Deep dive technical story: SAND2019- 5585PE
2.3.6.03 (SNL NNSA Software) Kokkos:

Some Kokkos Users

Kokkos is the primary on-node programming model at Sandia

— Estimate around 40 projects at Sandia are using Kokkos A \%/ A
- Los Alamos ARL Pacific Northwest

— Slightly more than that outside of Sandia NATIOUAL LASRATORY .
Sandia NATIONAL LABORATORY gt d
K Natoal
1ct . HH aboratories R
 Vision: Performa'nce Portaplllty through C++ | PV u}lg%%%% Fé
— Heavy emphasis on work in the C++ standard committee N‘“’A a
. e reonne
— Transition capabilities into the standard . B @ iLicH | ' TI.ITI
— Make Kokkos a “sliding window” of advanced capabilities U UNIVERSITY N eer) JuticH TECHNISCHE
MUNCHEN
i ; ; - Max-Planck-Institut
* Tight collaboration with vendors allows Kokkos to isolate apps i Pl Rensselaer

from the ever faster changing HPC architecture landscape

Foundation for the Kokkos EcoSystem

Strong focus on designing a general programming model
— No “one-offs”
— No application specific features
— No hardware specific APl features

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions
of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA-0003525.

Kokkos Remote Spaces

Kokkos Development Team 2.3.6.03 + 2.3.1.10 (soon 2.3.1.18 with RAJA)

Zkokkos

¥ e Sandi
- LosAlamos Argonne | Ntiona %OAK RIDGE (% cscs
| National Laboratory S 4

NATIONAL LABORATORY 1
NATIONAL LABORATORY Laboratories

e Dedicated team with a number of staff working most of their time on Kokkos

— Main development team at Sandia in CCR
— Additional teams for Kokkos Kernels, Tools and Support

Kokkos Core: C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang, Mikael Simberg,
H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin
former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova

Kokkos Kernels: S. Rajamanickam, N. Ellingwood, K. Kim, C.R. Trott, V. Dang, L. Berger, J. Wilke, W. McLendon
Kokkos Tools: S. Haommond, C.R. Trott, D. Ibanez, S. Moore; soon: D. Poliakoff
Kokkos Support: C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff,

former: H.C. Edwards, D. Labreche, Fernanda Foertter

e DOE Exascale Machine Support (also supports RAJA via 2.3.1.18)
— ORNL Cray with AMD GPUs + AMD CPUs via AMD HIP developed at ORNL
— ANL Cray with Intel Xe Compute + Intel Xeon via Intel One API compiler developed at ANL

+ Support: https://github.com/kokkos https://kokkosteam.slack.com

Kokkos ATDM Adoption

e All Sandia ATDM Applications based on Kokkos
— SPARC, Empire, Sparta, Cheetah, Gemma
— Target Sierra, Trinity, Astra and later machines

— Kokkos releases are qualified against ATDM applications

e No special Kokkos versions for ATDM though, everybody uses
the same public release

— Issues are generally fed into the public tracking system
and prioritized according to severity

e Los Alamost ATDM projects started working on
incorporating Kokkos

— Regular collaborations with core members from Kokkos
going for multi-day visits to LANL, and LANL teams are
frequent attendees at Kokkos training events

— LANL leads Kokkos/Fortran Interop efforts
e Public release imminent

— FleCSI now working on exploiting Kokkos for node level
parallelism

e Sparta - Production DSMC

— Stochastic PArallel Rarefied-gas Time-accurate

Analyzer

— Steve Plimpton, Stan Moore, Michael Gallis

— Only code to have run on all of Trinity

e 3 Trillion particle simulation using both HSW and KNL

partition in a single MPI run
— Production runs now at 5k GPUs
e Benchmarked on 16k GPUs on Sierra
— Co-Designed Kokkos::ScatterView

SPARTA Weak Scaling

-@-Haswell KNL -=-V100

2 - —i— —u
9 400

Q

ks

2 300

)]

S 200

Q

S —0— —o
& 100

=

S o

9 4 8 16 32 64 128 256

Kokkos Broader ECP Community Adoption

Stakeholder
(WBS)
2.2.1.02

2.2.1.04

2.2.1.06

2.2.2.01
2.2.2.02
2.2.5.01
2.2.5.03

2.2.6.01

2.2.6.04

2.2.6.07
2.2.6.08
2.3.3.13

2.3.3.14

Anticipated new capabilities they will use How integration will be achieved

NWChemEx: Kokkos support for A21/Frontier; maybe Kokkos CMake build against release Kokkos
support for on-node PGAS; C++ Compatibility and Backport version; Currently experimenting
features

Exaalt: Kokkos support for A21/Frontier; C++ Compatibility =~ LAMMPS snapshots Kokkos regularly
and Backport features into its repository

QMCPack: Kokkos support for A21/Frontier; maybe Kokkos =~ CMake build against Kokkos; Attending
support for on-node PGAS; C++ Compatibility and Backport bootcamps + potential extra meeting
features

ExaWind: Kokkos support for A21/Frontier; C++ Compatibility Using Kokkos via Trilinos

and Backport features

Pele: Kokkos support for A21/Frontier; C++ Compatibility and

Backport features

LANL ATDM: Frontier Support; C++ Compatibility and CMake against Kokkos releases.
Backport features;

SNL ATDM: Frontier Support; C++ Compatibility and Backport Through Trilinos and direct

features; snapshotting of Kokkos

Proxy Apps: support for A21/Frontier; maybe Kokkos support Various build systems using Kokkos
for on-node PGAS; C++ Compatibility and Backport features; and RAJA releases; RAJA Performance

Kokkos/RAJA interoperability Suite is in Proxy App collection;
COPA: Kokkos support for A21/Frontier; maybe Kokkos CMake + Kokkos releases
support for on-node PGAS; C++ Compatibility and Backport

features

ExaGraph: Kokkos support for A21/Frontier; C++

Compatibility and Backport features

ExalLearn: Kokkos support for A21/Frontier; C++ Compatibility CMake + Kokkos releases
and Backport features

Slate: Kokkos support for A21/Frontier; C++ Compatibility and

Backport features

ALExa: Kokkos support for A21/Frontier; C++ Compatibility =~ Through Trilinos.

and Backport features

EXAALT Molecular Dynamics

e Loosely coupled ensemble simulations using
LAMMPS

 Employing SNAP potential

Most accurate classical potential we have for W
and W/He

Offline Machine Learning used to get
parameters

~500x more expensive than Lennard Jones

Large cache footBrint good on CPUs, but makes
ENHLBM memory bandwidth bound on GPUs and

e Collaboration with COPA

e Targets both Aurora and Frontier

K AtomSteps/s

Node Performance

40
30 W Broadwell
20 m KNL
10 H Volta
0 [E— [

Kokkos Deep Dive
C++ Standard Connection

e Kokkos Team currently involved in more than a dozen proposals
— Leading atomic_ref, mdspan and linear algebra related proposals
— Proposals take years to make it through the committee
— Kokkos Team represents about a quarter of HPC centric folks at comittee

atomic_ref<T> C++20 Executors C++23
e Atomic capabilities like in Kokkos * Getting heterogeneous parallel execution into the standard
e Atomic operations on non-atomic types * Low level interface, build nicer things on top
e Almost arbitrary types e Parallel STL, Kokkos etc.
* Much better alignment with DOE requirements than * Kokkos Team is instrumental in the design process
std::atomic * Helped forge compromise between other participants
* Kokkos and RAJA can drop their own * Thought for direct support of data parallel patterns

implementations of atomics when this is available .
Linear Algebra C++23

basic_mdspan<T,Extents,Layout,Accessor> C++23 * BLAS for C++ with nicer interface
* Based on Kokkos::View * Using mdspan as data handles

* Enables all the things Kokkos::View can do * Scalar type agnostic

* Very extensible: could allow PGAS, 10, compression Data layout aware

» Kokkos::View will become thing wrapper around mdspan * Support for memory spaces via accessors possible

Kokkos: KPP-3 Impact Goals and Metrics (include all the projects)

Tasks for FY20-23

e FY20-21 Support the Kokkos/RAJA ECP development effort
for A21 and ATS4

e FY20 Port Kokkos to ATS3 (Crossroads).

e FY20-21 Develop coarse grained tasking capabilities to
provide more scheduling flexibility.

e FY21-23 Optimize Kokkos on ATS3 and ATS4.

e FY21-23 Retire implementations of features in Kokkos
which can be replaced by ISO C++ standard capabilities.

S e e e FY20-22 Evaluate software stacks for new platforms as they

* Objective: 200, Threshold: 95, Actual: 35 become available and integrate them into Kokkos’ testing

suite.

e FY22-23 Start implementing proper C++ executor interfaces
to align with future parallelism in the C++ standard.

Integration Goal 1

This goal is on track. Expect passing threshold inFY21 if no
technical problems are encountered
e By FY21 four backends in "production” use for DOE Primary Risks

machines (CPUs, Aurora, Frontier, Sierra) e Immature Compilers on untested platform designs

* Ifall projects at least do regular tests on all four e Time available for new backend development is small
architectures we should get an annual increase of ~40

