

Algebraic Multigrid for Hypersonic Simulations

Ray Tuminaro
Center for Computing Research
Sandia National Laboratories

**L. Berger-Vergiat, T. Fisher, M. Howard, C. Siefert @ Sandia,
M. Brazell, D. Mavriplis @ U. of Wyoming**

July 2019

Outline

2 Tracks

- Nonsymmetric smoothed aggregation (NSA) & polynomials
 - Algorithmically interesting, but somewhat more academic
 - Model problem results
- Piecewise constant grid transfers & mass stabilization
 - Algorithmically simpler
 - Hypersonic problems in a realistic setting, Sandia's SPARC code on NGP platforms

NSA not completely ready for hard SPARC problems

Coarse Grid Stability & Piecewise Constant Transfers (PCT)

PCT considered relatively safe

A_0 (fine level discretization) is M-matrix + PCT's \Rightarrow
 A_k (coarse discretizations) are M-matrices

However, consider

$$\rho(x)u_x = f$$

with stencil

$$\left[-\frac{1.1}{h} \quad \frac{1}{h} \quad \frac{.1}{h} \right] \rho(x) \quad \text{and mesh space } h.$$

Then

$$11\rho(x_i) = \rho(x_i + 26h) \quad \Rightarrow \quad A_{i,i-1} = -A_{i+26,i+27}$$

where i^{th} row corresponds to x_i . Then, aggregating i to $i+26$ gives

$$\left[-\frac{1.1}{h} \quad 0 \quad \frac{1.1}{h} \right] \rho(x)$$

\Rightarrow unstable ☹

Smoothed Aggregation Multigrid: a polynomial view

MGcycle(A,u,b)

if not coarsest,

$$r = b - A u$$

$$u_H = 0$$

MGcycle($\hat{R} A \hat{P}$, u_H , $\hat{R} r$)

$$u = u + \hat{P} u_H$$

end

Smooth(A, u, b)

$$\hat{P}_0 = (I - \omega_0 D_0^{-1} A_0) P_0$$

$$\hat{R}_0 = \hat{P}_0^T$$

D : $\text{diag}(A)$ or

$\text{BlkDiag}(A)$ for PDE systems

ω_0 : damping parameter

P : piecewise constant interpolation

For this talk, smoother will be Jacobi or block Jacobi

For nonsymmetric version,

$$\hat{R}_0 = P_0^T (I - \omega_0 A_0 D_0^{-1}) \Rightarrow \hat{R} A \hat{P} = P_0^T (I - \omega_0 A_0 D_0^{-1}) A_0 (I - \omega_0 D_0^{-1} A_0) P_0$$

Smoothed Aggregation Details

$$\hat{P}_k = (I - \omega_k D_k^{-1} A_k) P_k$$

$$\hat{R}_k = \boxed{D_{k+1} P_k^T D_k^{-1}} (I - \omega_k A_k D_k^{-1})$$

Main sleight of hand

Define

$$q_0(D_0^{-1} A_0) = D_0^{-1} A_0$$

D_{k+1} not $\text{diag}(A_k)$ for $k > 0$

$$q_{k+1}(\cdot) = q_k(\cdot) (I - \omega_k S_{k-1} q_k(\cdot))^2 \quad k > 0$$

with

but we are free to choose it

$$S_{-1} = I, \quad S_k = P_{0:k} P_{k:0}^T \quad k > 0,$$

$$P_{0:k} = P_0 P_1 \dots P_k, \quad P_{k:0}^T = P_k^T P_{k-1}^T \dots P_0^T.$$

Then,

$$D_{k+1}^{-1} A_{k+1} = P_{k:0}^T q_{k+1}(\cdot) P_{0:k}$$

⇒ A multigrid iteration can be fully expressed as $D_0^{-1} A_0$ operators on the FINE grid and S_k averaging ... IF one does Jacobi smoothing on all levels

Non-sym Smoothed Agg (NSA) summary

$D_k^{-1}A_k$ expression includes $3^k D_0^{-1}A_0$ operators

For a m-level NSA Vcycle with 1 Jacobi sweep per level

$$\# \text{ of } D_0^{-1}A_0 = 1 + 3 + \dots + 3^{m-1} = (3^m - 1)/2$$

For a m-level PCT Vcycle with 1 Jacobi sweep per level, $\# \text{ of } D_0^{-1}A_0 = m$

A_k not necessarily even close to diagonally dominate

Choosing ω 's is problematic for highly non-symmetric problems

BIG ASSUMPTION: Jacobi with proper ω converges

No convergence guarantee, but this is hard for non-symmetric systems.

D_0 can be blkDiag(A_0) for PDE systems

Algorithm similar but different than Sala & T, SISC'2008

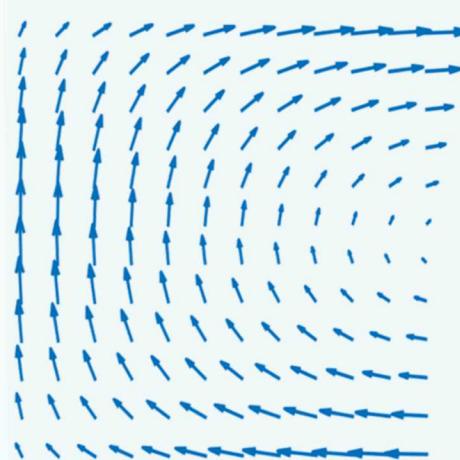
Results: Bent Pipe

$$-\epsilon \Delta u + \mathbf{b} \cdot \nabla u = f \text{ in } (0,1) \times (0,1)$$

$$u = 0 \quad \text{on left, top, bottom BCs}$$

$$\mathbf{b} = \begin{pmatrix} -2x(1 - .5x) \\ -4y(y-1)(1-x) \end{pmatrix}$$

$$u = y - .5 \text{ on right BC}$$



$$\epsilon = .1 \text{ for } \sqrt{(x - .5)^2 + (y - .5)^2}, \text{ otherwise } \epsilon = .001$$

iters (levels)

Mesh	1 Level	PCT	NSA
81 x 81	492	116 (3)	88 (3)
243 x 243	1000+	212 (4)	94 (4)
729 x 729	1000+	391 (5)	113 (5)

upwind
GMRES* +
MGV(0,1 ω Jacobi)
 $\omega \approx 1/\rho(D^{-1}A)$

nasty
Stop when residual
reduction of 10^{-8}

Mesh	1 Level	PCT	NSA
81 x 81	688	171 (3)	173 (3)
243 x 243	1000+	236 (4)	130 (4)
729 x 729	1000+	416 (5)	130 (5)

*no restarts

Results (with same solver options)

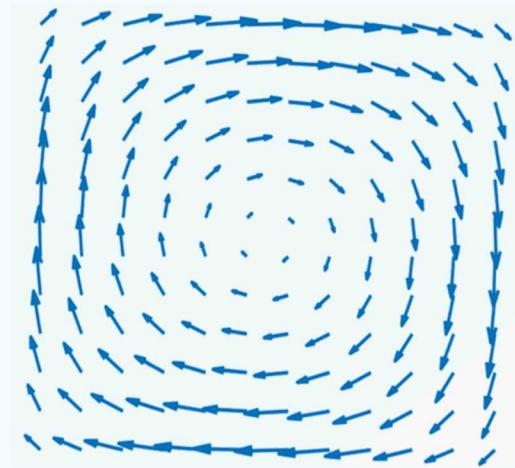
recirculating

$$-\epsilon \Delta u + \mathbf{b} \cdot \nabla u = f \text{ in } (0,1) \times (0,1) \quad \mathbf{b} = \begin{pmatrix} 4x(x-1)(1-2y) \\ -4y(y-1)(1-2x) \end{pmatrix}$$

ϵ & BCs as bent pipe

upwind

Mesh	1 Level	PCT	NSA
81 x 81	1000+	154 (3)	111 (3)
243 x 243	1000+	261 (4)	113 (4)
729 x 729	1000+	440 (5)	121 (5)

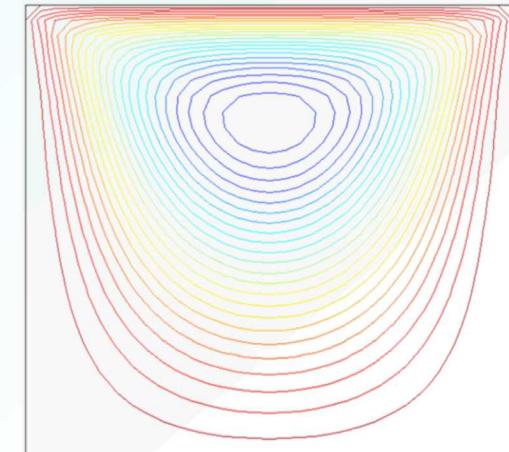


(1,1) block of lid
driven cavity

incomp. NS via
IFISS

using W cycle
(last Newton
solve)

Mesh	Re		
	100	500	1000
33 x 33	37 / 24	64 / 57	92 / 87
65 x 65	54 / 24	91 / 61	117 / 115
129 x 129	70 / 23	117 / 44	115 /
257 x 257			



Compressible Navier-Stokes

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}_i(\mathbf{U})}{\partial x_i} - \frac{\partial \mathbf{G}_i(\mathbf{U})}{\partial x_i} = \mathbf{0} \quad (1)$$

with

$$\mathbf{U} = \begin{pmatrix} \rho \\ \rho v_j \\ \rho E \end{pmatrix}, \quad \mathbf{F}_i(\mathbf{U}) = \begin{pmatrix} \rho v_i \\ \rho v_i v_j + P \delta_{ij} \\ \rho E v_i + P v_i \end{pmatrix} \text{ and } \mathbf{G}_i(\mathbf{U}) = \begin{pmatrix} 0 \\ \tau_{ij} \\ \tau_{ij} v_j - q_i \end{pmatrix} \quad (2)$$

where ρ is the fluid density, v is the fluid velocity and E the fluid energy per unit of mass which is expressed as $E = \frac{1}{2}v_i v_i + e$ the sum of the kinetic and internal energy e . P is the fluid pressure, τ_{ij} is the viscous stress tensor. $q_i = -\kappa \frac{\partial T}{\partial x_i}$ is the heat flux, T the temperature and κ the thermal conductivity of the gas.

focused on Newtonian fluid & ideal gases, though SPARC also employs non-ideal gas models

Sparc Details

- Only steady-state considered in this talk
- Sparc uses a conservative cell-centered control volume discretization, 7 point stencil (actually 7 block), upwind-ish

for $t = 0, \dots$

Take adaptive pseudo-time step

1 Step of Newton's method

Solve 1st order Jacobian approximation system inexactly

- Non-linear residual uses 2nd order Jacobian
- Basic idea: small pseudo-steps needed initially for nonlinear convergence, try to aggressively advance to large pseudo-steps to accelerate to steady-state

Mesh Structure

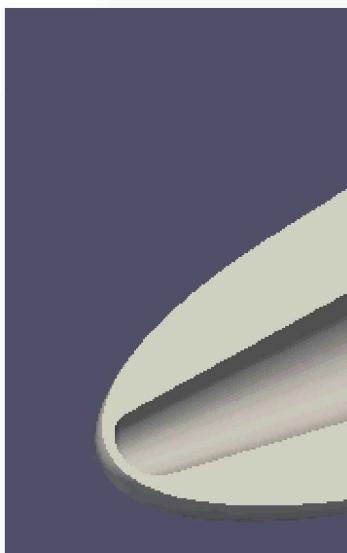
Hypersonic objects generate strong shock-waves leading to

- Strongly flow directional...

- Low dissipation

- Hard to resolve

To help with these



Recall the sleight of hand ...

$$D_{k+1} P_k^T D_k^{-1}$$

that now becomes

$$T_{k+1} P_k^T T_k^{-1}$$

which is not generally sparse.

Essentially, a sparse approximation to \hat{P}_k^T is needed such that $T_{k+1}^{-1} \hat{P}_k^T \approx P_k^T T_k^{-1}$

mesh

Blunt Wedge Problem

Structured mesh: 72^3 , 144^3 or 288^3 cells, 5 degrees of freedom per cell, supersonic input flow: Mach 3.

First attempt: use unstructured vs. structured aggregation, 1 sweep ILU(0) as pre-smoother, 4 levels, coarsening rate: 3 per direction.

Mesh size	72^3	144^3	288^3
Unstructured	46	87	N/C
Structured	36	88	256

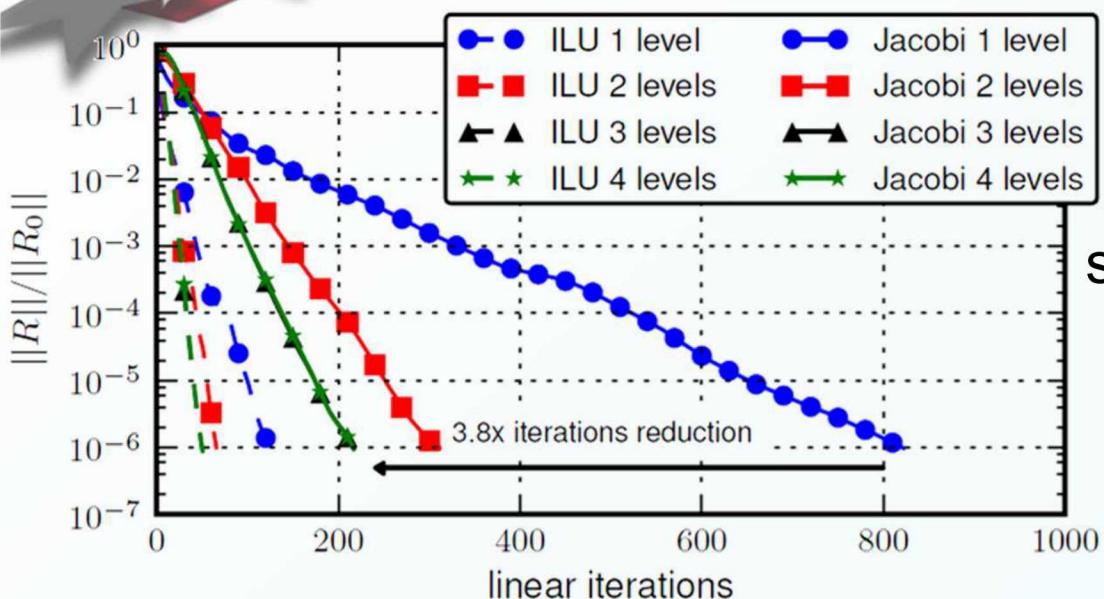
Table: Number of linear iterations (tol=1e-6)

Observations:

- 1 linear interpolation with structured aggregation diverges
- 2 three and four level methods give same convergence
- 3 no scaling for either structured/unstructured methods

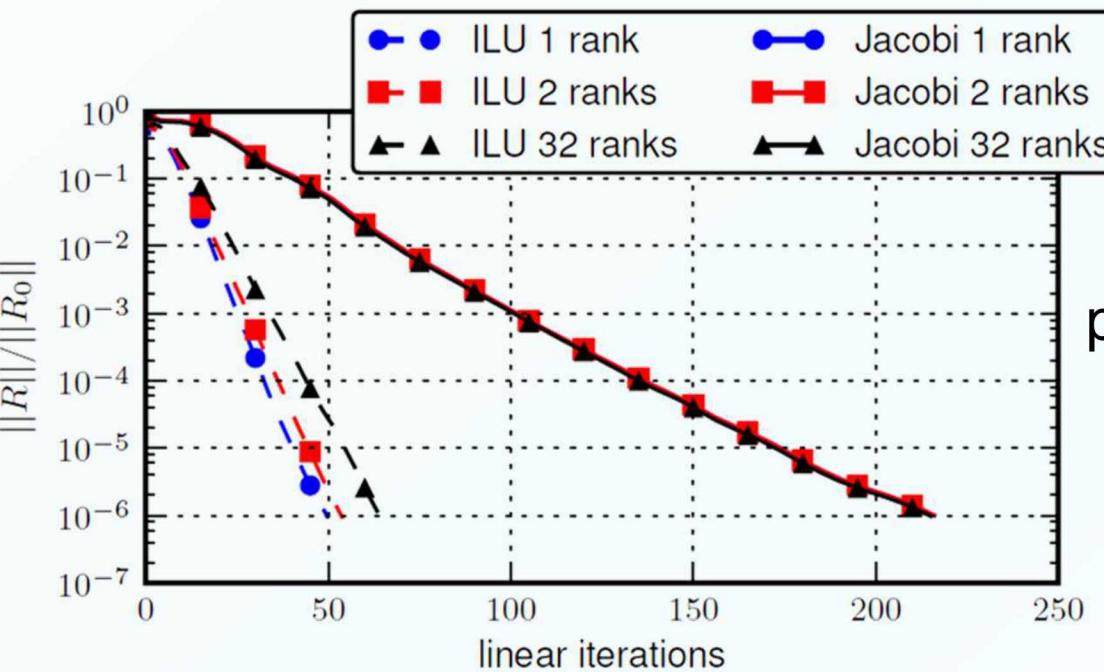
One representative linear system toward the latter part of the simulation with large δt

Line-Jacobi vs. ILU smoothing



serial

Overall good benefit with MG



parallel

Domain decomp. ILU takes fewer iterations in serial but scales less well in parallel

Note: Have successfully run NSA on aero-blunt wedge

Mass Stabilization

- Add diagonal term to coarse grid operator

$$A_{k+1} = R_k A_k P_k + (1-\alpha) R_k M_k P_k$$

where M_k 's are projected mass matrices

α	Unstructured			Structured			Observations
	72^3	144^3	288^3	72^3	144^3	288^3	
1	46	87	N/C	36	88	256	• helpful with structured coarsening
2	45	86	N/C	35	82	205	• optimal α at bottom of U
4	45	87	N/C	34	75	97	
6	46	89	N/C	35	74	86	α is parameterized in terms of a CFL number provided by the user
8	46	92	N/C	36	77	83	
10	48	95	N/C	37	81	85	

Hifire + SA turbulence model

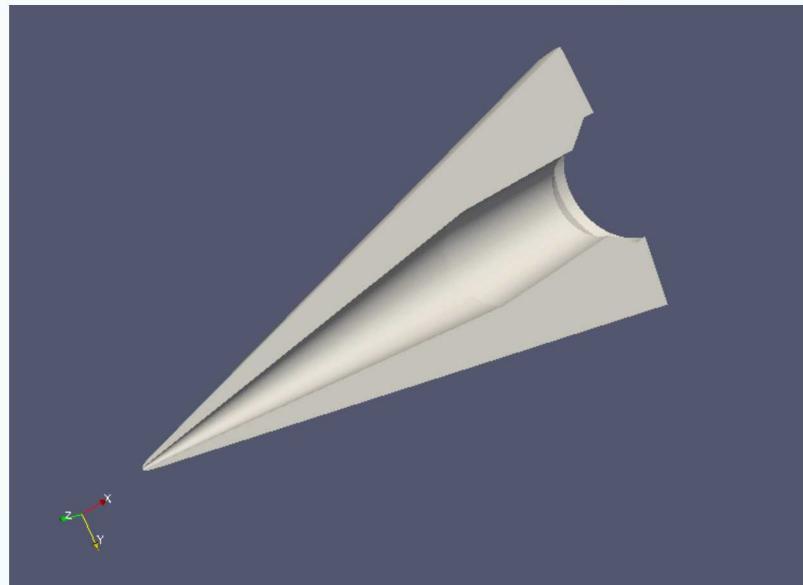
6 dofs per node

$L_3 \approx 13$ M dofs

$L_2 \approx 106$ M dofs

$L_1 \approx 856$ M dofs

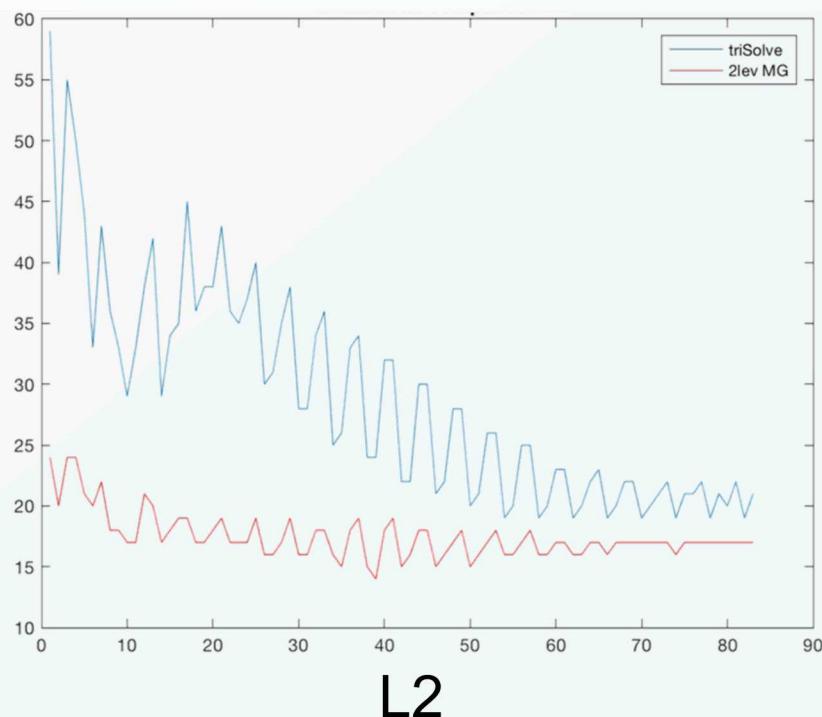
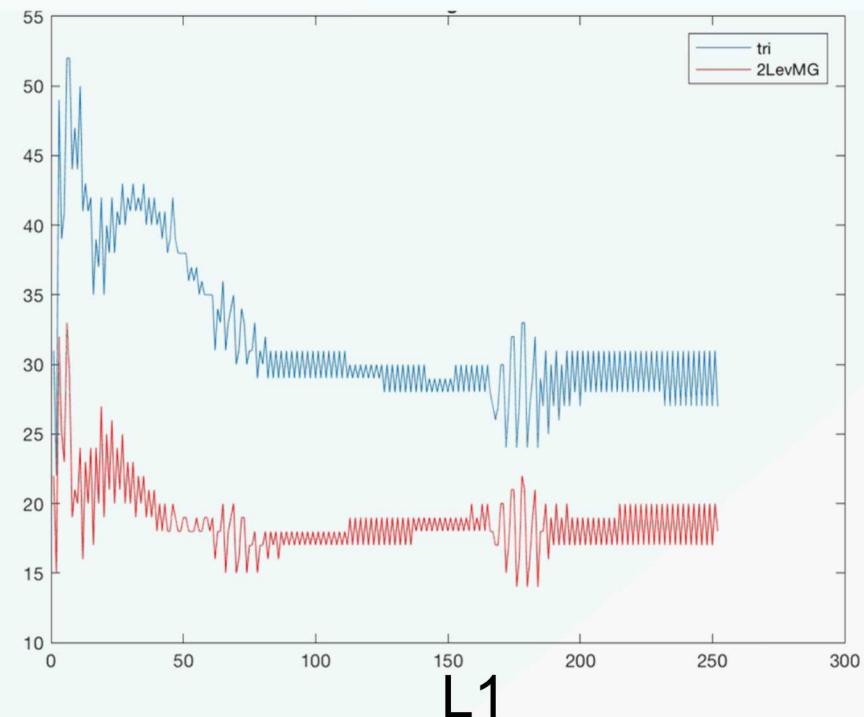
$L_0 \approx 6.8$ B dofs



- Lots of nonlinear convergence problems

2 level results

iterations over different linear solves (1 level in **blue**, 2 level in **red**)



A sequence of linear solves with moderate time step
Nonlinear solver eventually stalls

Conclusions

- Hypersonic problems are hard for multigrid
- NSA polynomial connection relevant for strong convection
 - Assumes (block) Jacobi method converges *reasonably*
 - MG iteration can be *equivalent* to fine Jacobi sweeps + averaging
 - NSA generally better than PCT on model problems
- SPARC hypersonic flow application introduces challenges
 - Stability often lost on coarse grid for PCT & NSA
 - An NSA variant can accelerate convergence over PCT for model problem
 - PCT can accelerate convergence on harder SPARC problems for large δt
 - ... but results are mixed due to stability issues
 - Line solve commuting needs to be worked out for NSA $T_{k+1}^{-1} \hat{P}_k^T \approx P_k^T T_k^{-1}$