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Purpose

To improve the accuracy of in-situ monitoring by
accounting for the effects of extreme surface

roughness of as built metallic additively
manufactured parts has on the thermal

emissivity
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Agenda

• Background

• Investigating Surface Characteristics that affect Emissivity
Simulations
Experimental Measurements

• Investigating View Angle and Temperature Effects on
Emissivity

• In-Situ Surface Roughness Measurement Testing

• Conclusions

• Future Work
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Background

• Direct Metal Laser Sintering

• Thermal Monitoring in Additive Manufacturing

• Radiation/Emissivity

• Surface Roughness Definitions

• Surface Roughness in Additive Manufacturing

• Surface Roughness and Emissivity
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Direct Metal Laser Sintering (DMLS)
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Thermal Monitoring in AM

• Pre-heat in EBAM

• Melt pool measurements in
DMLS and LENS

• Cooling rate monitoring in
DMLS and LENS

• IR camera wavelength ranges
— 1-3
- 3-5

- 7.4-13

6 Image from: Rodriguez et al.
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Radiation/Emissivity

• Black body

• Gray body

• Emissivity
Material dependent

Wavelength dependent

Temperature dependent

• A + R + T 1
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Surface Roughness

• ASME 646.1

• ISO 4287

• Ra is dominant in
literature (90% of AM
literature references
this when discussing
surface roughness)
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Arithmetic Mean Roughness
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Root Mean Square Roughness
-.dig- do
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10 Sourced from: ASMBE B46.1
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RAq

Root Mean Square Slope
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Arithmetic Tilt Angle
-.41r— do

RAct = —
1 IL 

dx
L 0 ldxl

12 Sourced from: ASMBE B46.1



ti The University of Texas at Austin c0Imi WHAT STARTS HERE CHANGES THE WORLD

Surface Roughness in Additive Manufacturing

• Build-to build and position variability

• Shear forces in melt pool create ripple effect which is
then frozen due to high processing speeds

• Balling
Laser power too high causing currents where outward
forces exceed surface tension in melt pool and material is
ejected

Raleigh Instability: scan speed too fast compared to laser
power so balling occurs due to long melt pool breaking up

13
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Surface Roughness Relationship with
Emissivity

Case 1: Rq /X << 1

• Optically smooth surface, where the roughness of
the surface does not contribute to the thermal
emissivity of the object.

Case 2: 0.2 < R /X < 1

• Intermediate region where there is no easy defined
relationship between emissivity and surface
roughness. The roughness of the surface does
contribute but is not solely responsible for affecting
the emissivity.

Case 3: 1 < R /X

• The geometric region, where it is suggested that the
slope of the peaks and valleys of the surface can
play a key role in emissivity trends.
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Problem Statement

• Additive manufacturing has large values and ranges of
surface roughness

• Wavelengths used for monitoring are at same length
scales as surface roughness of additive parts

• Emissivity can be affected by extremely rough surfaces

• Accuracy of thermal monitoring is paramount for
quality control of process and parts in metal AM
processes
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Research Plan

• Defining surface parameter(s) that affect thermal
emissivity

• Determine range of emissivity values seen during in
build AM conditions and sensitivity of view angle

• In-situ surface texture measurement for the purpose of
in build adjustment of emissivity for thermal
monitoring instruments
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First Task: Define Surface parameter(s) that
affects emissivity

• Simulation Work

Discover surface characteristics that affect emissivity

Discover phenomena behind emissivity trends

• Experimental Measurements

Fabricate metallic AM sample with a range of SR

Correlate measured surface roughness with measured emissivity

Discover which new and pre-existing surface roughness
parameters best describe emissivity behavior
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Simulation Strategy Lumerical FDTD

• Finite Difference Time Domain (FDTD)
Calculates electric and magnetic fields at different time
steps

• Maxwell solver
Electric field, magnetic field, electric flux, and magnetic
flux are calculated for Yee Cell (fundamental spatial unit)

• Chosen over ray tracing due to surface features on
same length scale as light wavelength range

Ray tracing may not accurately capture all optical behavior
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Simulation Strategy

• Basic 2D periodic geometries were chosen for
initial simulations

Less computation time and memory requirements
Geometries chosen to observe effects of certain SR
parameters and various characteristics of surface
topography

• Parameter sweeps
• Wavelength Range: 1-14 microns

• Material 304 Stainless Steel
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Overall Simulation Set Up

• 2D geometry (z plane goes to infinity)

• X axis boundary conditions: periodic
• Y axis boundary conditions: perfectly

matched layer (PML)

• Plane wave source

• Power monitors above and below
surface to measure reflection and
transmission

Simulation

Region

FIE

11

Power Monitor

Plane Wave

Source

Override Mesh

SS 316 Structure

Power Monitor
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Simulation Surface Roughness Exploration

• Looked into existing SR
parameters' ability to describe
emissivity trends
— Ra and RAq

— Suggested in previous literature

• Looked at new surface
roughness measurements
— Peak or Valley

• Height
• Width
• Angle

Peak Angle Valley Angle

Peak Width

Peak Height
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2D Triangle Set Up

• Isosceles Triangle

• Periodic Boundaries

• Variables

— Height of triangle: 0-30 microns

— Width of Triangle: 1-30 microns

22
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z'

2D Triangle Results
Ra vs Emissivity for lamda = 1 microns
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2D Triangle Results

• As observation wavelength
increases, trends fall apart

• Ratio of Rq/Ä falls below 1

Intermediate optical region

Emissivity not dominantly
dependent on surface
roughness
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3D Pyramid Set Up

• 3D pyramid with identical
geometry to 2D periodic
triangle

• Periodic Boundaries

• Symmetry assumption used to
reduce simulation space

• Variables

— Height of pyramid: 5-30 microns

— Width of pyramid: 5-30 microns
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Parabolic Valley Set Up

• Similar dimensions to triangle

• Periodic Boundaries

• Observe effects of more life-
like surface shape

• Variables

— Height of valley: 5-30 microns

— Width of valley: 5-30 microns
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Triangular vs Parabolic Valley
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Flat Valley Set Up

• 2 isosceles triangle + flat
valley in between

• Periodic Boundaries

• Variables

— Height of triangles: 5-30
microns

— Valley width: 5-20 microns

30
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Multi-Sized Triangle Set Up

• 2 isosceles triangle with
difference heights and
widths

• Periodic Boundaries

• Variables (Height or Width)
Large triangle: 5-30 microns

Small triangle: 5-30 microns

Constant Width/Height
• Small triangle: 10 microns

• Large triangle: 10 microns

1 1
32
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Skewed Triangle Set Up

• 2 Skewed Triangles + variable
height isosceles triangle

• Periodic Boundaries

• Variables

Height: 0-25 microns

X position of skewed triangle
peaks: 0-20 microns

Skewed Triangles Isosceles Triangle
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Simulation Conclusions

• Ra is related to underlying surface aspects that affect emissivity,
but is not a good indicator

• RAq has a better relationship to emissivity changes, but still not
best indicator

• Average valley angle has best relationship with emissivity changes
due to phenomena of internal reflections being the cause for
increased emissivity
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Phenomenological Explanation

• Internal reflections increase as
angle of valley decreases

• Mendenhall Wedge Effect (1911)
narrow wedges formed from a strip
of material that cause black body-
like behavior

• "By forming a wedge one is causing
incident radiation to undergo more
reflections, and hence more
absorption, and hence approaching
more and more closely what is
called a ̀ blackbodr(Taylor 1987)
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Phenomenological Explanation

180

Eeez',14 1 re

E = emissivity

A = Absorption

r - reflection power of the
material surface

6 = internal wedge angle



tnj The University of Texas at Austin c0 WHAT STARTS HERE CHANGES THE WORLD

Experimental Evaluation of
Surface Roughness Effects on Emissivity

• Build Parameter Selection

• Part Fabrication

• Surface Roughness Measurements

• Emissivity Measurements

• Correlation between emissivity
and surface roughness parameters
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Sample Build Settings

• Geometry: 25mm square,
6mm thick

• Scan Strategy: 0/90

• Layer Thickness: 30 microns

• Hatch Spacing: 50 microns

• Laser Spot Size: 100 microns

• Powder: ProX 320 316 SS
- Mean particle size: 25

microns
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Build Layouts
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Completed Builds — 72 parts

4 2
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Potential Surface Roughness Measurement

Techniques
• X-ray Coherence Tomography (XCT)

— Insufficient resolution for entire area of
part

— Surface detection issues (grayscale images)

• White light interferometry
— Surface too rough

• Stylus-based contact profilometry
— Possible aliasing

— Possible damage to equipment

• Fringe pattern projection microscopy
— Large areas of measurement
— High resolution
— Non-contact
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m
24134.79
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Keyence VR3100 Microscope

• Uses light triangulation to measure height of
samples

• Light bands are illuminated onto surface and
CMOS sensor looks at light distortion to
calculate height map

• Can measure height differences up to +/-5
mm

• Can measure up to 3 cm square with no
distortion due to specialized lenses

• Raw surfaces output in excel spreadsheet for
further analysis

C1\10.5 Light source

Receiver Transmitter lens
lens

Object being
measured

44 Image from: Keyence One-shot Measuring Macroscope VR-3000 Series
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Surface Roughness Analysis

• Custom MATLAB program
• Input was raw height

maps
• No filtering except plane

removal
• Multiple

zooms/resolutions used
• Standard and custom SR

parameters calculated
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Emissivity Measurements

• Hemispherical Directional
Reflectometer (HDR)

— Directional reflectance is measured at
5-10 degree increments

— Radiation reflected from sample is
directed by a mirror that directs
radiation to the coupled FTIR

• Wavelength Range: 2.5-24 microns

• Baseline measurements performed
on polished AM and stock samples

RADIATION
DETECTOR

e-N

HEMIELLIPŠOID

SAMPLE RADIATION
SOURCE

47 Image from: Surface Optics Corporation, SOC-100 HDR
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Emissivity Measurements

• Fourier Transform Infrared

Spectroscopy

— Using interference of able to
produce multiple spectra from
broad band light source

— Analyzes the various reflected
spectrum off sample to
determine reflection at specific
wavelengths

Coherent
Light Source

Stationary Mirror

Split Beam

Beam
Splitter

Sample

Delayed
Split Beam

Recombined
Beam

Detector

41-0.

Moving Mirror

48 Image from: https://en.wikipedia.org/wiki/Fourier-transform_infrared_spectroscopy
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Emissivity Measurements

Energy Density Effect on Emissivity
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Ra and RAci Correlations
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Best Correlations
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Non-dimensional SR parameters
Weighted by Wavelength
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Difference between RAci and RaRAa
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Measurement Resolution Importance

• Resolution of surface
roughness measurements
had a large effect on
correlation strength to
emissivity

• Measurement spacing did
not affect correlation
strength
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Oxide Layer Measurements - AES
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Oxide Layer Measurement Comparison

Sputter Time vs Surface Roughness
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Second Task: Exploration of View Angle
Sensitivity of Emissivity

• Purpose is to observe effects of view angle on emissivity for
a range of sample roughness

• Angles will be 0, 30, and 45 degrees from normal (majority
of literature had cameras that were 25-45 degrees from
normal)

• Measurements will be taken at a range of temperatures to
see if emissivity trends vary as temperature is increased
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Vacuum Furnace Set Up

• Double walled chamber has cooling
channels

• Argon atmosphere used to simulate in
build conditions

...ilR Camera

Safety Relief

Valve stim

Double Walled• Sapphire viewing window limits camera Chamber sssai

options to SWIR or MWIR due to lack
of transmission in the long-wave
infrared range

• FLIR SC6811 MWIR camera used

Filament

Heater

Sapphire Window

Crucible

Assembly

Exhaust Port
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Experimental Set Up

• Sample and holders contained in an
aluminum oxide crucible

• Bare type K TCs welded to back of samples
using Micro TIG welder (Orion Pulse 250i)

• Angled sample holders were made of 316
stainless steel

• Aluminum foil shroud placed over crucible
assembly to create aperture to reduce
environmental radiation from reaching the
camera

Thermocouple

Sample

Crucible

Sample Holder

Stainless Steel
Spacers
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Room Temperature Results No Window

MWIR Emissivity Dependence on View Angle
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Elevated Temperature Results (MWIR only)
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Elevated Temperature Results (MWIR only)
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View Angle Conclusions

• As view angle increases, emissivity decreases

The rougher the surface, the less effect view angle
has on emissivity (shadowing is not as effective)

• 45 degree angle minimizes emissivity differences

• After certain temperature threshold, differences in
view angle are reduced — so not applicable at higher
temperatures
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Third Task: In-Situ Surface Roughness
Measurements

• Purpose: to test capability of measuring
surface roughness of as built AM surfaces in-
situ

• Test viability of using in-situ measurements to
adjust emissivity on a layer wise basis
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Possible In-Situ SR Measurement

Techniques

• Laser profilometry

• Raman Spectroscopy

• Moiré Profilometry

• Optical Coherence Tomography
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Optical Coherence Tomography (OCT)

• Time of flight differences creates interference
pattern

• Ease of implementation

• LD-600 (Laser Depth Dynamics)

• Implemented on an Aconity Lab L-PBF research
machine

• Experimental axial resolution: 25 microns
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Experimental Design

• lcm cubes were built with a
range of process parameters

• OCT measurements taken on top
surface of parts during build

• Keyence VR3100 measurements
taken after the build

• Measurements compared for
resolution capabilities and
emissivity estimations
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Experimental Procedure

• OCT system at Lawrence Livermore used
• Parts shipped from Lawrence Livermore to
Sandia for post-build measurements

• Top surface measured with OCT

• Measurements were compared with
measurements gathered from Keyence
VR3100 high resolution images
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OCT vs Keyence Measurements
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OCT Conclusions

• Filtering causes aliasing of surface features, which
reduces the accuracy of the measurements

• However, even for the roughest surfaces, the
emissivity differences did not exceed .12

• Average deviation did not exceed .04

• The extremely rough surfaces would most likely
not be produced during normal manufacturing
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Overall Conclusions

• Geometric Optical Region

• RaR,Aa

• View angle increase = emissivity decrease

• 45 degree best view angle tested

• OCT measurement technique suitable for in-
situ surface roughness measurements
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Future Work

• Improve predictive ability for wider range of
surface conditions and materials

• New materials

Aluminum, Titanium

• Look at effects of SR on other IR cameras

• Improve OCT Accuracy
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Qu estio ns?
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Surface Roughness Measurement
Technique Comparison

• Keyence consistently reads rougher, showing
possible aliasing of Dektak

LENS milled

Keyence Dektak Difference

LENS glazed

Keyence Dektak Difference

DMLS A

Keyence Dektak Difference

DMLS B

Keyence Dektak Difference

DMLS Milled A

Keyence Dektak Difference

DMLS Milled B

Keyence Dektak Difference

Ra (ii.m) 3.390 0.642 2.748 2.020 0.567 1.453 6.970 7.402 -0.432 9.790 6.429 3.361 1.570 1.813 -0.243 1.380 1.705 -0.325

Rq (ii.m) 4.130 0.744 3.386 2.530 0.677 1.853 8.720 9.029 -0.309 12.500 8.646 3.854 1.970 2.262 -0.292 1.750 1.992 -0.242

3.067 1.653 0.371 3.607 0.268

Average Difference:

0.284

1.542
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Positional Dependence of SR
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Height 1

.
1 

Valley Measurements

/ Rda
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Valley Angle Calculation
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Unusual Surface Feature Effects
• Vertical walls — just insert into calculation as really tall

slope
• Partially or completely un-sintered particles that create

overhangs
Does increase, but difficult way to measure in-situ
Outside of scope — future studies w/ XCT

• Effects of oxidation/method of storing samples before
vacuum furnace — all samples were stored under same
conditions
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Publication Plan

• At least 2 Journal Articles
Emissivity vs SR (Simulations and then
Experimental validation)

OCT in-situ SR measurements

• 2 conference papers
SFF 2019

Angular effect on observed emissivity
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Repeatability/Uncertainty
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HDR Emissivity Measurements

• 10 measurements on AL6061 sample

x = .237 a = .0027 N.%)

• Standard uncertainty — .7/V-Ii, = 8.5e-4
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Keyence Surface Measurements

• Ra — std dev is .17% of measurement

• Rrms — std dev is .25% of measurement

• FlAa — std dev is .16% of measurement

• RAci — std dev is .79% of measurement

• UB 3.04 microns
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Simulations

• Used for searching trends and relative nature

• Didn't use absolute values from simulations
for any purpose
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Vacuum Furnace Measurements

• Atmospheric control of the lab
23 +/- 1° Celsius

40 +/- 5% Relative Humidity

• MWIR camera — unable to estimate due to inability to
propagate input uncertainties to emissivity since
conversion equation is unknown

• Thermocouples +/-2.2°C uncertainty
Translates to standard deviation of .02 emissivity value
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