

CRYSTALLINE R&D PRIORITIES DISCUSSION

Paul Mariner

Sandia National Laboratories

SFWD

SPENT FUEL & WASTE DISPOSITION

Annual Working Group Meeting
UNLV-SEB – Las Vegas, Nevada
May 21-23, 2019

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

CRYSTALLINE R&D PRIORITIES

- Priority Score Matrix in 2019 Roadmap Update
 - State-of-Art Level (SAL)
 - Importance to Safety Case (ISC)

SAL: Medium-High		1	2	3	4	5
ISC:	High (5)	L	M	M	M-H	H
Medium (3)	L	M	M	M	M	M
Low (1)	L	L	L	L	L	L

H = High; M-H = Medium-High; M = Medium; L = Low

CRYSTALLINE R&D PRIORITIES IN 2019 DISPOSAL R&D ROADMAP UPDATE

High Priority

A-08	Evaluation of ordinary Portland cement (OPC)
C-15	Design improved backfill and seal materials
C-16	Development of new waste package concepts and models for evaluation of waste package performance for long-term disposal
E-14	In-Package Chemistry
I-04	Experiment of bentonite EBS under high temperature, HotBENT
I-08	DECOVALEX-2019 Task A: Advective gas flow in bentonite

Medium-High Priority

C-01	Discrete Fracture Network (DFN) Model
C-06	Buffer Erosion (is this a gap in our program?) Is it too site specific for generic R&D?
C-08	Interaction of Buffer w/ Crystalline Rock
C-11	Investigation of fluid flow and transport in low permeability media (clay materials).
C-13	Evaluation and upscaling of the effects of spatial heterogeneity on radionuclide transport
C-14	Radionuclide sorption and incorporation by natural and engineered materials: Beyond a simple Kd approach
C-17	Model DFN evolution due to changes in stress field
E-03	THC processes in EBS
E-04	Waste Package Degradation Model (mechanistic)
E-06	Waste Package Degradation Testing
I-02	FEBEX-DP Modeling: Dismantling phase of the long-term FEBEX heater test - Modeling
I-09	DECOVALEX-2019 Task C: GREET (Groundwater REcovery Experiment in Tunnel) at Mizunami URL, Japan
P-17	Multi-Component Gas Transport

HIGH IMPACT PRIORITIES IN 2019 DISPOSAL R&D ROADMAP UPDATE

- High Impact R&D Topics

High Impact R&D Topics	High-Priority R&D Activities	Medium-High-Priority R&D Activities
High temperature impacts	D-1, D-4, I-4 , I-6, I-16, E-11, S-5	I-2 , I-3, I-7, E-10
Buffer and seal studies	I-4 , E-9, E-17, A-8 , C-15	I-2 , I-3, I-7, A-4, C-6 , C-8 , C-11
Coupled processes (Salt)	S-1, S-3, S-4, I-12, I-13	I-14, S-2, S-7, S-8, S-11
Gas flow in the EBS	I-6, I-8 , I-18	I-9 , P-17
Criticality	D-1, D-3, D-4, D-5	
Waste Package degradation	C-16 , P-12	E-4 , E-6
In-Package Chemistry	E-14	E-2, E-20, P-15, P-16
Generic PA Models		P-1, P-2, P-4, P-11, P-13, P-14
Radionuclide Transport		C-11 , C-13 , C-14 , P-15, P-16
DFN issues		I-21, C-1 , C-17
GDSA Geologic Modeling		O-2, O-3
THC Processes in EBS		E-3

Maroon color denotes crystalline-related activities.

DISCUSSION

- For each High or Medium-High R&D Activity
 - Do we agree with the “R&D Needed” text in our database? If not, how should we change it?
 - How can we translate the Activity into an input to GDSA? If we cannot, then which component of the safety case does the activity support?
 - Are the Activity and the GDSA reference case consistent with each other? If not, how can we make them consistent?
 - Tentatively schedule sit-down meeting among the project staff who need to integrate on a particular Activity and identify the primary topics for discussion

considerations
f. Integration with storage facilities

facility
e. Waste acceptance criteria
f. Impact of pre-closure activities on post-closure

• Durability/technical basis
d. Shafts/seals technical basis
e. UQ (aleatory, epistemic)

• Basis
c. Aquifer/other geologic units technical basis
d. UQ (aleatory, epistemic)

• Surface environment
- Flora & fauna
- Human behavior

4. Disposal System Safety Evaluation

4.1 Pre-closure Safety Analysis

- a. Surface facilities and packaging
- b. Mining and drilling
- c. Underground transfer and handling
- d. Emplacement operations
- e. Design basis events & probabilities
- f. Pre-closure model/software validation
- g. Criticality analyses
- h. Dose/consequence analyses

4.2 Post-closure Safety Assessment

- a. FEPs analysis/screening
- b. Scenario construction/screening
- c. PA model/software validation
- d. Barrier/safety function analyses and subsystem analyses
- e. PA and Process Model Analyses/Results
- f. Uncertainty characterization and analysis
- g. Sensitivity analyses

4.3 Confidence Enhancement

- a. R&D prioritization
- b. Natural/anthropogenic analogues
- c. URL & large-scale demonstrations
- d. Monitoring and performance confirmation
- e. International consensus & peer review
- f. Verification, validation, transparency
- g. Qualitative and robustness arguments

5. Synthesis & Conclusions

- a. Key findings and statement(s) of confidence
- b. Discussion/disposition of remaining uncertainties
- c. Path forward