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Purpose

To improve the accuracy of in-situ monitoring by
accounting for the effects of extreme surface
roughness of as built metallic additively
manufactured parts has on the thermal
emissivity
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Agenda

 Background

* |nvestigating Surface Characteristics that affect Emissivity
— Simulations
— Experimental Measurements

* Investigating View Angle and Temperature Effects on
Emissivity

* In-Situ Surface Roughness Measurement Testing

 Conclusions

e Future Work



Background

Direct Metal Laser Sintering

Thermal Monitoring in Additive Manufacturing
Radiation/Emissivity

Surface Roughness Definitions

Surface Roughness in Additive Manufacturing
Surface Roughness and Emissivity
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Direct Metal Laser Sintering (DMLS)
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5 Image from: SPI Lasers
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Thermal Monitoring in AM

e Pre-heatin EBAM

* Melt pool measurements in
DMLS and LENS

* Cooling rate monitoring in
DMLS and LENS

* |R camera wavelength ranges
— 1-3
— 3-5
— 7.4-13

6 Image from: Rodriguez et al.
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Radiation/Emissivity

* Black body
* Gray body
* Emissivity
— Material dependent

— Wavelength dependent
— Temperature dependent

+ A+R+T=1 4

Blackbody spectral radiant emittance

7 Image from: FLIR Systems, “Ultimate
Infrared Handbook for R&D Professionals”
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Surface Roughness

* ASME B46.1
* |SO 4287

* R,isdominantin
literature (90% of AM
literature references
this when discussing
surface roughness)
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Arithmetic Mean Roughness
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9 Sourced from: ASMBE B46.1
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Root Mean Square Roughness
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10 Sourced from: ASMBE B46.1
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Root Mean Square Slope
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Arithmetic Tilt Angle
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Surface Roughness in Additive Manufacturing

e Build-to build and position variability

* Shear forces in melt pool create ripple effect which is
then frozen due to high processing speeds

* Balling

— Laser power too high causing currents where outward
forces exceed surface tension in melt pool and material is
ejected

— Raleigh Instability: scan speed too fast compared to laser

power so balling occurs due to long melt pool breaking up
13
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Surface Roughness Relationship with
Emissivity

Case 1: R, /A<<1

e  Optically smooth surface, where the roughness of i e —om i
the surface does not contribute to the thermal oo o im0 — sl o>
emissivity of the object. - omm‘ 02<ah<
Case 2: 0.2 <R, /A<1 E onctontas 2% ot Goman dbution | B Ay BPOF (oo
* Intermediate region where there is no easy defined pimpren| 22 F;mm_g_;;j_;:’
relationship between emissivity and surface §: | At oy o @
roughness. The roughness of the surface does e oo et Mo ——
contribute but is not solely responsible for affecting |, U prir - ongl ) ek, 1)
the emissivity. g, 985 § mmqn}ﬁ;ﬁhgrq
o\ -
Case 3: 1 <R, /A —— g pi0) =L [ (8,8, cos8,a,
e The geometric region, where it is suggested that the Armmelongh ngx:;ﬂ
slope of the peaks and valleys of the surface can R S
Gl =1=pd8) (d) (Kanayama, 1972)

play a key role in emissivity trends.

14 Sourced from: Wen and Mudawar, “Modeling the Effects of Surface Roughness on the Emissivity of Aluminum Alloys”
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Problem Statement

Additive manufacturing has large values and ranges of
surface roughness

Wavelengths used for monitoring are at same length
scales as surface roughness of additive parts

Emissivity can be affected by extremely rough surfaces

Accuracy of thermal monitoring is paramount for

qguality control of process and parts in metal AM
processes
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Research Plan

* Defining surface parameter(s) that affect thermal
emissivity

 Determine range of emissivity values seen during in
build AM conditions and sensitivity of view angle

* |n-situ surface texture measurement for the purpose of
in build adjustment of emissivity for thermal
monitoring instruments

16
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First Task: Define Surface parameter(s) that
affects emissivity

* Simulation Work
— Discover surface characteristics that affect emissivity
— Discover phenomena behind emissivity trends
 Experimental Measurements
— Fabricate metallic AM sample with a range of SR
— Correlate measured surface roughness with measured emissivity

— Discover which new and pre-existing surface roughness
parameters best describe emissivity behavior

17
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Simulation Strategy — Lumerical FDTD

* Finite Difference Time Domain (FDTD)

— Calculates electric and magnetic fields at different time
steps

e Maxwell solver

— Electric field, magnetic field, electric flux, and magnetic
flux are calculated for Yee Cell (fundamental spatial unit)

* Chosen over ray tracing due to surface features on
same length scale as light wavelength range

— Ray tracing may not accurately capture all optical behavior

18
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Simulation Strategy

Basic 2D periodic geometries were chosen for
initial simulations

— Less computation time and memory requirements

— Geometries chosen to observe effects of certain SR
parameters and various characteristics of surface
topography

Parameter sweeps
Wavelength Range: 1-14 microns
Material — 304 Stainless Steel
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Overall Simulation Set Up

2D geometry (z plane goes to infinity) Power Monitor

Plane Wave

X axis boundary conditions: periodic Source

Y axis boundary conditions: perfectly
matched layer (PML) simuiation JIY

Region

Plane wave source Override Mesh

Power monitors above and below
surface to measure reflection and
transmission

SS 316 Structure

Power Monitor
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Simulation Surface Roughness Exploration

 Looked into existing SR
parameters’ ability to describe
emissivity trends
— R, and RAq
— Suggested in previous literature

e Looked at new surface
roughness measurements
— Peak or Valley
* Height
. Width
 Angle

Valley Angle

|

Peak Angle

Peak Height

21
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2D Triangle Set Up

* |sosceles Triangle
 Periodic Boundaries

 Variables

— Height of triangle: 0-30 microns
— Width of Triangle: 1-30 microns

22
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2D Triangle Results

Ra vs Emissivity for lamda = 1 microns
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Ra vs Emissivity for lamda = 7 microns
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2D Triangle Results
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increases, trends fall apart | mmiiiiﬂgiigﬁlﬂiﬁﬁm

0 5 10 15

e Ratio of Rq/)\ falls below 1 f R, (mirens)

— Intermediate optical region

Emissivity
o
o
(&) ]

Emissivity

— Emissivity not dominantly
dependent on surface
roughness

7 7 4 1 I 1
g KL/
T
HhE
Ml i s
M. BN SO
PRIy T B S fablcial Lt
v SN Soian v 5 G S iiaie
1 | Y

0 20 40 60 80 100 120 140 160 180
Peak Angle (degrees)

Emissivity
o
o ©
o o —_
T

24



The University of Texas at Austin ED WHAT STARTS HERE CHANGES THE WORLD

3D Pyramid Set Up

3D pyramid with identical
geometry to 2D periodic
triangle

e Periodic Boundaries

 Symmetry assumption used to
reduce simulation space

* Variables
— Height of pyramid: 5-30 microns

— Width of pyramid: 5-30 microns

25
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2D Triangle vs 3D Pyramid Results

R, vs Emissivity for lamda = 1 microns R, vs Emissivity for lamda = 1 microns
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Parabolic Valley Set Up

* Similar dimensions to triangle
* Periodic Boundaries

e (Observe effects of more life-
like surface shape

 Variables

— Height of valley: 5-30 microns
— Width of valley: 5-30 microns

27
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Triangular vs Parabolic Valley

R_ vs Emissivity for lamda = 1 microns
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Emissivity

Ra vs Emissivity for lamda = 1 microns
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Triangular vs Parabolic Valley

29
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e 2isosceles triangle + flat
valley in between

e Periodic Boundaries

* Variables
— Height of triangles: 5-30
microns
— Valley width: 5-20 microns

30
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Flat Valley Results

Ra vs Emissivity for lamda = 1

Ra vs Emissivity for lamda = 14
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Multi-Sized Triangle Set Up

e 2 isosceles triangle with
difference heights and
widths

e Periodic Boundaries

e Variables (Height or Width)
— Large triangle: 5-30 microns
— Small triangle: 5-30 microns
— Constant Width/Height

* Small triangle: 10 microns
e Large triangle: 10 microns

32
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Height Change vs Width Change
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Skewed Triangle Set Up

e 2 Skewed Triangles + variable
height isosceles triangle

e Periodic Boundaries
 Variables
— Height: 0-25 microns

— X position of skewed triangle
peaks: 0-20 microns

Skewed Triangles Isosceles Triangle

34
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Skewed Triangle Results

Valley Angle vs Emissivity
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Simulation Conclusions

* R, isrelated to underlying surface aspects that affect emissivity,
but is not a good indicator

 RAqg has a better relationship to emissivity changes, but still not
pest indicator

* Average valley angle has best relationship with emissivity changes
due to phenomena of internal reflections being the cause for
increased emissivity

36
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Phenomenological Explanation

Internal ref
angle of val

Mendenhal

ections increase as
ey decreases

Wedge Effect (1911) —

Narrow wege

ges formed from a strip

of material that cause black body-
like behavior

“By forming a wedge one is causing
incident radiation to undergo more

reflections,
absorption,

and hence more
and hence approaching

more and more closely what is

called a ‘bla

ckbody’”(Taylor 1987)
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Phenomenological Explanation

180

E = emissivity
A = Absorption

r = reflection power of the
material surface

0 = internal wedge angle

38
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Experimental Evaluation of
Surface Roughness Effects on Emissivity

* Build Parameter Selection

* Part Fabrication

e Surface Roughness Measurements
* Emissivity Measurements

* Correlation between emissivity
and surface roughness parameters

39
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Sample Build Settings

Geometry: 25mm square,
6mm thick

Scan Strategy: 0/90
Layer Thickness: 30 microns
Hatch Spacing: 50 microns

_aser Spot Size: 100 microns
Powder: ProX 320 316 SS

— Mean particle size: 25
microns

200.00

180.00

160.00

140.00

120.00

100.00

80.00

Laser Power (Watts)

60.00

40.00

20.00

0.00

WHAT STARTS HERE CHANGES THE WORLD

SAq for 30 Micron Layer Thickness Density Cubes

500

1000 1500
Scan Speed (mm/s)

2000

@ ProX 200 Powder
® ProX 320 Powder
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Build Layouts

41
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Potential Surface Roughness Measurement
Techniques

e X-ray Coherence Tomography (XCT)

— Insufficient resolution for entire area of

part 5 : = : | [ -203.22
— Surface detection issues (grayscale images) o g TR St | -210
* White light interferometry Shaae SR Shune |
— Surface too rough o BRSNS RN S S S s Gty |

=240

e Stylus-based contact profilometry
— Possible aliasing
— Possible damage to equipment o S N e 2%
*  Fringe pattern projection microscopy S e e R
— Large areas of measurement ' ' =
— High resolution
— Non-contact

-250

-260

Oprm
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Keyence VR3100 Microscope

* Uses light triangulation to measure height of ~ *'* it b

samples e T 7
* Light bands are illuminated onto surface and /

CMOS sensor looks at light distortion to

: S
calculate height map Jﬂ_ :‘a
* Can measure height differences up to +/-5 ico— /./ “‘“
mm A \ 3 /
) Receiver - ':',‘/f"j Transmitter lens
* Can measure up to 3 cm square with no ere J P

distortion due to specialized lenses

 Raw surfaces output in excel spreadsheet for
further analysis

Object being
measured

44 Image from: Keyence One-shot Measuring Macroscope VR-3000 Series
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Surface Roughness Analysis

* Custom MATLAB program

* |nput was raw height
maps

* No filtering except plane B e
removal SR

o "_5,.‘_ i ST -
LS SR N

zooms/resolutions used

* Standard and custom SR
parameters calculated

45



The University of Texas at Austin WHAT STARTS HERE CHANGES THE WORLD

Surface Roughness Results

Sample Area Slopes Area Average Roughness
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Emissivity Measurements

Hemispherical Directional
Reflectometer (HDR)

— Directional reflectance is measured at
5-10 degree increments

— Radiation reflected from sample is
directed by a mirror that directs
radiation to the coupled FTIR

Wavelength Range: 2.5-24 microns

Baseline measurements performed
on polished AM and stock samples

|
RADIATION I
DETECTOR i
| i

HEMIELLIPSOID

RADIATION
SOURCE

SAMPLE

Image from: Surface Optics Corporation, SOC-100 HDR
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Emissivity Measurements

48

Fourier Transform Infrared
Spectroscopy

— Using interference of able to
produce multiple spectra from
broad band light source

— Analyzes the various reflected
spectrum off sample to
determine reflection at specific
wavelengths

WHAT STARTS HERE CHANGES THE WORLD

Stationary Mirror

Split Beam
Delayed '
Split Beam E |
Coherent
Light Source

Beam '

Splitter -
o Recombined <>
Beam Moving Mirror

&

Detector

Image from: https://en.wikipedia.org/wiki/Fourier-transform_infrared_spectroscopy
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Emissivity Measurements

Orientation Effect on Emissivity

——SS 316 Baseline
® ® (degree
® 90 degree

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16
Sample Number

190 degrees

~ 0 degrees

—)

Scanning Direction
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Emissivity Measurements

Energy Density Effect on Emissivity
Surface Roughness as a Function of Volumetric Energy
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R, and RAq Correlations

Average Surface Roughness
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Best Correlations

Average Surface Roughness Multiplied by Average Tilt

Valley Angle Divided by Valley Height Angle
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Non-dimensional SR parameters —
Weighted by Wavelength

Weighted Surface Roughness Values
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Difference between RAq and R_RAa

Weighted RAq vs Emissivity Weighted Surface Roughness Values
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Measurement Resolution Importance

Measurement Resolution Tradeoff with Fit of Surface

. Re S O | u t i O n Of S u rfa Ce Measurement to Emissivity Data
B Inverse Pixel Resolution ~ —e—R Squared Value

roughness measurements .
had a large effect on

correlation strength to 506
emissivity i
* Measurement spacing did =
not affect correlation . 0 £
o N g
strength ” " 20

Magnification
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Oxide Layer Measurements - AES

Sample A from Set 2 Build 2 Oxide Average
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Oxide Layer Measurement Comparison

Sputter Time vs Surface Roughness Sputter Time vs Emissivity
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Second Task: Exploration of View Angle
Sensitivity of Emissivity

* Purpose is to observe effects of view angle on emissivity for
a range of sample roughness

* Angles will be 0, 30, and 45 degrees from normal (majority
of literature had cameras that were 25-45 degrees from
normal)

* Measurements will be taken at a range of temperatures to
see if emissivity trends vary as temperature is increased
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Vacuum Furnace Set Up

Double walled chamber has cooling I I
ChannE|S Sapphire Window

=x B

Argon atmosphere used to simulate in Safety Relief
build conditions - X1

Double Walled

Sapphire viewing window limits camera cramoer N
options to SWIR or MWIR due to lack .
of transmission in the long-wave veaer |
infrared range

FLIR SC6811 MWIR camera used

Crucible
Assembly

Exhaust Port

x4
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Experimental Set Up

Sample and holders contained in an
aluminum oxide crucible

Bare type K TCs welded to back of samples
using Micro TIG welder (Orion Pulse 250i)

Angled sample holders were made of 316
stainless steel

Aluminum foil shroud placed over crucible
assembly to create aperture to reduce
environmental radiation from reaching the
camera

Thermocouple

Sample ~ P Sample Holder

Stainless Steel

/ Spacers
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Room Temperature Results — No Window
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Elevated Temperature Results (MWIR only)
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1.2 1.2
1 H BB B A 1 B B OB BN
[}
0.8 = : ¢ 0.8
. . ® ) - [ |
Z m A Fo
'S 'S [ |
2 i 2 ™
2 0.6 . - M 0 degrees 2 0.6 . A A M 0 degrees
& A L o A 30 degrees £ A A 30 degrees
0.4 u ® ® 45 degrees 0.4 m e ® 45 degrees
[ |
° 1 o °*
0.2 . 02 A
A ®
0 0
0 100 200 300 400 0 100 200 300 400
Sample Temperature (Celsius) Sample Temperature (Celsius)

62



The University of Texas at Austin WHAT STARTS HERE CHANGES THE WORLD

Elevated Temperature Results (MWIR only)
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View Angle Conclusions

As view angle increases, emissivity decreases

— The rougher the surface, the less effect view angle
has on emissivity (shadowing is not as effective)

45 degree angle minimizes emissivity differences

After certain temperature threshold, differences in
view angle are reduced — so not applicable at higher
temperatures
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Th|rd Task In-Situ Surface Roughness
Measurements

* Purpose: to test capability of measuring
surface roughness of as built AM surfaces in-

situ
* Test viability of using in-situ measurements to
adjust emissivity on a layer wise basis
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Possible In-Situ SR Measuremen
Techniques

Laser profilometry

Raman Spectroscopy

Moiré Profilometry

Optical Coherence Tomography

STARTS HERE CHANGES THE WORLD
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Optical Coherence Tomography (OCT)

* Time of flight differences creates interference
pattern

* Ease of implementation

* LD-600 (Laser Depth Dynamics)

* Implemented on an Aconity Lab L-PBF research
machine

* Experimental axial resolution: 25 microns
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e J1cm cubes were built with a
range of process parameters

* OCT measurements taken on top
surface of parts during build

* Keyence VR3100 measurements
taken after the build

* Measurements compared for
resolution capabilities and
emissivity estimations
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Experimental Procedure

OCT system at Lawrence Livermore used

Parts shipped from Lawrence Livermore to
Sandia for post-build measurements

Top surface measured with OCT

Measurements were compared with
measurements gathered from Keyence
VR3100 high resolution images
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OCT vs Keyence Measurements

Roughness and Resultant Estimated Emissivity Differences
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OCT Conclusions

Filtering causes aliasing of surface features, which
reduces the accuracy of the measurements

However, even for the roughest surfaces, the
emissivity differences did not exceed .12

Average deviation did not exceed .04

The extremely rough surfaces would most likely
not be produced during normal manufacturing
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Overall Conclusions

Geometric Optical Region

R_RAa

View angle increase = emissivity decrease
45 degree best view angle tested

OCT measurement technique suitable for in-
situ surface roughness measurements
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Future Work

Improve predictive ability for wider range of
surface conditions and materials

New materials

— Aluminum, Titanium
Look at effects of SR on other IR cameras
Improve OCT Accuracy
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Questions?
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Surface Roughness Measurement

Technique Comparison

* Keyence consistently reads rougher, showing
possible aliasing of Dektak

LENS milled LENS glazed DMLS A DMLS B DMLS Milled A DMLS Milled B

Keyence Dektak Difference Keyence Dektak Difference Keyence Dektak Difference Keyence Dektak Difference Keyence Dektak Difference Keyence Dektak Difference

Ra(um) 3.390 0.642 2.748 2.020 0.567 1.453 6.970 7.402 -0.432 9.790 6.429 3.361 1.570 1.813 -0.243 1380 1.705 -0.325

Rg (um) 4.130 0.744 3.386 2.530 0.677 1.853 8.720 9.029 -0.309 12.500 8.646 3.854 1970 2.262 -0.292 1.750 1.992 -0.242

3.067 1.653 0.371 3.607 0.268 0.284

Average Difference: 1.542
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Positional Dependence of SR

Positional Percent Deviation from Roughness Average
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Valley Measurements

A Rda

Height 1

Height 2

Width
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The University of Texas at Austin

Valley Angle Calculation
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Unusual Surface Feature Effects

* Vertical walls — just insert into calculation as really tall
slope

* Partially or completely un-sintered particles that create
overhangs
— Does increase, but difficult way to measure in-situ
— Outside of scope — future studies w/ XCT

» Effects of oxidation/method of storing samples before
vacuum furnace — all samples were stored under same
conditions
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Publication Plan

e At least 2 Journal Articles

— Emissivity vs SR (Simulations and then
Experimental validation)

— OCT in-situ SR measurements
e 2 conference papers

— SFF 2019
— Angular effect on observed emissivity
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Repeatability/Uncertainty
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HDR — Emissivity Measurements

* 10 measurements on AL6061 sample
x =.237 o0 =.0027 (~1%)
e Standard uncertainty = x/y/n = 8.5e-4
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Keyence Surface Measurements

* R,—std devis.17% of measurement

* R, .—stddevis.25% of measurement
e RAa —std devis .16% of measurement
e RAgq—std devis.79% of measurement

* U= 3.04 microns

34
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Simulations

e Used for searching trends and relative nature

e Didn’t use absolute values from simulations
for any purpose
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Vacuum Furnace Measurements

 Atmospheric control of the lab
— 23 +/-1° Celsius
— 40 +/- 5% Relative Humidity

e MWIR camera — unable to estimate due to inability to
propagate input uncertainties to emissivity since
conversion equation is unknown

* Thermocouples +/-2.2°C uncertainty
— Translates to standard deviation of .02 emissivity value
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Skewed Triangles Results

Normalized Width/Height Ratio with lamda
T T T T T T

Normalized Valley Angle with lamda

WHAT STARTS HERE CHANGES THE WORLD
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