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Introduction

• Hesitancy using AM parts in safety critical
applications

• Improvement of process and quality of parts
achieved through in-situ monitoring

• Thermal in-situ monitoring focused on, due to
relationship between thermal history and
mechanical properties

• Emissivity is key factor in accuracy of thermal
measurements
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Background

• Metal Additive Manufacturing Processes

• Thermal Monitoring in Additive Manufacturing

• Radiation/Emissivity

• Surface Roughness Definitions

• Surface Roughness in Additive Manufacturing

• Surface Roughness and Emissivity
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Direct Metal Laser Sintering (DMLS)

• Popular AM technique

• Layer-wise process

• Argon or nitrogen
atmospheres

• Extreme thermal
gradients resulting in
residual stresses
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5 Image from: SPI Lasers
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Direct Metal Laser Sintering (DMLS)

• Argon or nitrogen
atmospheres

• Extreme thermal
gradients resulting in
residual stresses
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Electron Beam Additive Manufacturing (EBAM)

• Similar to DMLS

• Uses an electron beam
to pre-heat and melt
metal powder

• Process occurs in a
vacuum
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Laser Engineering Net Shaping (LENS)

• Directed energy deposition

• Powder feed around laser
instead of powder bed

• Able to be coupled with
CNC milling machine for
dimensional and feature
finishing
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Thermal Monitoring in AM

• Pre-heat in EBAM

• Melt pool measurements in
DMLS and LENS

• Cooling rate monitoring in
DMLS and LENS

• IR camera wavelength ranges
— Short-wave: 1-3 microns

— Mid-wave: 3-5 microns

— Long-wave: 7.5-13 microns

Thermal Image of Build Surface in EBAM Machine after

Beam Scanning has Occurred

9 Image from: Rodriguez et al.
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Radiation

• Black Body

• Stefan-Boltzmann Law
E = EGT4

• Gray Body

• Emissivity
Material, wavelength,
temperature, surface
conditions
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Radiation

• A + R + T 1

A = Absorption

R = Reflection

T = Transmission

• Under thermal
equilibrium conditions

Absorption = Emission
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Surface Roughness

• ASME 646.1

• ISO 4287

• Ra is dominant in
literature (90% of AM
literature references
this when discussing
surface roughness)
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Surface Roughness Definitions
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13 Sourced from: ASMBE B46.1
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Arithmetic Mean Roughness

• Used in over 90% of AM
literature to describe
surface roughness

• Common parameter for
traditional manufacturing
as well

• Suggested as being
insufficient as a delineator
between different AM
surfaces

do
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14 Sourced from: ASMBE B46.1
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Root Mean Square Roughness

• Common parameter
used to describe surface
roughness in both AM
and traditional
manufacturing

• Used in optical literature
as the reference number
for surface roughness
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15 Sourced from: ASMBE B46.1
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Root Mean Square Slope

• Suggested to be a
better delineator of
different AM surfaces

• Optical literature
suggested slope of the
surface may be related
to emissivity trends
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16 Sourced from: ASMBE B46.1
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Arithmetic Tilt Angle

• Optical literature
suggested slope of the
surface may be related
to emissivity trends

• Will be used to
describe emissivity
trends later on
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17 Sourced from: ASMBE B46.1
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Surface Roughness in AM

• Top surface is the focus since that is what is visible for
in-situ monitoring techniques

• Shear forces in melt pool create ripple effect which is
then frozen due to high processing speeds

• Balling
Laser power too high causing currents where outward
forces exceed surface tension in melt pool and material is
ejected
Raleigh Instability: scan speed too fast compared to laser
power so balling occurs due to long melt pool breaking up
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Surface Roughness Relationship with
Emissivity

Case 1: Rq /A << 1

• Optically smooth surface,
where the roughness of the
surface does not contribute
to the thermal emissivity of
the object.

Case 2: 0.2 < Rq < 1

• Intermediate region where there is no
easy defined relationship between
emissivity and surface roughness. The
roughness of the surface does
contribute but is not solely responsible
for affecting the emissivity.

Case 3: 1 < Rq /A

• The geometric region, where
it is suggested that the slope
of the peaks and valleys of the
surface can play a key role in
emissivity trends.

19 Sourced from: Wen and Mudawar, "Modeling the Effects of Surface Roughness on the Emissivity of Aluminum Alloys"
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Problem Statement

• Emissivity can be affected by extremely rough surfaces
Additive manufacturing has large values and ranges of
surface roughness

Wavelengths used for monitoring are at same length scales
as surface roughness of additive parts

• Accuracy of thermal monitoring is paramount for
quality control of parts

Cool down measurements when material has solidified is
key in determining materials properties
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Research Plan

Task 1: Defining surface parameter(s) that affect thermal
emissivity

Task 2: Investigate effects view angle has on emissivity
changes caused by vary surface roughness

Task 3: Select and test in-situ surface texture
measurement for the purpose of in build adjustment of
emissivity for thermal monitoring instruments
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First Task: Define Surface parameter(s) that
affects emissivity

• Simulation Work

Model basic surface features to discover what geometric
characteristics are affecting emissivity

Discover phenomena behind emissivity trends

• Experimental Measurements

Fabricate metallic AM sample with a range of SR

Correlate measured surface roughness with measured emissivity

Discover which new and pre-existing surface roughness
parameters best describe emissivity behavior

22
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Simulation Strategy Lumerical FDTD

• Finite Difference Time Domain (FDTD)
Calculates electric and magnetic fields at different time
steps

• Maxwell solver
Electric field, magnetic field, electric flux, and magnetic
flux are calculated for Yee Cell (fundamental spatial unit)

• Chosen over ray tracing due to surface features on
same length scale as light wavelength range

Ray tracing may not accurately capture all optical behavior
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Simulation Strategy

• Basic 2D periodic geometries were chosen for
initial simulations

Less computation time and memory requirements
Geometries chosen to observe effects of certain SR
parameters and various characteristics of surface
topography

• Parameter sweeps
• Wavelength Range: 1-14 microns

• Material 304 Stainless Steel
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Overall Simulation Set Up

• 2D geometry (z plane goes to infinity)

• X axis boundary conditions: periodic
• Y axis boundary conditions: perfectly matched

layer (PML)

• Plane wave source

• Power monitors above and below surface to
measure reflection and transmission

• Mesh size: .1 microns
— Didn't gain significant accuracy when using

smaller sizes

Simulation

Region

IF1

Power Monitor

Plane Wave

Source

Override Mesh

lown— SS 316 Structure

Power Monitor
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Simulation Surface Roughness Exploration

• Looked into existing SR
parameters' ability to describe
emissivity trends
— Ra and RAq

— Suggested in previous literature

• Looked at new surface
roughness measurements
— Peak or Valley

• Height
• Width
• Angle

Peak Angle Valley Angle

Peak Width

Peak Height

26
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2D Triangle Set Up

• Isosceles Triangle

• Periodic Boundaries

• Variables

— Height of triangle: 0-30 microns

— Width of Triangle: 1-30 microns

27
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2D Triangle Results

Ra vs Emissivity for lambda = 1 micron
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28 Image from: https://fluidpowerjournal.com/beyond-ra-surface-finish-matters-seal-performance/
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2D Triangle Results

• As observation wavelength
increases, trends fall apart

• Ratio of Rq/Ä falls below 1

Intermediate optical region

Emissivity not dominantly
dependent on surface
roughness
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3D Pyramid Set Up

• 3D pyramid with identical
geometry to 2D periodic
triangle

• Periodic Boundaries

• Symmetry assumption used to
reduce simulation space

• Variables

— Height of pyramid: 5-30 microns

— Width of pyramid: 5-30 microns

30
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Parabolic Valley Set Up

• Similar dimensions to triangle

• Periodic Boundaries

• Observe effects of more life-
like surface shape

• Variables

— Height of valley: 5-30 microns

— Width of valley: 5-30 microns

32
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Triangular vs Parabolic Valley

34
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Flat Valley Set Up

• 2 isosceles triangle + flat
valley in between

• Periodic Boundaries

• Variables

— Height of triangles: 5-30
microns

— Valley width: 5-20 microns

35
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Multi-Sized Triangle Set Up

• 2 isosceles triangle with
difference heights and
widths

• Periodic Boundaries

• Variables (Height or Width)
Large triangle: 5-30 microns

Small triangle: 5-30 microns

Constant Width/Height
• Small triangle: 10 microns

• Large triangle: 10 microns

1111P'411111.111

1 1
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Skewed Triangle Set Up

• 2 Skewed Triangles + variable
height isosceles triangle

• Periodic Boundaries

• Variables

Height: 0-25 microns

X position of skewed triangle
peaks: 0-20 microns

Skewed Triangles Isosceles Triangle

39
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Simulation Conclusions
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41 Sourced from: ASMBE B46.1
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Phenomenological Explanation

• Internal reflections increase as
angle of valley decreases

• Mendenhall Wedge Effect (1911)
narrow wedges formed from a strip
of material that cause black body-
like behavior

• "By forming a wedge one is causing
incident radiation to undergo more
reflections, and hence more
absorption, and hence approaching
more and more closely what is
called a ̀ blackbodr(Taylor 1987)

42 Sourced from: Mendenhall, "On the Emissivity Power of Wedge-Shaped Cavities and Their Use in Temperature Measurements"
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Phenomenological Explanation

180

Eeez',14 1 re

E = emissivity

A = Absorption

r - reflection power of the
material surface

0 = internal wedge angle

43 Sourced from: Mendenhall, "On the Emissivity Power of Wedge-Shaped Cavities and Their Use in Temperature Measurements"
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Experimental Evaluation of
Surface Roughness Effects on Emissivity

• Build parameter selection

• Part fabrication

• Surface roughness measurements

• Emissivity measurements

• Correlation between emissivity
and surface roughness parameters

• Oxide comparison measurements

W
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Sample Build Setting Selection
• Build parameter

exploration common when
bringing up an AM machine

• Variables included:

Laser power, scan speed,
layer thickness, powder size

• Properties measured:

Surface roughness, density,
tensile strength, ductility
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Sample Build Setting Selection

• Selected parameters by
looking at:

Surface roughness values

Volumetric energy
density (VED) values

Laser Power
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Sample Build Settings

• Geometry: 25mm square,
6mm thick

• Scan Strategy: 0/90

• Hatch Spacing: 50 microns

• Laser Spot Size: 100 microns

• Layer Thickness: 30 microns

• Powder: ProX 320 316 SS

— Mean particle size: 25
microns

Set Parameter Laser
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Scan

elocity
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B 140 W 1400 mm/s
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Build Layouts
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Completed Builds — 72 parts

4 9



st The University of Texas at Austin CO WHAT STARTS HERE CHANGES THE WORLD

Potential Surface Roughness Measurement

Techniques
• X-ray Coherence Tomography (XCT)

— Insufficient resolution for entire area of
part

— Surface detection issues (grayscale images)

• White light interferometry
— Surface too rough

• Stylus-based contact profilometry
— Possible aliasing

— Possible damage to equipment

• Fringe pattern projection microscopy
— Large areas of measurement
— High resolution
— Non-contact
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Keyence VR3100 Microscope

• Uses light triangulation to measure height of
samples

• Light bands are illuminated onto surface and
CMOS sensor looks at light distortion to
calculate height map

• Can measure height differences up to +/-5
mm

• Can measure up to 3 cm square with no
distortion due to specialized lenses

• Raw surfaces output in excel spreadsheet for
further analysis

C1\10.5 Light source

Receiver Transmitter lens
lens

Object being
measured

51 Image from: Keyence One-shot Measuring Macroscope VR-3000 Series
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Surface Roughness Analysis

• Custom MATLAB program

• Input was raw height maps

• No filtering except plane
removal
— Least squares plane

• Multiple zooms/resolutions
used

• Standard and custom SR
parameters calculated
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Emissivity Measurements

• Hemispherical Directional
Reflectometer (HDR)

— Directional reflectance is measured at
5-10 degree increments

— Radiation reflected from sample is
directed by a mirror that directs
radiation to the coupled FTIR

• Wavelength Range: 2.5-24 microns

• Time intensive due to multiple
measurements taken at each angle

RADIATION
DETECTOR

HEMIELLIPŠOID

SAMPLE RADIATION
SOURCE

54 Image from: Surface Optics Corporation, SOC-100 HDR
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Emissivity Measurements

• Fourier Transform Infrared

Spectroscopy

— Using interference of able to
produce multiple spectra from
broad band light source

— Analyzes the various reflected
spectra off the sample to
determine reflection at specific
wavelengths

Coherent
Light Source

Stationary Mirror

Split Beam

Beam
Splitter

Sample

Delayed
Split Beam

Recombined
Beam

Detector

41-0.

Moving Mirror

55 Image from: https://en.wikipedia.org/wiki/Fourier-transform_infrared_spectroscopy
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Ra Relationship with Emissivity

• Poor descriptor of
emissivity changes

• R2 (correlation coefficient)

Value represents how
closely the predictive best
fit line fits the emissivity
data based on Ra values

LJ
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RAci Relationship with Emissivity

• RAq was a better
indicator of emissivity
trends than Ra

• R2 value improves
significantly

Root Mean Square Slope
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Best New Parameter Correlation

• Valley geometry dictates
amount of internal
reflections

• New parameters are not
preferred however

• Had highest R2 value for all
new surface parameters
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Best Existing Parameters Correlation

• Product of arithmetic
mean height and
arithmetic tilt angle gave
best correlation

• Best fit line equation will
be used to estimate
emissivity value based on
roughness measurements
in future tasks
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Non-dimensional SR parameters
Weighted by Wavelength

Wei•hted RA• vs Emissivi
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Difference between RAci and RaxRAa

0.6

0.5

0.4
:5
2 0.3

0.2

0.1

0.8

:5 0.6

E 0.4

0.2

Weighted RAq vs Emissivity

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

RAq (1/microns)

Weighted Ra*RAa vs Emissivity

Weighted Surface Roughness Values

60

50

(7,'
cle) 40

•

•

•

s I

0.18

0.16

0.14

0.12

CU
'CS

30 —e<
co
cc
X 20

•
•

•

•
•

•• 
•

••

• •

••
•

•

•
:11

•
• •
•• i

0.1

0.08

0.06
• • 0

•
• ••

• •
• • • 0.04

10 •

• $
9 
9

9: • 9 • r

[ 0.02

0 0

0 5 10 15 20 25 30 35

Sample

10 15 20 25 30 35 40 45 50 55 60

Ra*R a (degrees) • Weighted RaRda • Weighted Rdq

R
A
q
/
X
 (
1/
mi
cr
on
s)

 

62



ti The University of Texas at Austin c0 WHAT STARTS HERE CHANGES THE WORLD

-at

Experimental Conclusions

/

RAq =
1 Ca (c1Z

L jo

2dx)RAct 
=
1 I' 

dx
L l dx

63 Sourced from: ASMBE B46.1
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Experimental Conclusions

1 f L CI lal 
Ra = T lz(x)Idx x RAct = L1 Jo 

ldxl 
dx

13

Product of Ra and RAa had the best correlation
with emissivity trends

64 Sourced from: ASMBE B46.1
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Oxide Comparison Measurement

• To ensure oxide layer on surface
did not contribute significantly
to emissivity trends

• Auger Electron Spectroscopy
(AES) used
— Mills surface at micro-level with

Argon ion source
— Composition of material is

measured from electron energy
— Observe composition levels to

determine thickness of oxide layer
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Oxide Layer Measurements - AES
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Oxide Layer Measurement Comparison

• Changes in oxide layers
are on the same
magnitude

• Layer thickness
differences insufficient for
accounting for emissivity
changes between samples
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Task 1 Conclusions

• Internal reflections are phenomena that is
affecting emissivity when in the geometric
optical region

• Valley angle was best indicator of emissivity
changes in simulation results

• RaxR,Aa had the best correlation with
emissivity in experimental tests
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Task 2: Exploration of View Angle Sensitivity

of Emissivity

• Purpose is to observe effects of view angle on emissivity for
a range of sample roughness

• Angles will be 0, 30, and 45 degrees from normal (majority
of literature had cameras that were 25-45 degrees from
normal)

• Measurements will be taken at a range of temperatures to
see if emissivity trends vary as temperature is increased
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Vacuum Furnace Set Up

• Double walled chamber has cooling IR Camera

channels

• Argon atmosphere used to simulate in Safety

Relief

build conditions Valve

• Sapphire viewing window limits camera Double

Walled

options to SWIR or MWIR due to lack Chamber

of transmission in the long-wave
infrared range

• FLIR SC6811 MWIR camera used

Sapphire

«11 Window

Exhaust

Po rt
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Experimental Set Up

• Sample and holders contained in an
aluminum oxide crucible

• Bare type K TCs welded to back of samples
using Micro TIG welder (Orion Pulse 250i)

• Angled sample holders were made of 316
stainless steel

• Aluminum foil shroud placed over crucible
assembly to create aperture to reduce
environmental radiation from reaching the
camera

Thermocouple

Sample

Crucible

Sample Holder

Stainless Steel
Spacers
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Emissivity Calculation

• Multiple images saved with MWIR camera with a range
of emissivity values

• Average sample temperature calculated for each image

• Average sample temperature compared to surface
thermocouple value

• MWIR image that minimized error between calculated
and actual sample temperature was used to estimate
emissivity value
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Room Temperature Results No Window

Emissivity Dependence on View Angle
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Elevated Temperature Results (MWIR only)
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Elevated Temperature Results (MWIR only)
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Task 2 Conclusions

• As view angle increases, emissivity decreases

The rougher the surface, emissivity is less
dependent on view angle(shadowing is not as
effective)

• 45 degree angle minimizes emissivity differences

• After certain temperature threshold, differences in
view angle are reduced so not applicable at higher
temperatures
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Task 3: In-Situ Surface Roughness

Measurements

• Purpose: to test capability of measuring
surface roughness of as built AM surfaces in-
situ

• Test viability of using in-situ measurements to
adjust emissivity on a layer wise basis
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Possible In-Situ SR Measurement

Techniques

• Laser profilometry

• Raman Spectroscopy

• Moiré Profilometry

• Optical Coherence
Tomography

Germanium
shierd ing olas

•-• .

Build p Latforrn
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Optical Coherence Tomography (OCT)

• Time of flight differences creates interference
pattern

• Ease of implementation

• LD-600 (Laser Depth Dynamics)

• Implemented on an Aconity Lab L-PBF research
machine

• Experimental axial resolution: 25 microns
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Experimental Design

• lcm cubes were built with a range of
process parameters

• OCT measurements taken on top
surface of parts during build

• Fringe projection microscopy (FPM)
measurements taken after the build
with Keyence VR3100

• Measurements compared for
resolution capabilities and emissivity
estimations
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Experimental Procedure

• OCT system at Lawrence Livermore used
• Parts shipped from Lawrence Livermore to
Sandia for post-build measurements

• Top surface measured with OCT

• Measurements were compared with
measurements gathered from Keyence
VR3100 high resolution images



el
The University of Texas at Austin in WHAT STARTS HERE CHANGES THE WORLD

1.2

1

— 0.80
a.)
E
tto
cu
-cs
x

0.6
E
co
a
cc
x

2 0.4

0.2

0

Roughness and Resultant Estimated Emissivity Differences

. 0. .
• • . . :
a .1 J J J a 

.

i
1 2 3 4 5 6 7 8 9

Sample Number

• OCT Roughness • Keyence Roughness • OCT Emissivity • Keyence Emissivty

0.3

0.25

0.2

0.15

0.1

0.05

0

Es
ti
ma
te
d 
Em

is
si

vi
ty

 

82



rjThe University of Texas at Austin c0Iri WHAT STARTS HERE CHANGES THE WORLD

Task 3 Conclusions

• Filtering causes aliasing of surface features, which
reduces the accuracy of the measurements

• However, even for the roughest surfaces, the
emissivity differences did not exceed .12

• Average deviation did not exceed .04

• The extremely rough surfaces would most likely
not be produced during normal manufacturing
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Overall Conclusions

• Geometric Optical Region

• Flax R,Aa

• View angle increase = emissivity decrease

• 45 degree best view angle tested

• OCT measurement technique suitable for in-
situ surface roughness measurements
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Future Work

• Improve predictive ability for wider range of
surface conditions and materials

• New materials

Aluminum, Titanium

• Look at effects of SR on other IR cameras

• Improve OCT Accuracy
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Qu estio ns?
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Surface Roughness Relationship with
Emissivity

Case 1: Rq /X << 1

• Optically smooth surface, where the roughness of
the surface does not contribute to the thermal
emissivity of the object.

Case 2: 0.2 < R /X < 1

• Intermediate region where there is no easy defined
relationship between emissivity and surface
roughness. The roughness of the surface does
contribute but is not solely responsible for affecting
the emissivity.

Case 3: 1 < R /X

• The geometric region, where it is suggested that the
slope of the peaks and valleys of the surface can
play a key role in emissivity trends.
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Surface Roughness Measurement
Technique Comparison

• Keyence consistently reads rougher, showing
possible aliasing of Dektak

LENS milled

Keyence Dektak Difference

LENS glazed

Keyence Dektak Difference

DMLS A

Keyence Dektak Difference

DMLS B

Keyence Dektak Difference

DMLS Milled A

Keyence Dektak Difference

DMLS Milled B

Keyence Dektak Difference

Ra (ii.m) 3.390 0.642 2.748 2.020 0.567 1.453 6.970 7.402 -0.432 9.790 6.429 3.361 1.570 1.813 -0.243 1.380 1.705 -0.325

Rq (ii.m) 4.130 0.744 3.386 2.530 0.677 1.853 8.720 9.029 -0.309 12.500 8.646 3.854 1.970 2.262 -0.292 1.750 1.992 -0.242

3.067 1.653 0.371 3.607 0.268

Average Difference:

0.284

1.542
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Positional Dependence of SR
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Emissivity Measurements

Energy Density Effect on Emissivity
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Measurement Resolution Importance

• Resolution of surface
roughness measurements
had a large effect on
correlation strength to
emissivity

• Measurement spacing did
not affect correlation
strength
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Height 1

.
1 

Valley Measurements

/ Rda
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Valley Angle Calculation
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Unusual Surface Feature Effects
• Vertical walls — just insert into calculation as really tall

slope
• Partially or completely un-sintered particles that create

overhangs
Does increase, but difficult way to measure in-situ
Outside of scope — future studies w/ XCT

• Effects of oxidation/method of storing samples before
vacuum furnace — all samples were stored under same
conditions
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Vacuum Furnace Set Up
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OCT Estimation Error Quantification

El= E1aT14 E1 E2aT24

• .12 emissivity difference
300 K 4 65 degrees error

1073 K -> 233 degrees error

• .04 emissivity difference (total average)
300 K -> 26 degrees error

1073 K 94 degrees error
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Publication Plan

• At least 2 Journal Articles
Emissivity vs SR (Simulations and then
Experimental validation)

OCT in-situ SR measurements

• 2 conference papers
SFF 2019

Angular effect on observed emissivity
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Repeatability/Uncertainty
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HDR Emissivity Measurements

• 10 measurements on AL6061 sample

x = .237 a = .0027 N.%)

• Standard uncertainty — .7/V-Ii, = 8.5e-4
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Keyence Surface Measurements

• Ra — std dev is .17% of measurement

• Rrms — std dev is .25% of measurement

• FlAa — std dev is .16% of measurement

• RAci — std dev is .79% of measurement

• UB 1.80 microns
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Simulations

• Used for searching trends and relative nature

• Didn't use absolute values from simulations
for any purpose
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Vacuum Furnace Measurements

• Atmospheric control of the lab
23 +/- 1° Celsius

40 +/- 5% Relative Humidity

• MWIR camera — unable to estimate due to inability to
propagate input uncertainties to emissivity since
conversion equation is unknown

• Thermocouples +/-2.2°C uncertainty
Translates to standard deviation of .02 emissivity value
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