Deep dive technical story: SAND2019- 5585PE
2.3.6.03 (SNL NNSA Software) Kokkos:

Some Kokkos Users

Kokkos is the primary on-node programming model at Sandia
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from the ever faster changing HPC architecture landscape

Foundation for the Kokkos EcoSystem

Strong focus on designing a general programming model
— No “one-offs”
— No application specific features
— No hardware specific APl features

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions
of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA-0003525.
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Kokkos Development Team 2.3.6.03 + 2.3.1.10 (soon 2.3.1.18 with RAJA)
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e Dedicated team with a number of staff working most of their time on Kokkos

— Main development team at Sandia in CCR
— Additional teams for Kokkos Kernels, Tools and Support

Kokkos Core: C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang, Mikael Simberg,
H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin
former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova

Kokkos Kernels: S. Rajamanickam, N. Ellingwood, K. Kim, C.R. Trott, V. Dang, L. Berger, J. Wilke, W. McLendon
Kokkos Tools: S. Haommond, C.R. Trott, D. Ibanez, S. Moore; soon: D. Poliakoff
Kokkos Support: C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff,

former: H.C. Edwards, D. Labreche, Fernanda Foertter

e DOE Exascale Machine Support (also supports RAJA via 2.3.1.18)
— ORNL Cray with AMD GPUs + AMD CPUs via AMD HIP developed at ORNL
— ANL Cray with Intel Xe Compute + Intel Xeon via Intel One API compiler developed at ANL

+ Support: https://github.com/kokkos https://kokkosteam.slack.com




Kokkos ATDM Adoption

e All Sandia ATDM Applications based on Kokkos
— SPARC, Empire, Sparta, Cheetah, Gemma
— Target Sierra, Trinity, Astra and later machines

— Kokkos releases are qualified against ATDM applications

e No special Kokkos versions for ATDM though, everybody uses
the same public release

— Issues are generally fed into the public tracking system
and prioritized according to severity

e Los Alamost ATDM projects started working on
incorporating Kokkos

— Regular collaborations with core members from Kokkos
going for multi-day visits to LANL, and LANL teams are
frequent attendees at Kokkos training events

— LANL leads Kokkos/Fortran Interop efforts
e Public release imminent

— FleCSI now working on exploiting Kokkos for node level
parallelism

e Sparta - Production DSMC

— Stochastic PArallel Rarefied-gas Time-accurate

Analyzer

— Steve Plimpton, Stan Moore, Michael Gallis

— Only code to have run on all of Trinity

e 3 Trillion particle simulation using both HSW and KNL

partition in a single MPI run
— Production runs now at 5k GPUs
e Benchmarked on 16k GPUs on Sierra
— Co-Designed Kokkos::ScatterView
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Kokkos Broader ECP Community Adoption

Stakeholder
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Anticipated new capabilities they will use How integration will be achieved

NWChemEx: Kokkos support for A21/Frontier; maybe Kokkos CMake build against release Kokkos
support for on-node PGAS; C++ Compatibility and Backport  version; Currently experimenting
features

Exaalt: Kokkos support for A21/Frontier; C++ Compatibility =~ LAMMPS snapshots Kokkos regularly
and Backport features into its repository

QMCPack: Kokkos support for A21/Frontier; maybe Kokkos =~ CMake build against Kokkos; Attending
support for on-node PGAS; C++ Compatibility and Backport  bootcamps + potential extra meeting
features

ExaWind: Kokkos support for A21/Frontier; C++ Compatibility Using Kokkos via Trilinos

and Backport features

Pele: Kokkos support for A21/Frontier; C++ Compatibility and

Backport features

LANL ATDM: Frontier Support; C++ Compatibility and CMake against Kokkos releases.
Backport features;

SNL ATDM: Frontier Support; C++ Compatibility and Backport Through Trilinos and direct

features; snapshotting of Kokkos

Proxy Apps: support for A21/Frontier; maybe Kokkos support Various build systems using Kokkos
for on-node PGAS; C++ Compatibility and Backport features; and RAJA releases; RAJA Performance

Kokkos/RAJA interoperability Suite is in Proxy App collection;
COPA: Kokkos support for A21/Frontier; maybe Kokkos CMake + Kokkos releases
support for on-node PGAS; C++ Compatibility and Backport

features

ExaGraph: Kokkos support for A21/Frontier; C++

Compatibility and Backport features

ExalLearn: Kokkos support for A21/Frontier; C++ Compatibility CMake + Kokkos releases
and Backport features

Slate: Kokkos support for A21/Frontier; C++ Compatibility and

Backport features

ALExa: Kokkos support for A21/Frontier; C++ Compatibility =~ Through Trilinos.

and Backport features

EXAALT Molecular Dynamics

e Loosely coupled ensemble simulations using
LAMMPS

 Employing SNAP potential

Most accurate classical potential we have for W
and W/He

Offline Machine Learning used to get
parameters

~500x more expensive than Lennard Jones

Large cache footBrint good on CPUs, but makes
ENHLBM memory bandwidth bound on GPUs and

e Collaboration with COPA

e Targets both Aurora and Frontier
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Kokkos Deep Dive
C++ Standard Connection

e Kokkos Team currently involved in more than a dozen proposals
— Leading atomic_ref, mdspan and linear algebra related proposals
— Proposals take years to make it through the committee
— Kokkos Team represents about a quarter of HPC centric folks at comittee

atomic_ref<T> C++20 Executors C++23
e Atomic capabilities like in Kokkos * Getting heterogeneous parallel execution into the standard
e Atomic operations on non-atomic types * Low level interface, build nicer things on top
e Almost arbitrary types e Parallel STL, Kokkos etc.
* Much better alignment with DOE requirements than * Kokkos Team is instrumental in the design process
std::atomic * Helped forge compromise between other participants
* Kokkos and RAJA can drop their own * Thought for direct support of data parallel patterns

implementations of atomics when this is available .
Linear Algebra C++23

basic_mdspan<T,Extents,Layout,Accessor> C++23 * BLAS for C++ with nicer interface
* Based on Kokkos::View * Using mdspan as data handles

* Enables all the things Kokkos::View can do * Scalar type agnostic

* Very extensible: could allow PGAS, 10, compression  Data layout aware

» Kokkos::View will become thing wrapper around mdspan * Support for memory spaces via accessors possible



Kokkos: KPP-3 Impact Goals and Metrics (include all the projects)

Tasks for FY20-23

e FY20-21 Support the Kokkos/RAJA ECP development effort
for A21 and ATS4

e FY20 Port Kokkos to ATS3 (Crossroads).

e FY20-21 Develop coarse grained tasking capabilities to
provide more scheduling flexibility.

e FY21-23 Optimize Kokkos on ATS3 and ATS4.

e FY21-23 Retire implementations of features in Kokkos
which can be replaced by ISO C++ standard capabilities.

S e e e FY20-22 Evaluate software stacks for new platforms as they

* Objective: 200, Threshold: 95, Actual: 35 become available and integrate them into Kokkos’ testing

suite.

e FY22-23 Start implementing proper C++ executor interfaces
to align with future parallelism in the C++ standard.

Integration Goal 1

This goal is on track. Expect passing threshold inFY21 if no
technical problems are encountered
e By FY21 four backends in "production” use for DOE Primary Risks

machines (CPUs, Aurora, Frontier, Sierra) e Immature Compilers on untested platform designs

* Ifall projects at least do regular tests on all four e Time available for new backend development is small
architectures we should get an annual increase of ~40



