17], [18].

Non-stationary in GPP extremes here is captured by a linear

time-dependent (or dependent on some other index) parameter

in μ:

μ = μ0 + αt·t (2)

We thus modify the BaseGEV model to include a time

index as a covariate in the location parameter term, where

t is the year (ranging from 1982 to 2008 for the GBAF data,

for example), and αt represents the linear rate of change of

the location parameter with time. This additional GEV model

parameter in GEV (μ0 + αt·t, σ, ξ), is also computed by the

maximum log-likelihood method along with the other model

parameters. We call this new GEV model the timeGEV model,

hereafter. Non-linear trends as well as trends in the σ and ξ
will be a subject of future studies and are not investigated

here. Previous studies have found significant temporal trends

in σ for climate variables like temperature and precipitation

[18].

Likewise, we modify the BaseGEV model to include the

Niño3.4 index as a linear covarite in the location parameter

to quantify the impact of ENSO on GPP extremes, μ = μ0 +
αENSO·Niño3.4(t), where αENSO represents the linear rate

of change of the location parameter with the Niño3.4 index,

and Niño3.4(t) represents the annual average Niño3.4 index

at year, t. We refer to this GEV model as the ENSOGEV.

We use the likelihood-ratio test to establish if the timeGEV

and the ENSOGEV models are significantly different from

the BaseGEV model - that is, if the new co-variate terms αt

and αENSO are statistically different from zero. The deviance

statistic for the likelihood test is defined as the difference in

the maximized log-likelihoods between a new GEV model and

the base GEV model [33], and is computed at each grid point.

The null hypothesis that the new GEV model and the base

GEV model are statistically equivalent is rejected if the p-

value of the deviance statistic is less than a a given critical

value (c).
Since we conduct the likelihood ratio test at each grid point,

we are conducting multiple hypothesis tests (N tests, one for

each grid point) simultaneously. The critical value of a test, c,
is generally the given significance level of testing (β, say 0.05),

but only when we test a single hypothesis test. The significance

level that governs the β·N tests would yield false rejections

of the null hypothesis, just by chance, if N hypothesis tests

were conducted [34]. Thus, the critical value needs to be

adjusted to account for multiple hypothesis tests and control

for erroneously rejecting true null hypotheses. This is achieved

here by using the false discovery rate (FDR) approach [34],

[35] similar to some previous studies [17], [18]. The FDR

approach states that for a given significance level (β), the

critical value should be adjusted when conducting multiple

hypothesis tests simultaneously as follows:

cFDR = max
i=1,2,...,N

{pi : pi ≤ β(
j

N
)} (3)

where, pj represents the p-value of the deviance statistic for

grid-point i, and N is the total number of grid points.

Thus, a null hypothesis for a grid point under the FDR

approach at a significance level of β is now rejected only if

the p-value of the deviance statistic is less than cFDR instead

of β. Also, it should be noted that using the FDR approach

also automatically tests for field significance [34]. That is,

even a single grid point rejecting the null hypothesis using

cFDR implies that the global null hypothesis - that the local

null hypothesis is true for all grid points - is rejected too [34],

[35].

III. RESULTS AND DISCUSSIONS

A. GPP Extremes
Fig. 1 a and b show the geographic distribution of the GEV

location parameters (μ) for the BaseGEV model derived from

the annual block minima of monthly GPP anomalies for the

E3SM-BGC simulation for the period of 1980-2006 and the

GBAF observation for the period of 1982-2008 respectively.

White areas over land denotes grid points where the GEV fit

did not converge or where the KS goodness of fit test indicated

a poor GEV model fit. Negative values of GPP anomalies indi-

cate GPP reduction and imply carbon loss to the atmosphere,

thus, the annual block minima of negative anomalies represents

negative GPP extremes. Larger magnitude of negative values

of μ thus indicate stronger extreme GPP loss.

The model simulated negative GPP extremes are generally

very severe in the tropical and subtropical areas where the

GBAF data show strongest GPP loss extremes too, includ-

ing northeastern and eastern Amazon, U.S. Midwest, central

America, western central Africa, southern Africa, India, south-

ern Asia, northern China and eastern coast of Australia. While

in Canada, Eurasia and Northern Africa the model simulation

negative GPP extremes are weaker (magnitudes less than 0.8

gCm2day1) due to the lower average GPP. Though the overall

spatial pattern is similar between the model simulated and

GBAF μ, model simulated μ is much larger than that of GBAF,

nearly globally, by as large as a factor of three or larger in

some regions (Fig. 1b). The model performs better at regions

with weak negative GPP extremes with similar magnitudes as

the GBAF data, for example, over central and Northern Asia

and western coast of South America.

Zscheischler et al. [23] identified spatiotemporal contiguous

extreme anomalies in four global monthly GPP data sets

including FLUXNET-MTE (GBAF), MOD17+, LPJmL and

OCN from 1982 to 2011. The GPP extremes are defined by



a certain percentile (larger than the 90th) on the absolute

values of the anomalies and then are merged into an extreme

events using a contiguous algorithm. Our results are in good

agreement with theirs as regards the global pattern of the hot

spot of negative GPP extremes. The magnitudes of negative

GPP extremes in the FLUXNET-MET(GBAF) are 3 to 4 times

less than those in the model simulations of LPJmL and OCN

and a little bit less than those in the MODIS GPP data.

The strong negative GPP extremes in northeastern Amazon in

the E3SM-BGC simulation are also observed in the MODIS

GPP data. Moreover Zscheischler et al. [3] applied the same

method of [23] to the GPP and net ecosystem production

(NEP) outputs of the CMIP5 multi-model ensemble. The

spatial pattern of negative GPP extremes in the E3SM-BGC

simulation agrees very well with that of CMIP5 multi-model

ensemble.

Chen et al. [24] defined extremes as the negative 5th per-

centile of GPP anomalies and further combined the extremes

into individual extreme events using a three-dimensional con-

tiguous algorithm. Then they applied the method on monthly

GPP outputs from 1982-2015 simulated by 12 process-based

models in the TRENDY project to study the spatiotemporal

patterns of negative GPP extremes in China. Their results

showed that in the TRENDY models, hotspots of negative

GPP extremes majorly happened in northern China which is

consistent with our results. They attributed the negative GPP

extremes to frequent drought occurring in northern China.

The spatial pattern of location parameters of positive GPP

extremes is very similar to that of negative extremes, both

from the GBAF data as well as E3SM-BGC simulation (Fig.

2 a,b), with stronger extremes occurring over eastern Amazon,

U.S. Midwest, central America, western central Africa, India,

southern Asia and eastern coast of Australia. Again, similar

to negative GPP extremes, model simulated positive GPP

extremes are much stronger that those of the GBAF data over

regions with strong extremes by about a factor of three or

larger. While over regions with weak extremes the E3SM

simulation matches well with the GBAF data, for example

over North America, central Asia, northern Europe and eastern

coast of South America.

Compared with negative GPP extremes, the magnitudes of

μ of positive GPP extremes are generally 50-70% less than

those of negative GPP extremes both for the E3SM-BGC

simulation and GBAF data. The asymmetry between positive

and negative GPP extremes were also seen in the FLUXNET-

MTE, MOD17+, LPJmL and OCN data sets [23] and the

CMIP5 model ensemble [3].

B. Non-stationarity of GPP extremes: Trends
Fig. 3 shows the coefficient αt representing the linear

temporal trend in the location parameters as estimated for the

timeGEV model of negative GPP anomalies for the E3SM-

BGC simulation (over the period of 1982-2008) and GBAF

data (1980-2006). Positive trends indicate a decrease in the

intensity of negative GPP extremes. Trends in the E3SM-

BGC simulation are generally stronger than the GBAF data.

(a) E3SM-BGC: Negative GPP Extremes

(b) GBAF: Negative GPP Extremes

Fig. 1: Geographic distribution of the location parameter of

GEV fits to annual block minima of monthly GPP anomalies

(units: gCm−2day−1) of (a) the E3SM-BGC simulation (1980-

2006) and (b) the observational data product GBAF during

1982-2008). White areas over land denotes grid points where

a KS goodness of fit test indicates a poor GEV model fit.

However, it should be noted that almost no land grid points

show statistical significance at the 95% confidence level based

on the FDR approach of multiple hypothesis tests for both the

model simulation and GBAF data.

Fig. 4 shows the trend, αt, in μ for positive GPP extremes.

There are statistically significant (at the 95% confidence level)

large positive trends over the Amazon, western Africa, Eurasia,

southeastern China, southeastern Australia and the maritime

continent in the E3SM-BGC simulation (Fig.4). The strongest

trends in the GBAF data are observed over western Africa,

southern European, India and Southeastern China, similar to

the E3SM simulation, but these observed trends are much

weaker and not statistically significant.

In regions of Amazon, western Africa, Eurasia, and In-

donesia there are strong positive trends both for negative

and positive GPP extremes and the trends for positive GPP

extremes are generally larger than those for negative extremes.

It indicates that in these regions CO2 fertilization plays a

important role in the increases in positive GPP extremes. In



(a) E3SM-BGC: Positive GPP Extremes

(b) GBAF: Positive GPP Extremes

Fig. 2: Same as Fig. 1, except for annual block maxima.

southern Africa, western and central U.S. there are strong

negative trends for negative GPP extremes while weak positive

trends for positive GPP extremes. However there are no ap-

parent differences in the trends between negative and positive

GPP extremes in the GBAF data.

There are some studies on the trend of GPP extremes, e.g.

[3], in which they analyzed the trends of global averaged

negative and positive GPP extremes. But here we evaluate the

trends of negative and positive GPP extremes in each grid cell

and examine their global geographical distribution patterns.

C. ENSO impact on GPP extremes
Fig. 5 and Fig. 6 show the ENSO-dependent component

αENSO of μ of the respective ENSOGEV models for annual

maxima and minima. For negative GPP extremes, ENSO

dependence in the E3SM-BGC simulation is generally larger

than the GBAF data. However, this ENSO dependence is

found not to be statistically significant almost everywhere.

Interestingly, ENSO dependence is found to be of opposite

sign in the Amazon region, central U.S., southern Asia (Fig. 5)

between the model simulation and GBAF data. While the

model results indicate that stronger ENSO events lead to more

severe negative GPP extremes in these regions, the GBAF

results show the opposite effect.

(a) E3SM-BGC: Trend in Negative GPP Extremes

(b) GBAF: Trend in Negative GPP Extremes

Fig. 3: Geographic distribution of the linear trend, αt, in

the GEV location parameter for timeGEV model of annual

block minima (units: gCm−2day−1year−1) of (a) the E3SM-

BGC simulation (1980-2006) and (b) the GBAF data during

1982-2008. Hatching represents regions where timeGEV is

statistically different than BaseGEV at the 95% confidence

level (based on the log-likelihood test and using the false

discovery rate approach for establishing statistical significance.

Please see main text’s Section IIc.)

Since the GBAF GPP dataset is a upscaling product in

which it is hard to account for effects of disturbance and/or site

history and lagged environmental effects [30], it may cause

the discrepancy in the ENSO dependence for the negative

GPP extremes between the E3SM-BGC and GBAF data. In

the future, we will use the MODIS and other GPP products

and long-term site observations to study the uncertainty in the

observations.

For the positive GPP extremes (Fig. 6), again, ENSO

dependence is found not be statistically significant almost

everywhere for both the E3SM-BGC simulation and GBAD

data. Nonetheless, we note that there are large negative trends

in northeastern and eastern Amazon, India, southeast Asia,

northern Australia and southern maritime continent; and large

positive trends in central U.S. and southeastern South America.

Compared with the model results, the magnitudes of the trends



(a) E3SM-BGC: Trend in Positive GPP Extremes

(b) GBAF: Trend in Positive GPP Extremes

Fig. 4: Same as Fig. 3, but for annual block maxima.

of the GBAF data are smaller. There are slightly positive

trends in northeastern and eastern Amazon, southern Asia, and

northern Australia.

There are only a few ENSO events from the 1980s to

the 2000s. This small sample size may not be enough to

establish robust statistics of the impact of ENSO on carbon

extremes. When an ENSOGEV model was fit to annual block

maxima/minima for the longer period of 1900-2006 of the

E3SM-BGC simulation, statistically significant (at the 95%

confidence level) ENSO dependence was noted over parts of

Amazon region, maritime continent and Northern Australia

with similar magnitudes (not shown here). But, given the

limited time period of observational GPP data, that result will

be difficult to validate. In the future, we would extend this

analysis to other related coupled BGC experiments and CMIP6

results to identify and attribute the plausible pathways of the

noted ENSO dependence as well as impact of other modes of

variability on carbon extremes.

Many studies have shown that ENSO generally causes

climate extremes and eventually will affect carbon cycle and

lead to carbon extreme events [36], [37]. To our knowledge,

this is first study of linking the carbon extremes and ENSO

indices under the GEV statistical model to study the ENSO

impacts on carbon extremes.

(a) E3SM-BGC: ENSO dependence of Negative GPP Extremes

(b) GBAF: ENSO dependence of Negative GPP Extremes

Fig. 5: Geographic distribution of the ENSO-dependent com-

ponent (αENSO) of the location parameter of the ENSOGEV

model of annual block minima (units: gCm−2day−1yr−1 per

unit standard deviation of Niño3.4 index) of (a) the E3SM-

BGC (1980-2006) and (b) the GBAF data during 1982-2008.

Hatching represents regions where ENSOGEV is statistically

different than BaseGEV at the 95% confidence level (based

on the log-likelihood test and using the false discovery rate

approach for establishing statistical significance. Please see

main text’s Section IIc.)

IV. CONCLUSIONS

To evaluate the simulation of carbon extremes by the

E3SMv1.1-BGC model, we estimate the GEV statistical mod-

els (BaseGEV, timeGEV and ENSOGEV) of extremes in the

simulated monthly GPP for the period of 1980-2006 and

monthly observational GPP dataset (GBAF) ranging from

1982-2008. We evaluate the stationary component of GPP

extremes as well as their trends and the impact of a large

scale mode of climate variability, ENSO, on them. These GEV

models are fit to annual maxima/minima of monthly GPP

anomalies. Our results show that:

1) The magnitudes of location parameters, and thus GPP

extremes, from the E3SM-BGC simulation are larger (a

factor of three to four in some regions) than those from



(a) E3SM-BGC: ENSO dependence of Positive GPP Extremes

(b) GBAF: ENSO dependence of Positive GPP Extremes

Fig. 6: Same as Fig. 5, except for annual block maxima.

the GBAF data for both positive and negative extremes.

2) the negative GPP extremes are generally more pro-

nounced than the positive extremes both in the E3SM-

BGC simulation and GBAF data.

3) The E3SM-BGC simulated positive GPP extremes ex-

hibit significant increasing trends in some regions (Ama-

zon, western Africa, Eurasia, southeastern China, south

eastern Australia and the maritime continent). These

trends are stronger than observed and no regions exhibit

a statistically significant trend in the GBAF data.

4) Large positive trends in the simulated negative GPP

extremes are also noted over large areas that are stronger

than that exhibited by the GBAF data. But, these trends

are not significant either in the E3SM-BGC simulation

or GBAF data.

5) For the period of 1980-2006, the simulated GPP negative

and positive extremes generally show stronger depen-

dence to ENSO than the GBAF data. However, this

ENSO dependence is also not significant either in the

E3SM-BGC simulation or GBAF data.

6) However, for the simulated period of 1900-2006, where

the sample size is larger, the E3SM-BGC simulation

exhibits statistically significant ENSO dependence of

negative and positive extremes over Amazon, maritime

continent and northern Australia.
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