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y Outline

2 Tracks

» Nonsymmetric smoothed aggregation (NSA) & polynomials
* Algorithmically interesting, but somewhat more academic
* Model problem results

» Piecewise constant grid transfers & mass stabilization
* Algorithmically simpler

* Hypersonic problems in a realistic setting, Sandia’'s SPARC code
on NGP platforms
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NSA not completely ready for hard SPARC problems @ Sandia
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~ ' Coarse Grid Stability & Piecewise Constant
Transfers (PCT)

PCT considered relatively safe

A, (fine level discretization) is M-matrix + PCT's =
A, (coarse discretizations) are M-matrices

However, consider p(u, = f

with stencil [_E E _1] p(x) and mesh space h.
h h h

Then

11p(x) = p(x; +26h) = Aji—1 = —Ait26i+27

where i row corresponds to x.. Then, aggregating i to i+26 gives

1.1 1.1
T 0 T] p(x)

@ Sandia
National
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Smoothed Aggregation Multigrid: a polynomial view

MGcycle(A,u,b) Po =(I—woDygt40)Py
if not coarsest, R =P7
r=b-Au

D : diag(A) or
uy,=0 BlkDiag(A) for PDE systems

MGceycle(RAP, uy, Rr) «: damping parameter
H | 1
u=u+ P Uy P : piecewise constant interpolation
end For this talk, smoother will be Jacobi or block Jacobi

Smooth(A, u, b)

For nonsymmetric version,

Ro = Pf (I —woAoDgl) = RAP =PI —woAoDy )Ao(I —woDyA0)Po



P. = —kafl-—lk)Pk
' lDHlP D, (I — wpAp DY)

Define

qo(Dg ' Ao) = Dy ' Ao

ae+1(.) = @) (I —wpSk—1 qx() )* k>0
with

S3=F By=FuFPls k=8,

Fo.x = Pl -,
Then.

DA+1 4A+1 P;Zo qk+1() Fo.k

T _ pT pT T
Pro = Dy Py By -

Smoothed Aggregation Details

Main sleight of hand

D,.,not diag(A, ) for k> 0

but we are free to choose it

= A multigrid iteration can be fully expressed as Do—lAO operators on the FINE grid

and S, averaging ...

IF one does Jacobi smoothing on all levels

@ Sandia
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z’%n-sym Smoothed Agg (NSA) summary

D; 1A, expression includes 3 Dy'A, operators

For a m-level NSA Vcycle with 1 Jacobi sweep per level
#of DytAg=1+3+..3m"= (3m-1)/2

For a m-level PCT Vcycle with 1 Jacobi sweep per level, #of DytA4, =m
A, not necessarily even close to diagonally dominate
Choosing o's is problematic for highly non-symmetric problems

BIG ASSUMPTION: Jacobi with proper o converges
No convergence guarantee, but this is hard for non-symmetric systems.

D, can be blkDiag( A, ) for PDE systems o
Algorithm similar but different than Sala & T, SISC’2008 @ T
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ﬂesults: Bent Pipe VYV VY rrem
’,// 7 N S S

1as

_ . — ] \ \
eAu+b - Vu=fin(0,1)x(0,1) RN,
\\\\\\\\\\-.

u=0 on left, top, bottom BCs ( —2x(1 — .5x) )H\\\\\\\""“

u=y —.5onright BC

e=.1 for \Kx —.5)2 + (y —.5)% , otherwise € =.001

iters (levels )

B T
GMRES* +

upwind 81x 81 116 (3) 88(3)  MGV(0,1 w Jacobi)
243 x 243 1000+ 212 (4) 94 (4) o ~1/p(D14)
729 x 729 1000+ 391 (5) 113 (5)

Stop when residual

m_m R
nasty S

R 171 (3) 173(3)  *no restarts
8 [—g h H] 243 x 243 1000+ 236 (4) 130 (4) S
729 x 729 1000+ 416 (5) 130 (5) @ e



Results (with same solver options)

recirculating

—€Au+b-Vu=f in(01)x(0,1) b = (_44xy(?y_—1i)((11_—232))

e & BCs as bent pipe

! 7 //,-_._,__\\::

owns [ L R { I
81 x 81 1000+ 154 (3) 111 (3) f tf ‘f ! .
243 x 243 1000+ 261 (4) 113 (4) ! {Q\\: o
729x 729 1000+ 440 (5) 121 (5) R S

(1,1) block of lid Re
driven cavity 100 500 1000

imcomp. NS via
IFISS 33 x 33 37/24 64/57 92/ 87 |
65x65 54/24 91/61 117/115 |
129x129 70/23 117/44 115/ \\

(last Newton e/
SOIVC) 257 x 257 - A

using W cycle




Compressible Navier-Stokes
oU 0F;(U) 0G;(U)

A
r

- _ — 0 1
g T B B (1)
with
P PVi 0
U= |pv; |, Fi(U) = | pviv; + Pd;; | and G;(U) = Ti;
pk pEv; + Pv TijVi — (i

(2)
where p is the fluid density, v is the fluid velocity and E the fluid
energy per unit of mass which is expressed as E = 2v vi + € the sum

of the kinetic and internal energy e. P is the fluid pressure, Tyj is the

viscous stress tensor. di = —K ?T

and k the thermal conductivity of the gas.

focused on Newtonian fluid & ideal gases, though SPARC also

. Sandia
employs non-ideal gas models @ Mool
Laboratories
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# Sparc Details

* Only steady-state considered in this talk

« Sparc uses a conservative cell-centered control volume
discretization, 7 point stencil (actually 7 block), upwind-ish

fort=20, ...
Take adaptive pseudo-time step
1 Step of Newton’s method
Solve 15t order Jacobian approximation system inexactly

« Non-linear residual uses 2" order Jacobian

 Basic idea: small pseudo-steps needed initially for nonlinear

convergence, try to aggressively advance to large -
pseudo-steps to accelerate to steady-state @ Natoral

Laboratories
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Mesh Structure

p

Hypersonic objects generate strong shock-waves leading to

 Strongly flow diregti=——"*-
- Low dissipation Recall the sleight of hand ... \

» Hard to resolve Dy41P¢ Dic*
To help with thes|  that now becomes esh

Trer1Pe T

which 1s not generally sparse.

Essentially, a sparse approximation to P/ is
needed such that T, .5 P} ~ PI T 1

Line-Jacobi is the method of choice for linear systems ® @ﬁaa%ﬂﬁ'al
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Blunt Wedge Problem

'},.'

Structured mesh: 723, 1443 or 2883 cells, 5 degrees of freedom per
cell, supersonic input flow: Mach 3.

First attempt: use unstructured vs. structured aggregation, 1 sweep
ILU(O) as pre-smoother, 4 levels, coarsening rate: 3 per direction.

Mesh size 723 1443 2883
Unstructured | 46 87  N/C
Structured 36 88 256

, Table: Number of linear iterations (tol=1e-6)
Observations:

linear interpolation with structured aggregation diverges
F1 three and four level methods give same convergence

no scaling for either structured/unstructured methods

One representative linear system toward the latter part of the @ Sandia

simulation with large &t pre=ail
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[1E2]1/1Hol

Line-Jacobi vs. ILU smoothing

@ LU 1 level —® Jacobi 1 level
B0 LU 2 levels B8l Jacobi 2 levels
&~ A LU 3 levels &—A Jacobi 3 levels
= x |LU 4 levels = Jacobi 4 levels
10=3 - -\ Mg gt T - :
: { serial
104 V" ---X--Yg-----cceraec- g AR .
S 3V thEl S S poTee E
10-6 [ -4 Y ) 3.8x iterations reduction @ e ki
- | | ; ;
0 200 400 60O R00 1000
linear iterations
oo |LU1rank —® Jacobi 1 rank
100 = B |LU 2 ranks B—8 Jacobi 2 ranks
A~ A |LU 32ranks A— Jacobi 32 ranks
e o e R el e~ b b R e g
B i o ol ST i B i nem v e w wmp e e G R s e -
| ) . T 4
10 { parallel
104 e A e R e -
Ll R -
I e v R e i v i o i i s e 3 e -
10~ J
0 50 100 150 200 250

linear iterations

Overall good benefit
with MG

Domain decomp. ILU
takes fewer iterations
in serial but scales
less well in parallel

Note: Have successfully
run NSA on aero-blunt
wedge



Mass Stabilization

'},'

» Add diagonal term to coarse grid operator
A o1 =R APt (T-0) R My Py

where M,’s are projected mass matrices

Unstructured Structured Observations

727 144° 288° | 72° 144° 288° e A
« helpful with structure

4 87 N/C|36 88 256  ,oarsening

45 30 N/C 35 82 205 «optimal « at bottom of U

45 87 N/C| 34 75 97

46 890 N/C | 35 4 86  «ais parameterized in

46 02 N/C | 36 77 g3  terms of a CFL number

10| a3 o5 N/C 37 31 35 provided by the user

@ Sandia
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% Hifire + SA turbulence model

6 dofs per node

L3 ~13 M dofs
L2 ~106 M dofs
L1 ~856 M dofs
LO ~6.8 B dofs

* Lots of nonlinear convergence problems

@ Sandia
National
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2 level results

iterations over different linear solves (1 level in blue, 2 level in red)

60 : 55
triSolve tri
ssH | 2levMG | | sol| | 2LevMG |
50 i Il
45 k|
|
45 - | 1 I b Iy
’ 40 ’ "“” I ' l
40 + | | = m
3511 L
35 - ' ' - i
l ‘ 1 [TY\A
I /{1
3o lf | vb(‘l""“""l"\l“‘“y‘iil‘l‘lllll"l‘ull"’,’,f“l‘v,‘,‘“”‘M‘l| w1 ]ﬁHMmunmnmm””m
30 - T ‘ 8 i P e YV “\\NlIIHIIIIIIHIHM‘," I
| Vil
25 |- | i 25 w I ' 1] ’
||~‘
. u ‘!
. y I H ‘
200! . 20 f L‘ ( | e
A A A A A ! ' WA M WA r\( I i A
: iy w1 meW T
15 IV VL 1 151 I h'w"
10
0 10 20 30 60 70 80 90 10

L 1 I L I
0 50 100 150 200 250 300

L2 L1
A sequence of linear solves with moderate time step i
Nonlinear solver eventually stalls @ prie ]
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%.‘ Conclusions

* Hypersonic problems are hard for multigrid

* NSA polynomial connection relevant for strong convection
— Assumes (block) Jacobi method converges reasonably
— MG iteration can be equivalent to fine Jacobi sweeps + averaging
— NSA generally better than PCT on model problems

 SPARC hypersonic flow application introduces challenges
— Stability often lost on coarse grid for PCT & NSA
— An NSA variant can accelerate convergence over PCT for model problem
— PCT can accelerate convergence on harder SPARC problems for large &t
... but results are mixed due to stability issues
— Line solve commuting needs to be worked out for NSA T} P! ~ PIT;*

. @ ﬁaa?ig?al
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