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Outline

■ Artificial spin-orbit coupling in Si/SiGe

■ Theory/modeling

■ Nano-magnet arrays

■ Holes in Ge/SiGe

■ Physical properties

■ Quantum Hall ferromagnetic transition

■ Spin qubits in Ge/SiGe
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Majorana fermions in spin-orbit coupled nanowire
topological superconductors
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1D spin orbit coupling

• 1D E-kx dispersion without SOC:

h2k2

E, x" (black in a) (free electrons)
2m

• 1D E-kx dispersion SOC:

• Bso—kx x Ez (along y)

h2kx2 h2 (kx ±kso)2
E— + akxE, S —

2m 2m
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1D spin orbit coupling

• 1D E-kx dispersion with SOC with Bo along z:

Gap near k=0
(blue curves)

• Canonical transformation of the above case:

Spin selective gaps near ±kso
(blue and red curves)

Effective magnetic field
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Engineer the SOC using nano-magnets

• Magnets that produce a spatially
rotating magnetic field can have
the same effect as intrinsic SOC
(plus an external bias magnetic
field)

• Designer material!

• We want to use Si/SiGe, because
of the high mobility (and
therefore long mean free path
and phase coherence length)
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Magnetostatics I

• Layout and calculate magnetic fields with COMSOL

• Planar design example
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Magnetostatics II

• Magnetic field in 2DEG plane

• Has required rotation
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Band Structure Calculations

• Kp-like method

• 
ip(x) = eikxu(x)

• V(x) = 2 gptBfi(x) • 6

• Write V and u as Fourier series

• v(x) = Eg cgetgx

• u(x) = Eq ceiqx o

• Infinite set of linear equations, one for 10
each band I
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g 40
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Example Results

• Trenched design with 2 T

magnets

• Gap of 0.01 meV (0.13 K)

• Could be measurable
experimentally

• Working to optimize
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Effective spin-orbit gaps in Si/SiGe
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Realizing nano-magnet arrays with alternating
magnetization directions
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Magnetic materials with high coercivity contrast
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National
Laboratories

Low-coercivity (200 Oe) as-deposited Co films High-coercivity (-10000 Oe) SmCo5 films obtained after post-
deposition annealing
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Magnetic materials with high coercivity contrast

Crystallization of SmCo5 leads to
high coercivity.
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lnterdigitated nanomagnet arrays
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Programming nanomagnets with external B field

AFM As fab'ed
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Summary

• Nanomagnet arrays with alternating magnetization directions demonstrated. Artificial spin-orbit
gaps can in principle be engineered in materials with weak spin-orbit coupling, such as silicon.

• Nanoscale magnetic field synthesis achieved by using nanomagnets with coercivity contrast and
an external magnetic field for programming. This may find applications in other areas, such as
MRI, nanoparticle manipulation.

Questions to be answered
• Defects in the nanomagnets.
• Effects of geometry and interactions between nanomagnets.

• Larger coercivity in Co nanomagnets than in Co films.
• Smaller coercivity in SmCo5 nanomagnets than in SmCo5 films.
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Outline

■ Artificial spin-orbit coupling in Si/SiGe

■ Theory/modeling

■ Nano-magnet arrays

■ Holes in Ge/SiGe

■ Physical properties

■ Quantum Hall ferromagnetic transition

■ Spin qubits in Ge/SiGe
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2D holes
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Band alignment of SiGe heterostructures
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Undoped Ge/SiGe heterostructure field-effect transistors
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Device operation — 2D hole density

• The 2D hole density saturates.
0...

• Shallow channels '11
> High saturation densities, depth dependent.
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T = 0.3 K

E 8
> Small slopes (capacitances) Ci)

• Deep channels
> Low saturation densities, depth independent.
> Large slopes (capacitances)

26 nm

0
-30 -25 -20 -15 -10 m5 0 5 10

Gate Voltage (V)

1

SI.6 -1.2 -0.13
\

\

1 !
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Device operation 2D hole density
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Device operation 2D hole density
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Weak localization (no spin-orbit coupling)

R
A

J

Adapted from McCann Physics 2, 98
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Weak anti-localization (spin-orbit coupling)

Spin and momentum are locked together.
Back scattering is suppressed.

R

e2 H HSO )-F —
1 

.11
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Hikami Prog. Theor. Phys. 63, 707
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Physical properties — spin-orbit coupling

• Low densities
> Weak localization only

• Intermediate densities
> Weak anti-localization on top of weak

localization only
• High densities

> Weak anti-localization only

Cubic Rashba: -(sin30,-cos30)
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Physical properties — spin-orbit coupling

• Spin-orbit length decreases with
density and can be as short as 0.1 um
(< mean free path), while the phase
coherence length can be a few
microns long (>mean free path)

• This means the hole spin can rotate
at a high yet controlled rate, maintain
its phase coherence, and suffer no
scattering.

20 25 30 35 40

Ez (kV-cm-1)

1000

1

0.1 4 5 6 7 
0.01 

4 5 6
p (x11:1" c111-2) p (x10111 cm-2)

Sandia
National
Laboratories

7

Chou, Nanoscale 10, 20559 (2018)



Physical properties — weak antilocalization beyond diffusive regime Sandia
National
Laboratories

• Conventional theories for weak (anti)localization are only valid in the diffusive regime at low magnetic fields.

• Our data lie outside this regime.

• Numerical methods and code for HPC available with paper.
•

-.- G&G
-.- HLN

I I I I i I ili

4 5 6 7

p (x1011 Ci11-2 ) Chou, Nanoscale 10, 20559 (2018)



In a perpendicular magnetic field...

B

NaTioinaal
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Cyclotron motion, Ec = heBperp/m*

Spin splitting, gap Ez = gpB



Energy spectrum in a magnetic field
E E

B = 0

Cyclotron gaps

Ap AD S
D (X) 

Po DOS0
D (X) = X 1 sinh X
X = 2TrkT 1 E C

Temperature dependence
<=> cyclotron gap

DOS

•

B > 0

 ►
disorder

Degeneracy - B

 ►
DOS

DOS at Fermi energy at a fixed density

cn
o

1 8

1 6

1 4

1 2

0.8

0 6

0 4

0 2

0 05 0 1 0 15 0 2 0 25 0 3 0 35

E

B=B1 > 0

E
•

►

NaTioinaal
Laboratories

EF

DOS

Higher field

B=B2 > B1 > 0

_73

 ► DOS

EF



Physical properties — effective mass

• — 0.08 mo.
• — density independent.

• This mass is small compared to the
mass of electrons in Si (0.19), the mass
of holes in GaAs (0.2-0.4), and is
comparable to the mass of electrons in
GaAs (0.07).

• Smaller mass

a
150

100

50

=> more extended wave functions 0
ce

=> easier gate controls for
nanostructures -50

=> larger orbital gaps -100

=> can use higher T cryostats

-150

p = 3.66x1011 cm-2

3.79 K
3.11 K
2.44 K
2.15 K
1.86 K
1.65 K
1.43 K
1.30 K
1.19 K
1.19 K

12 16 20 24 28 32 36

Filling Factor

b
0 16

0 12

EQ

E

0.08

0.04

0
2 3 4

hole density (1011 cm-2)

Sandia
National
Laboratories

5

Hardy et al., Nanotechnology, 30, 215202 (2019)



Physical properties effective mass

Theory 0.000
0.25

Faa. 8. Figures of constant energy in the (100) plane of kispace
for the two fluted energy surfaces which are degenerate at thc
valence band edge; constants as for germanium.
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The quantum Hall effect

In a perpendicular magnetic field, the spectrum of a 2D gas is a series of Landau levels:

1 Ez

1 Ec  E
C 
-E
Z 
>E
Z

. / Ez

Ec  E
C 
-E
Z 
>E
Z

. / Ez

1 Ec  E
C 
-E
Z 
>E
Z

..- E. # z

Ec is cyclotron gap: heB/(2nm*)

Ez is Zeeman gap: g*µ13

m* and g* are material parameters.

Landau level degeneracy (# electrons / area):
eB/h

Sandia
National
Laboratories

Lu, Scientific Reports 7, 2468 (2017)



Quantum Hall ferromagnetic transition
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In most cases, Ec >> Ez

Strong even states, weak odd states

If Ec 2Ez

Strength of even states N strength of odd

states

If Ec < 2Ez

Strong odd states, weak even states

Ez/Ec increases with decreasing density.

Lu, Scientific Reports 7, 2468 (2017)



Quantum Hall ferromagnetic transition
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A spin transition (unpolarized <-> polarized)

at v=2 occurs at pr-2.4x101° cm-2.

This transition marks the point where Ec—Ez

heB/(2Tcm*) = g*p.B

m*g* = 2

Lu, Scientific Reports 7, 2468 (2017)



Quantum Hall ferromagnetic transition Sandia
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The physical picture of the system at the transition:
micro-domains of different spin configurations. Away from the transition, one spin configuration is
preferred. Domains move and merge to minimize surface energy.

Evidence of micro-domains is found in the time dependence.

by S. Zurek, E. Magnetica, CC-BY-3.0
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Quantum Hall ferromagnetic transition

Local gating to create counter-propagating edge states with opposite spins

"Impurity-generated non-Abelions"

Simion Phys. Rev. B 97, 245107 (2018)
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Physical properties — g factor
P<1.6 x 1011 cm-2

• — 5 — 30
0.5 Ec < Ez < Ec

• — density dependent.

/
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Spin qubits in Ge/SiGe

Implications for Quantum Dots
• Low Disorder

- Help Dot-Dot Coupling

• Small Effective Mass

- Help Dot-Dot coupling

- Easier Lithography

• Anistropic g-factor

Large g-factor allows operation at smaller

magnetic fields

- Dot-to-Dot variation is possible

• Strong Spin-Orbit-Coupling

- Natural mechanism for qubit control

- Introduces additional noise channel

The effect of confinement on these

properties remains largely unexplored

Surface electrodes used to laterally confine hole

rese

eirirAtes

reservoir
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Spin qubits in Ge/SiGe

• Single Hole confined to lateral

quantum dot

• Spin Qubit States: mj=+3/2

• Qubit readout and initialization

through energy selective

tunneling to reservoir

• Qubit Control through

microwaves applied to gate

• Occupancy detected through

nearby charge sensor
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Spin qubits in Ge/SiGe
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Goals:

• Independent Control of occupation and tunnel barriers
• Tighter Confinement

• Low Capacitance for EDSR
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Spin qubits in Ge/SiGe

Single Layer Devices
can be tuned to low-
hole regime in
transport
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Spin qubits in Ge/SiGe

Three Metal Layer Device
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Coulomb Blockade observed in
the three-metal-layer devices
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Summary

■ Induced 2D holes in Ge/SiGe heterostructure field effect
transistors demonstrated.

■ Device behavior can deviate from thermal equilibrium.

■ Physical properties (mass, g factor, spin-orbit coupling
strength) characterized.

■ Gate controlled quantum Hall ferromagnetic transition
observed at low densities. Platform for topological
superconductivity?

■ Development of spin qubits in Ge/SiGe


