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ABSTRACT
In this report, we evaluate a novel method for modeling the spread of COVID-19 pandemic. In
this new approach we leverage methods and algorithms developed for fully-kinetic plasma
physics simulations using Particle-In-Cell (PIC) Direct Simulation Monte-Carlo (DSMC) models.
This approach then leverages Sandia-unique simulation capabilities, and High-Performance
Computer (HPC) resources and expertise in particle-particle interactions using stochastic
processes. Our hypothesis is that this approach would provide a more efficient platform with
assumptions based on physical data that would then enable the user to assess the impact of
mitigation strategies and forecast different phases of infection. This work addresses key scientific
questions related to the assumptions this new approach must make to model the interactions of
people using algorithms typically used for modeling particle interactions in physics codes (kinetic
plasma, gas dynamics). The model developed uses rational/physical inputs while also providing
critical insight; the results could serve as inputs to, or alternatives for, existing models. The model
work presented was developed over a four-week time frame, thus far showing promising results
and many ways in which this model/approach could be improved. This work is aimed at
providing a proof-of-concept for this new pandemic modeling approach, which could have an
immediate impact on the COVID-19 pandemic modeling, while laying a basis to model future
pandemic scenarios in a manner that is timely and efficient. Additionally, this new approach
provides new visualization tools to help epidemiologists comprehend and articulate the spread of
this and other pandemics as well as a more general tool to determine key parameters needed in
order to better predict pandemic modeling in the future. In the report we describe our model for
pandemic modeling, apply this model to COVID-19 data for New York City (NYC), assess model
sensitivities to different inputs and parameters and , finally, propagate the model forward under
different conditions to assess the effects of mitigation and associated timing. Finally, our approach
will help understand the role of asymptomatic cases, and could be extended to elucidate the role
of recovered individuals in the second round of the infection, which is currently being ignored.
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1. INTRODUCTION

The purpose of this report is to determine if the Direct Simulation Monte Carlo (DSMC) method
can be used to model dynamics and characteristics of the COVID-19 pandemic. The many
unknowns about the COVID-19 pandemic, and the lack and/or lag of test data, are a challenge for
making predictions with models and make policy decisions uncertain and difficult. Existing
pandemic/epidemic tools were used to model COVID-19[4], as well as to inform government
officials on public health policy [see W. H. briefing from 3/30/2020]. The aforementioned model
is constantly being updated as new information becomes available, is informed by infection
characteristics based on previous epidemics or pandemics and assumes a general trend, or curve,
for the pandemic evolution. This, and most other modeling approaches, face significant
challenges that arise from test data that carries a number of uncertainties, gaps, and biases.
Calibrating a model with data for which there is little to no control over data acquisition practices
can result in inherent biases. Given the novelty and all the other challenges associated with the
COVID-19 pandemic, widespread testing remains elusive and 'good' data collection practices
have suffered, likely due to other priorities/demands placed on the health care system.

The trends and characteristics of the COVID-19 pandemic appear to be qualitatively well
captured in a nation-wide study completed in 2006 for a hypothetical pandemic but rooted in the
H5N1 characteristics [IA]. This study was carried out post-H5N1 and evaluates the effects that a
pandemic could have on the US population as well as the benefits of different mitigation
strategies and immunization. In that study, the sensitivity of pandemic propagation was assessed
assuming a range of values for the so-called R, value (average number of people infected by one
person). Many other modeling approaches exist that could help provide answers, or reduce
uncertainties about, COVID-19. These modeling approaches range from purely statistical to
mechanistic (such as SEIR (Susceptible Exposed Infected Recovered) modeling PI ),
Agent-Based Models [3], Individual-Level-Models [13] , etc.). Modeling approaches similar to
that used by [4] rely on historical and/or early pandemic data to make projections/predictions, the
accuracy of which is clearly affected by lagged or skewed test data. Although the study presented
in [IA], identifies the R, value as a sensitive parameter, Individual-Level Model (ILM) predictions
for this value can be significantly different. It is, therefore, reasonable to expect that local
variations of this value based on density and behaviors of a population may significantly affect the
evolution of a pandemic. Higher-fidelity Agent Based Models use literal inputs, use minimal
assumptions, but can require massive computational resources such that simulation throughput
becomes a challenge. Of course, each of these modeling tools provides a different level of fidelity
with high fidelity models requiring larger efforts in terms of data acquisition and modeling
resources but providing 'numbers' (approaching quantitative), and lower fidelity making a
significant number of assumptions but providing 'trends' relatively quickly.

The modeling approach presented in this report uses the DSMC algorithm to model individual
interactions for a large population of particles (representing individual people). DSMC is typically
employed for kinetic plasma physics and rarefied gas dynamics simulations, where the number of
particles (in this case representing gas particles) can easily number in the billions. As such, these
algorithms are computationally efficient, massively parallel, and run on state-of-the-art HPC
platforms, at scales that easily resolve large populations of people for modeling of COVID-19.
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Our new approach is to use existing infrastructure for Direct Simulation Monte-Carlo (DSMC)
simulations to model the spread of pandemics with higher fidelity (as compared to[4] & [3]). In
DSMC, input for interactions between particles (representing people) are physical data for the
interaction in question, (a particle diameter in gas dynamics, or an interaction frequency for
people). The simulation propagates a population of people in time, and captures events such as
the passing of infection and progression of an individual's disease in a statistically accurate way
with respect to the input data. In addition, other factors in the simulation are considered such as
density gradients, disturbances and dynamically evolving populations such that the initial
assumptions are minimal and key parameters, such as local Ro value, are simulation results.
Making the transition from gas particles to people is primarily a matter of semantics. Then
capturing sufficient demographic traits and using physical parameters and disease progression
characteristics are key to model disease spread with DSMC.

The report is arranged as follows: In section , existing modeling approaches are briefly discussed
with some emphasis in SEIR (readily available from web). In Section 3, COVID-19
characteristics that are key for this work are outlined. Section 4 describes the model and how
COVID-19 characteristics are included as well as showing model validation against NYC data.
This section is completed by assessing model sensitivities to assumptions in terms of initial
conditions and details of interactions among different populations in the pandemic. In section 5
we present model predictions obtained by looking at hypothetical 'what if' scenarios. Lastly, in
Section b, we conclude by briefly discussing future work and drawing some conclusions about the
modeling tool developed and the potential significance of results obtained.

2. MODELING METHODS

2.1. SEIR Pandemic Modeling

Consider the use of an SEIR model and the so-called basic reproduction number, R,, for modeling
COVID-19 pandemic. Fig. 2-1 shows the basic reproduction number estimate for New York State
as a function of time [7]. The first estimate was reported (2020/03/11) as ,--:-2, 5, which then
decreases to < 1 (on 2020/4/15).

The R, value early in the pandemic, when people were not as informed, started much higher, then
reduced as awareness developed and mitigation strategies were implemented. Taking the R,
values estimated for New York, we can apply these to a population of 8.4M to represent NYC and
use available SEIR [3] models for predictions of how the pandemic will progress. Figure
shows one such a calculation using values that appear reasonable from Fig 2-1. However, when
compared to NYC published data [5], significant differences between model and data are clear.
Figure 2-3 shows NYC daily data for confirmed cases, number of hospitalizations, and deaths.
Daily hospitalizations and deaths are the two quantities where it is reasonable to make
comparisons since it is part of the process to report these numbers when people reach a hospital.
The number of confirmed cases depends on whom and why these tests are performed. Note that
the number of exposed or infectious people from the epidemic model have no clear relationship to
the number cases as reported in NYC data. Hospitalized patients emerge from the

2-2
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Figure 2-1 Estimated Ro for New York as a function of time. Note the
large error bars and relatively large Ro value in the early stages of the
pandemic. During later stages of the pandemic, error bars are tighter,
likely due to the larger available data sets but the value is changing due
to enacted mitigation strategies.

`Hospitalization Rate' parameter. While evidence strongly suggests that the hospitalization rate is
age dependent, the 20% value chosen is close to an average value (i.e. 50 — 60% for elderly down
to 5% for individuals below 20 years old). Importantly, hospitalization rate vs age demographic is
a key piece of information that is, arguably, less subjected to issues with data compilation
(described before). However, including this information in SEIR would require individual model
for each age group and the associated progression rates, achieving a self-consistent solution
between the different age groups (models) would be a challenge. Other values used to produce
that figure appear very reasonable. However, the number of peak hospitalizations between
epidemic model shown and NYC data differ by more than two orders of magnitude.

Noting that R, is decreased on the intervention day, including a time dependent R, value (see
Fig. 2-1) is a direct extension of SEIR models that could give more accurate results. This would
require timely and accurate data since the model appears sensitive to the timing and actual value
used. The paper by Germann et. al. [E1A] identifies these parameters as key to understand what is
required in order to have control over a pandemic.

Additionally, as defined, R, value will depend on the population spatial distribution. Further,
because of the stochastic nature of personal interactions, and the fact that infectious period is
finite, the number of people that can be infected by one person will follow Poisson statistics Pin
At an average value of 2, and assuming all individuals are susceptible, there is a chance that an
infected person could infect >5 individuals. Under similar circumstances, this number can
increase as the population density increases. The disease progression with an initial infected
population of 1 vs 10 is significantly different. As such, starting a deterministic calculation (such
as SEIR) with inherently stochastic initial conditions may require some sort of initial model
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Figure 2-2 Epidemic calculation using web-available SEIR modeling
tool [3]

calibration.

3. PANDEMIC PROGRESSION CHARACTERISTICS

Because of the way in which particle interactions are handled in DSMC, it seems possible to
develop a model that sidesteps some of the issues outlined while providing higher fidelity results
(via individual interactions) using modest computational resources (when compared to ABM).
Further, there appears to be a gap between SEIR and ABM where the former can be done in a
relatively light 'app' and the former can require a large HPC to run a single simulation. It is
expected that the work in this report could fill that gap with a relatively low cost (computationally)
tool that can provide information to, or, in some cases, be an alternative for, SEIR and ABMs.

3.1. Pandemic Characteristics

Capturing the disease characteristics in terms of statistically accurate disease progression
probabilities and rates could yield a model that is more robust to, or independent of, variations in
data available (when compared to 'curve fitting' approaches to modeling the pandemic). It is
worth noting that with the method employed herein, probabilities and rates could be extended to
capture emerging trends based on co-morbidities, race, etc., at the expense of a more complex
input.
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Figure 2-3 Daily reported data for NYC, available from [51

3.1.1. Asymptomatic Population

Anecdotal evidence suggests that once it was realized that a respiratory disease was spreading in
the Diamond Princess cruise ship, everyone was tested. This piece of evidence is key since it
represents the likely progression characteristics and state of a pandemic for a naive population
(where naive in this context indicates lack of knowledge of the presence of the disease and
therefore absence of precautions or mitigation). The following describes a snapshot of the
pandemic once everyone was tested:

`Among 3,711 Diamond Princess passengers and crew, 712 (19.2%) had positive test results for
SARS-CoV-2 Of these, 331 (46.5%) were asymptomatic at the time of testing. Among 381
symptomatic patients, 37 (9.7%) required intensive care, and nine (1.3%) died (8). Infections also
occurred among three Japanese responders, including one nurse, one quarantine officer, and one
administrative officer (9). As of March 13, among 428 U.S. passengers and crew, 107 (25.0%) had
positive test results for COVID-19; 11 U.S. passengers remain hospitalized in Japan (median age
= 75 years), including seven in serious condition (median age = 76 years)'... extracted from [6]

• 19.2% of the total population tested positive

• 46.5% of people who tested positive for COVID-19 were asymptomatic

• These data pertain to a group with median age in the 70's

With regards to NYC data and a a different age group, we quote key findings from a New York
hospital:
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Figure 3-1 Disease progression probability for different age groups.

`This week, we published our findings after two weeks of universal screening at New
York-Presbyterian/Columbia University Irving Medical Center. In our area, which includes upper
Manhattan and the Bronx, about 15 percent of patients who came to us for delivery tested positive
for the coronavirus, but around 88 percent of these women had no symptoms of infection. That
means 13.5 percent of all our patients during this time were infected with the coronavirus but
were not exhibiting symptoms' ... extracted from [9]

• 15% of the total population tested positive

• 88% of people who tested postive for COVID-19 were asymptomatic

• These data pertain to a pregnant population demographic, which we assume are in an age
group between 20 and 30 years old.

With this information and details in the following section, disease progression probabilities and
rates can be obtained. Having an estimate for the asymptomatic population is key for
self-consistent evolution of the disease since test data can be biased (testing only those
experiencing symptoms, or due to the relative availability of testing, as examples). An estimate of
asymptomatic population, disease progression rates, and hospitalization data for recovered and
deceased places a large number of constraints on the model such that initial conditions must
adhere (statistically) to all of these constraints simultaneously.
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3.1.2. Disease progression

Based on the data summarized above, disease progression probabilities from initial stages
(pre-contagious and asymptomatic) were developed as follows: on average 50% of infected
people in their 70's are asymptomatic, and that, on average, 88% of infected people in their
20-30's are asymptomatic. Simulations then assume a linear extrapolation for the other age
groups. Other disease progression probabilities are extracted from the statements above and made
to match hospital records for hospitalized, recovered, and diseased vs demographic group. These
probabilities are constrained since, for example, hospitalized patients result in recovery or death,
such that knowing one of these probabilities is sufficient.

The time dependence of disease progression rates are assumed from CDC published statements:

`The respiratory symptoms of COVID-19 typically appear an average of 5-6 days after exposure,
but may appear in as few as 2 days or as long as 14 days after exposure, according to the U.S.
Centers for Disease Control and Prevention (CDC).'

`Using available preliminary data, the median time from onset to clinical recovery for mild cases
is approximately 2 weeks and is 3-6 weeks for patients with severe or critical disease.'

Again, to use DSMC for modeling the pandemic spread, statistically accurate progression
probabilities and rates appear sufficient, model depends less on details of testing, and could
provide an estimate for asymptomatic population (if hospitalizations and deaths can be
matched).

3.1.3. Demographics

Population demographic ratios can be estimated from the census data. An example is shown
below for demographic distribution in New York City. Table 3-1 shows the NYC demographic
details used in the model.

Table 3-1 New York City Age Demographics

Age Percent of Population
0-17 25%
18-44 41%
45-64 22%
65-74 6%

75 or older 5%

In a similar manner, the model could accommodate other demographic details relevant to disease
progression and fatalities such as race and co-morbidities.

13



4. DSMC FOR COVID-19 MODELING

4.1. Model

Aleph is a particle-in-cell, direct simulation Monte-Carlo (PIC-DSMC) [112] [II 11] code that was
developed for large scale simulations of fully kinetic, low temperature plasma physics [E)]. In
these simulations, PIC self-consistently accounts for charged particle contributions to electrostatic
field. In turn, the newly established field moves the particles. DSMC is implemented in a
`substride' to PIC, where DSMC typically modifies particle properties as well as create new, or
destroy reacted particles. Physically, interactions result in modified velocity vector (scatter),
additional charged particles (i.e. ionization of neutral atoms), excited particle states, and a range
of other 'particle types'. Particle creation, destruction, scatter, and interactions in general are
handled with the DSMC algorithm For the simulations presented in this report, only the parts of
the code necessary for DSMC were used (particle movement and interactions).

In DSMC, the number of potential interactions between two different particle types is:

nint = nAnB(vcs)ABV dt (1)

Where nA, nB are the number of particles densities of type A, type B, respectively, that reside
within volume V. v is the relative velocity between these two particles and sigma is the 'cross
section', which is a measure of how likely the interaction is to happen given all other parameters
(all of which are known). dt is the simulation time step. It is worth noting here that Eq. captures
all the parameters that affect the number of interactions. The factors nA, nB, and V are controlled
by the population density of the region being simulated. While v and CTAB have different physical
meanings for gas dynamic simulations, here these can be best interpreted together as an effective
rate of interaction between people. This is analagous to the R, value divided by population
density, which helps to isolate the different effects that can affect R, in SEIR models.

The simulation domain is divided into many smaller individual volume elements (simulation
`mesh') and, along with the time step chosen, the number of potential interactions between two
particles is limited to a small fraction (0.1) to reduce the likelihood of a particle interacting twice
in a single time-step. Eq. is evaluated within each element in the domain, and DSMC provides
an efficient algorithm for choosing the particles which participate in the 'tint interactions. Once
two particles are chosen to have interacted, their characteristics (demographics and disease stage)
are used to calculate the possible results of the interaction (e.g. no change or passing of the
infection). In a single interaction, the result it chosen randomly, however as more interactions
occur, the statistics converge consistent with the local population density and input interaction
rate.

Leveraging the DSMC algorithm, we can envision using particles to model people, so long as we
can capture sufficient human traits. The DSMC method is capable of including an essentially
unlimited number of different traits. However, with each added trait combination, the number of
interaction paths increases dramatically (as the number of trait combination squared). As has
been stated, we include as many people traits that our model can accommodate, which are based

14
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2 days

Asymptomatic

Recovered

1 — f (age), 12 days
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Figure 4-1 Model of disease progression rates and probabilities with
the functions of age shown in Fig. 3-1. Colors of later states represent
colors used in later results plots.

on data available (e.g. progression rates and probabilities). It is likely that additional granularity
in demographics and co-morbidities would improve the model results that follow and is a
reasonable starting point for future work.

4.1.1. lnteractions

The disease was spread through interactions between healthy and contagious populations in the
following manner:

Healthy + contagious —> Precontagious + contagious, (2)

where contagious is one of Asymptomatic, Mild, or Severe. In addition to becoming infected
through the interaction above, people of all demographics and disease stages interact with each
other and 'scatter', which effectively randomizes their motion. Therefore, the interaction
probability includes 'scattering' and 'infection', meaning that a subset of all interactions can
result in infection of an individual.

4.1.2. Probabilities & Rates

Progression for each newly infected individual follows according to the disease progression rates
and probabilities as shown in Fig.4-1
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4.1.3. Changing Conditions due to Mitigation

Implementation of different mitigation strategies will inevitably result in modifications to the
model inputs. Our model can accommodate some aspects of mitigation. For example, a 'lock
down' can be mapped to a reduced people/particle temperature. 'Face coverings' can be mapped
to a smaller effective diameter, resulting in a lower interaction probability. As the population
becomes more aware, it seems likely that both of these conditions are changing simultaneously.
However, it will be shown later that the model is highly sensitive to both of these parameters since
effective diameter and temperature both increase the number of interactions. As mitigation is
relaxed, or compliance with mitigation is challenged, these two parameters, temperature and
effective diameter, can be first estimated from different temporal segments in the disease
progression and then re-used to propagate the pandemic forward.

4.2. Model Validation

4.2.1. New York City data

There are roughly 8.4M people in New York City. For all simulation results in this report, each
person is treated individually, such that the simulation uses 8.4M particles. The particles are
created in the different age groups in the percentages shown in Table 3-1. An instance of initial
disease state assumes 6k asymptomatic individuals, 800 individuals with mild symptoms, and 240
individuals with severe symptoms, distributed proportionally among the different age groups.
There are 7 hospitalized individuals distributed among the three older age groups. This last initial
condition detail closely represents what was recorded in New York City on 3/3/20.

We assume a uniform population density over 784km2 which results in of 10715 people per km2,
matching the area, population, and density of NYC. The simulation time step used is lhr. The
time period simulated is defined by the user but covers a span of 60 days for most simulations
shown in this report. The interaction rate was chosen such that the population each experience a
few interactions per day. Individuals in the population can have higher or lower interaction rates,
that are effectively sampled from a global distribution.

Using the New York City details above, disease progression fractions as a function of age are
shown in Fig. , and progression rates shown in Fig. 4-1, simulations were conducted to begin3-1
`tuning' some model inputs for which data was unavailable (such as initial populations in
different disease stages).

The effective probability for interaction was also varied to better match the data using the
following rationale. NYC officials closed schools and a large number of public services buildings
on March 14th, and, on March 22nd, made the anouncement that 'shelter in place' order would go
in effect on March 22nd. In the results that follow, the simulation progresses through 3 phases,
phase 1 represents 'no mitigation' or disease spread in a population that is not concerned with
slowing disease spread. In phase 2, the probability of interactions in the simulation would need to
be decreased to capture higer general awareness that the disease is spreading and mandatory
closures. In phase 3, probability of interactions is further decreased to capture the most restrictive
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`shelter in place' restrictions as well as the more wide-spread use of face coverings. At the point
in the simulation coincident with the start of mandatory closures implemented in New York City,
the simulation is stopped, all particles and their properties are recorded, and the simulation
continues (from the stoppage point before) with the same simulation details, except that the
effective interaction frequency is decreased. This first phase in the simulation lasts for 15 days
(interaction diameter = 0.4), the second phase lasts for 10 days (interaction diameter = 0.2) and
the third phase continues until the end of the simulation (interaction diameter = 0.15).

Figure 4-2 shows results where the initial population and effective diameter were varied to the
point where model results show good agreement with the daily data. In addition to matching the
daily numbers, this approach is capable of tracking demographic-based progression rates and
probabilities. Figure. 4-3 illustrates good comparisons between published data and model
predictions for age demographics.

Except for the interaction rate, other inputs to the model emerge from general characteristics of
the pandemic. Though initial disease population conditions are also assumed, these are partly
based on disease progression probabilities. The progression rates emerge from CDC
publications [2] . Model sensitivity to these parameters is assessed in the following section.
However, it is worth noting that the results thus far show a quite favorable agreement.
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4.3. Sensitivity

4.3.1. initial Conditions for Disease

We now assess the model sensitivity to initial conditions including initial number of infected
population and demographics, interaction probabilities, and disease progression rates. Figure
shows simulation results as lines and NYC COVID-19 published data as points. Solid lines
represent the 'tuned' case (described in previous section) and dashed lines are +/- 1500 (from 7k
in 'tuned' case) people infected initially. An estimate based on NYC data indicates that there are

infected individuals for every hospitalized patient, suggesting that the initial conditions in
the 'tuned' case are reasonable.

4-4

Notice that the these variations in initial conditions bracket reported NYC data for
hospitalizations and deaths, in both magnitude an timing. 7 hospitalized patients and 7k people
distributed in the other infected categories (lk infected for every hospitalized patient) were used
as initial conditions, the simulation results show that this is a reasonable estimate but could be as
high [low] as 1.2k [0.8k] infected individuals per hospitalized patient. Further, the model is
sensitive to 1.5k initially infected individuals in a population of 8.4 M!
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4.3.2. Interaction Area & Mobility

4-

Intervention strategies in the form of stay-home orders, social distancing, and face coverings will
reduce the overall number of interactions, thereby reducing infections. There have been several
experiments where droplets generated after a cough or sneeze event are tracked and the distances
traveled recorded. It was shown that some of these droplets may travel as much as 12 ft [Elli].
Assuming droplets follow (1 < n < 2), (n = 2 for point emitter into 47r) spatial distribution,
where r is the distance from emitting event (person sneezes), 'social distancing' or physical
distancing of 6ft or greater significantly reduces the likelihood that a bystander interacts with
droplets from an uncontrolled sneeze or cough event. Talking, yelling, singing, or otherwise
normal breathing can also generate droplets, all of which become more highly concentrated in
closer proximity to an infected individual. In our model, this region in the vicinity of an infected
individual within which a bystander has a high probability of becoming infected is called the
`interaction diameter.' Clearly, wearing face coverings will decrease the distance droplets can
travel (in the impractical limit of a thick solid mask, no particles escape, interaction diameter is
the extent of the face covering itself). Figure 4-5 shows modeling results when the interaction
diameter is varied. The dotted lines represent a 5% variation (high/low, respectively) in
interaction diameter vs. that used in the tuned case. The best fit is plotted as a dashed lines and
was obtained with the simulation 'D5' which increases the interaction diameter by 1.3%
compared to the 'tuned' case.
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Stay-home orders will directly impact the mobility of an individual. Effectively, this strategy will
reduce the temperature used in our model (T v2, and interactions proportional to the relative
velocity between particles, see ). The number of interactions will increase as the individual
mobility or 'temperature' increases, and vice versa. However, reducing an individual's mobility
does not change the interaction area discussed before. Reducing the mobility of an infected
individual in the presence of many other healthy individuals does not make sense unless face
coverings and social distancing are strictly enforced. For the tuned case presented in Sec.4.2.1
the temperature was chosen such that individuals would have an average speed of 3m/s. Fig.
shows modeling results for two additional cases, where the temperature is varied by ±10%.

4-6

The results above show that the model is sensitive to both the interaction diameter and
temperature. The current values used were obtained empirically. In typical PIC-DSMC
simulations, the gas or plasma temperature is measured/known, the interaction diameter
determined experimentally or theoretically. It appears possible to arrive at COVID-19 interaction
area and the mobility of people experimentally but that is beyond the scope of this project.

4.3.3. Progression Rates

All the details about pandemic test data acquisition make model comparisons difficult and/or
suspect, this is particularly true with the timing of disease progression. As an example, in NYC,
there were 7 hospitalized individuals on 3/3/20 and no positive tests outside of the hospital, turn
around time for results varies and often takes a few days, and daily positive cases drop with a 7
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day period with two days (Saturday and Sunday) showing significantly lower number of positive
cases than expected frorn the data trend. In what follows, we assess tirning sensitivities for
disease to progress from hospitalized to deceased. Here we use the best case from the diameter
study as shown in Fig. 4-5 as a starting point and vary the disease progression timing for
hospitalized patients to progress to either of the last two stages. Figure 4-7 shows the base case
and two additional cases for deceased status to be reached, first with a 3 day delay, second with a
6 day delay.

The results show that the model is also sensitive to progression rate details. A difference of 3 days
shows that further delaying the progression from hospitalized to deceased appears to better
represent timing details associated with hospitalizations,
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5. PREDICTIONS

5.1. No mitigation

The initial conditions and some of the assumptions in the model are based on some anecdotal
and/or documented evidence, particularly as it pertains to the progression rates and probabilities
for disease, but these come from statements by CDC and other health officials. However, as stated
in the previous section, the interaction diameter and the reference temperature were determined
empirically. Ideally, one or both of these values would be determined experimentally. With out
any further evidence for what these two values may be in reality, we push forward to address
`what if' scenarios with regards to different paths the pandemic spread can take given
implemented mitigation strategies, different levels of compliance, re-opening, etc.

First, what if no mitigation strategies were implemented? How bad could it get? For the
following simulation, the reference temperature and interaction diameter are held constant. The
values that matched the daily data for the initial phase of the simulation, before any official orders
for mitigation were announced, are used for the same simulation time period to observe model
predictions of disease progression without mitigation. Figure 5-1 shows these results.

The staggering numbers in each of these categories gives a sense how critical mitigation is to keep
the health care system from being over-run.

5.2. Medium and Low compliance at 'phase 3'

No or low compliance with mitigation strategies clearly affects the pandemic dynamics As
previously discussed, we assumed initial conditions of roughly 6k infected individuals was
required in order to match the rates and magnitudes of both hospitalizations and deaths. If
behavior had returned toward normal, either due to mitigation strategies being removed or
compliance with them dropping, when the curve had 'flattened' then effects of mitigation would
quickly be undone. Essentially re-starting disease spread with the same exponential growth but
with a much larger baseline. For the simulation results shown in Fig. 5-2, the model assumes the
initial conditions are the same as for the best fit simulation for phase 1 and phase 2 but, for phase
3, the interaction diameter is increased to 0.4 or 0.25 in an attempt to demonstrate what different
levels of compliance with mitigation could do to the daily cases in the pandemic. Diameter of 0.4
corresponds to little or no mitigation. Figure 5-2 shows the results from such a simulation.

Implementing mitigation initially (first two phases) and relaxing mitigation completely thereafter
effectively undermines all mitigation efforts done during the first two phases (without formal
evaluation or investigation, it appears this was shown in a Washington Post report where NM and
AZ data were compared [1]). The peak cases, hospitalizations, and deaths if no mitigation is
enforced/practiced when the curve is flat ('re-opening too soon') are very close in value to the
respective peaks in the case with no mitigation at all.
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5.3. Medium and Low compliance at 'reopening'

Obviously, from the previous results, the mitigation must be continued into the decline of daily
cases numbers, but the question remains when to re-open? In the model, we can add one more
phase such that re-opening is now phase 4. Phase 3 is prolonged to ensure that both the magnitude
of cases is lower and the slope of the curve is decreasing. End of phase 3 and start of phase 4
occurs roughly 90 days into the simulation, such that this phase transition would occur in early
July. Once phase 3 is complete, the simulaiton is re-started with no or low compliance with
mitigation (diameter of 0.4 or 0.25, respectively). The simulation results are shown in Fig.5-3

The model suggests a very unfortunate scenario if re-opening means going back to behaviors
similar to before the pandemic. Going back to 'normal' behaviors can undo three months of work
in a matter of weeks. Results obtained by propagating the model forward with some reasonable
level of compliance certainly suggests a much more favorable outcome in terms of daily cases.
Even with moderate compliance with mitigation, the model suggests a situation similar to that
observed in NYC late March could repeat itself in August.
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5.4. Estimate for Asymptomatic Population

How can this be? How can the infection begin to spread so rapidly after 3 moths of mitigation?
Doesn't the low number of positive cases, hospitalizations, and deaths suggest the disease spread
is more controlled? From the model inputs and results, it appears these three populations (cases,
hospitalizations and deaths) is just a fraction of the story. The rest is governed by the dynamics of
mild, asymptomatic and healthy populations. In Fig. 5-4 we plot the total number of people in
each of the disease stages, as outlined in Fig. 4-1, versus time for the case of low compliance with
mitigation at 'reopening' (early July arbitrarily chosen as re-opening for demonstration). These
plots show total values (not daily) which can increase or decrease depending on mitigation and
progression rates.

The missing part of the story is that the number of asymptomatic, mild/moderate and severe
combined is much larger than the hospitalized and deceased cases. Re-opening without a good
strategy to deal with these populations means that there are a large number of people who resume
normal operations, unknowingly infecting people they come in contact with. For safe re-opening,
it may be just as (or more) important to know how the asymptomatic and mild/moderate
population is trending.
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An additional estimate of what the asymptomatic population is doing in the 'background' was
somewhat brought to light by serological testing results. Recall that the asymptomatic population
estimate arises from the Diamond Princess cruise ship and the hospital in New York (and linear
interpolations for the age groups in between). NYC reported estimated 21% of the population had
been exposed to the virus in early April. In our model, it seems reasonable that the recovered and
asymptomatic population would account for the population that would test positive during
serological testing (remember that asymptomatic population reaches the recovered stage
according to the rates and probabilities pertinent). Simulation results for mid-April show that
these two populations amount to ,=_,- 2M individuals or roughly 23% of the population. Removing
the asymptomatic population from the calculation bring the estimate to 18%.
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6. CONCLUDING REMARKS

6.1. Future Work

There are quite a few and obvious improvements that could be made to the model and work flow
presented. The initial scope of this project was to assess if DSMC infrastructure could be used for
modeling the pandemic. Though it appears that is possible, the interaction model is very basic,
the parameters for the interaction itself were determined empirically, and validation data could
certainly be improved. Next we describe relatively simple additions to the model that could
improve the model and the people traits that are assigned to the particles in the simulation.

Further developing the model could include emerging details about race, co-morbidities, and
other factor that appear to play a role on how the disease affects different people according to
ethnicity or under-lying health conditions. This can be accomplished by augmenting the
demographics to include these and, potentially, other relevant factors so long as these can be
assessed in a statistically accurate manner.

Mobility vs. age group is another relatively simple change to the model that we could implement.
This basically requires no additional code development, and could be handled by the model as is,
however, again, finding high quality data to inform the inputs would be vital. Potentially, this
improvement would enable estimates of what it means for the pandemic progression in general
when a select age group is allowed to ̀ re-open' under different mitigation conditions.

Mobility vs infectious stage seems to be another modification that would improve model
accuracy. Consider an individual that progresses through the disease stages eventually reaching
the hospital. As this individual becomes more and more ill, the less this person would continue to
interact with other individuals, eventually reaching the hospital and interacting, potentially, only
with people such as Doctor and Nurses whom presumably are wearing PPE and other hospitalized
patients that are already infected. At present the model assumes complete quarantine for
hospitalized patients. Adding in a low but non-zero mobility would clearly impact the likelihood
that these people continue to infect other individuals. Though this appears a reasonable
modification to the model, and simple to implement, it would likely affect the results very
minimally since the number of severe and hospitalized patients is much lower than the estimated
asymptomatic and mild population.

The number of interactions that result in additional infections increases with population density.
Capturing population density gradients in the current model and work flow is not possible and
implementation of this capability does require a significant effort. Restricting people movement
such that these density gradients develop could be achieved by using shape manifolds (random
motion restricted to these shapes [E71, shapes represent city blocks, cities, states, countries), cell
phone data could also be used for this purpose, as well as using the PIC algorithm and fields
(Aleph is a PIC-DSMC code) to confine particles to pre-determined regions.

Once more details are known about immunity and virus mutation, these are also two phenomena
that could be modeled with relatively simple additions to the model itself. Considering Fig. 4-1,
the addition would be to allow recovered individuals to 'loop-back' and become susceptible (at
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the appropriate rate) if immunity holds for a relatively short time period; modeling the effects on
pandemic dynamics due to virus mutation would follow in a similar manner.

6.2. Discussion and Conclusions

Existing methods and models for epidemic/pandemic modeling cover a wide range of required
computational effort as well as fidelity. Using DSMC for modeling disease progression dynamics
as shown in this report can potentially bridge an existing gap between SEIR (continuum) and
ABM/ILM (individual) modeling in a way that enables capturing a range of people characteristics
while being computationally efficient.

The model presented uses physical inputs in the way of areas, population densities and
demographics, disease progression rates and probabilities. Estimates for interaction diameters and
temperatures (i.e. people mobilities) were determined empirically but could very well be deduced
experimentally. Of course, one would have to devise experiments to determine these values in a
manner that does not place test subjects at risk. The work presented here convincingly shows that
the DSMC approach can be used to model the dynamical characteristics of COVID-19 and
extended to model other epidemics/pandemics where the rates and probabilities for disease spread
are known. This new modeling tool developed still has many ways in which it can be improved
but the relatively short time period for its development weeks) did not allow the authors to
explore many additions/improvements.

The model progresses in three phases, one with a high probability of infection (large interaction
diameter) corresponding to disease spread with no mitigation, next with a medium diameter
corresponding to schools and other public services closing as well as people becoming aware of
disease spread, and the third phase uses an even smaller interaction diameter that may be
associated with stay home order in addition to the mitigation strategies of the second phase. In
return, we can then evaluate disease progression after a certain time period by falling back to
either of these phases. The effect of medium and low compliance with mitigation in NYC in early
June (day 90) shows that maintaining a decreasing slope is relatively sensitive to compliance with
mitigation. Figure 5-3, shows that over a period of 2-3 months with strict mitigation measures, the
curve begins to slope downwards and tending toward small numbers of infected individuals.
However, this figure also shows that low mitigation compliance during reopening, at the point
where there is still a significant number of infected individuals, will result in large increases for
all stages of the pandemic within 1-2 week period, essentially nullifying all the efforts during 2-3
month period of mitigation (lockdown).

The results and sensitivities of the model suggest that it may be possible to achieve a highly
consistent model with a full sensitivity analysis on rates, probabilities, interaction details coupled
to timely and accurate data.

Figure 5-4 shows that peak of positive cases leads peak of deaths by :=2, 10 days and leads
hospitalizations by 1 week. The probability that a certain individual will be asymptomatic or
not is assumed in the model to follow from test results obtained from the Diamond Princess cruise
ship and a NYC hospital, as discussed earlier. A problem with 're-opening too soon' without
sufficient testing is that the asymptomatic population can still be large. The number of
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asymptomatic individuals is significantly larger with respect to the rest of the infected population.
While the hospitalized and positive cases can be trending downward and low numbers maybe
achieved, the number of asymptomatic individuals also trends downward but the magnitude of the
asymptomatic population is predicted to be significantly higher. It appears then that safe
reopening would have to consider 1) low number of hospitalizations and deaths as well as a 2)
low number of positive cases (including asymptomatic, mild and severe). Understanding the last
observation (item 2 above) is, of course, only possible with randomized, wide-spread testing.

Serological test results in NYC in early April showed that the number of people exposed to the
virus was 21.2% among NYC population, with lower positive seroligical test cases in nearby
regions (4% — 17% for rest of NY State and for Long Island, respectively) [8]. This figure would
likely correlate to the ratio of recovered plus asymptomatic population to the total population of
NYC. Fig. 5-4 suggests that in early April, the results presented here are in close agreement with
the serological results. We believe this is a figure of merit of this report since model assumptions
are minimal, asymptomatic population plays such a key role in the pandemic, and has not, to our
knowledge, been estimated by other models.

The model presented here appears to be robust, sensitive to inputs and is computationally
efficient. Since the model depends only on statistically accurate rates and probabilities, statistical
fluctuations of test data are smoothed out by the inherent statistical Monte-Carlo sampling of
these values. Consider, for example, using 'fits' to the modeling results presented in earlier
sections as estimates for the Ro value used in SEIR models, or using DSMC-like modeling for
local effects, coupled with ABM, for global effects. The variability in the Ro used in SEIR models
and the likelihood that wrong assumptions enter ABM simulations could be reduced. In
combination with these other modeling tools (SEIR or ABM), it is possible to envision
significantly more powerful tools for disease spread modeling. By itself, however, it appears this
approach would be a great tool for mitigation strategy design. Importantly, using existing
infrastructure for DSMC (in terms of software and hardware) makes this approach
computationally efficient and is massively parallel. Multiple small cases could run simultaneously
(i.e. simulations shown in this report use 60 processors for 10's of minutes) by taking advantage
of infrastructure developed for parameter and/or sensitivity studies. Larger cases (i.e. U.S.
population with each person modeled individually) could be accomplished with the respective
increase in the number of processors since the PIC-DSMC algorithm in Aleph scales well with
number of processors. Even to model the entire U.S. population, we would require relatively
modest computational resources. For NYC, simulating 8M people over 60 days uses 60
processors for 10's of minutes (computational time). We expect the entire U.S. population would
require less than 512 processors for the same amount of computational time. Aleph has been
demonstrated to scale well over 100k processors for runs that use hours/days of computer time.
This suggests that, if this modeling approach captures sufficient people traits during a pandemic,
the entire world population could be modeled with relatively modest computational resources.

To conclude, we have demonstrated that DSMC can be used for modeling dynamics of a
pandemic, the model is robust with respect to inputs and can track people and pandemic
characteristics (demographics and stages). Decades of software and hardware and DSMC
algorithm development are leveraged here to provide an efficient tool. The model captures NYC
data well using three different phases. The details from these phases can be used to assess 'what
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if' scenarios when considering re-opening plans. A potential figure of merit (if it can be futher
validated) of this modeling approach, and this model in particular, is that we can estimate the
asymptomatic population as well as the role it plays in the pandemic dynamics The model results
suggest that, for re-opening, hospitalizations, positive cases and deaths are a good indicators but
understanding how the rest of infected population is trending in the background is key; model
suggests the asymptomatic population has the same trend as hospitalizations but leads by roughly
10 days and is two orders of magnitude larger. Without widespread and random testing, people in
the asymptomatic phase, and unbeknown to them or to public health officials, are potentially
spreading the disease. As a consequence, with hospitalizations and deaths as the only evidence
for disease spread, it is difficult to understand how the rest of disease phases are trending. The
model suggests that the larger number of asymptomatic cases can still generate spikes even after
relatively few hospitalizations or deaths are recorded.
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