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3 I Goal: EOS Modeling

Develop a capability to predict the thermodynamic properties of any material under any
conditions with known accuracy in a manner suitable to inform UQ capable EOS models
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4 ‘ Density Functional Theory is a very successful technique

Careful DFT / QMD calculations can complement experiment by providing additional
information

Shock melting of diamond
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DFT approximations are not always small
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6 I Quantum Monte Carlo Calculations offer another possibility

= Calculate properties from the exact Hamiltonian using a stochastic
process

= Use guiding (trial) wavefunction, W, for importance sampling and for
fixed node approximation

= Variational principle lets you know when your approximation is improving

= Y is not the exact many-body wavefunction
= Energy only depends on WY=0 manifold
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s I Quantum Monte Carlo Calculations in Practice — D, Hugoniot
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= This includes non-controversial gas
gun experiments

= With DFT either there is good
agreement or we switch functional to
try to better match experiment

= With QMC we can try to improve the
approximation directly
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o I Take the next step for the Hugoniot calculation

= Apply QMC with various trial wavefunctions

to a representative snapshot of the Extrapolating zero error for warm dense deuterium
compressed gas
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Leverage this to understand effects
10 I Hugoniot

= Derived a perturbative formula to see how
errors in pressure and density affect the
Hugoniot

=QMC had small but unbalanced errors
= |nitial dilute gas was almost exact

= Shocked state had errors

= DFT errors were much larger, but largely
cancelled

= Systematic improvement was much more
important (and feasible) than eliminating
errors entirely
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We are gaining experience on how to do this for more complicated
materials
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12 I QMC can offer a new way of performing calculations

= Standard quantum calculation techniques are quite useful, but their accuracy is
unknown

= |t is not always clear (even to experts) when calculations will show errors

= QMC has the advantage of performing calculations using the ab initio Hamiltonian
= This does not always guarantee higher accuracy than DFT

= There are ways to control errors with QMC
= For example, comparing variance to total energy
= May allow one to say how accurate their calculations actually are!



13 I Who cares about this work?

The method is general and is applicable to wide swaths of condensed matter physics
and chemistry. There are also aspects of interest for high performance computing

Funding has been provides through four venues
* NNSA Science Campaign. ( 8 years )

 Office of Science: Basic Energy Sciences ( 5 years )
 Center for the Predictive Simulation of Functional Materials. ( 3 years )

+ Office of Science: ASCR ( 3 years)
- Exascale Computing Project

« ASC / Physics and Engineering Models (6 years)



14 I What does the future hold?

Closer integration with EOS construction ( near-term )

Extension of methodology to handle relativistic effects ( near-term )

Further improvements in systematically improvable calculation techniques ( mid-term )

[ ]

Performance portability and application on exascale computers ( mid-term )

Integration of approaches with quantum information processing techniques ( long-term )
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16 | Goals: Beyond Equilibrium

Develop a capability to predict the properties of material when driven out of local
thermodynamic equilibrium

Team:

Luke Shulenburger
Andrew Baczewski
Attila Cangi

Mike Desjarlais
Stephanie Hansen



17

Many phenomena in HED physics can not be captured by
equilibrium calculations

We typically employ the Born-Oppenheimer approximation that the electrons are in
equilibrium with respect to the ions

A variety of problems in HED physics require this approximation
> Electron-ion equilibration in laser shocks
o Interpreting XRTS specitra
> Calculating energy transfer with fast ions



18

Beyond the Born-Oppenheimer Approximation — real time TDDFT

The most mature way to perform these calculations is using the time
dependent extension of DFT — TDDFT

Consider n electrons that obey:

ext

A d
T+V =i Ly

Runge-Gross Theorem and Kohn-Sham ansatz pave way for a time
dependent DFT whereby single particle orbitals obey

i%|wm<r)>=HKS<r>[n<r>]|wm<t>>



Our Implementation

TDDFT + Ehrenfest, initial implementation in VASP*
Recently teamed up with Michele Pavanello’s QE fork, eQE**

Self-contained code
- Crank-Nicolson time integrator

CGS and GMRES solvers
Non-Hermitian corrections for
charge conservation

Correct Ehrenfest forces for PAW

Strong Scaling on Sequoia
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Shock Compression of a Fifth Period Element: Liquid Xenon to
840 GPa

Seth Root, Rudolph J. Magyar, John H. Carpenter, David L. Hanson, and Thomas R. Mattsson
Phys. Rev. Lett. 105, 085501 — Published 17 August 2010
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Ehrenfest-TDDFT

Start in a Mermin-Kohn-Sham equilibrium state

/)[)(l') - Z fn.k(Y‘r)l‘*'u.k(r)l2



Ehrenfest-TDDFT

Add a projectile, re-compute MKS state

This is the initial condition for time-dependent Kohn-Sham system




Ehrentest-TDDFT

Drag the projectile along at the velocity of interest

Compute the force retarding the projectile
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Ehrenfest-TDDFT

Collect as much data as you can
(100 Angstrom trajectories typically feasible)

Others have done this in condensed matter,
Artacho (Cambridge), Correa (LLNL), Kohanoff (Belfast), Schleife (UIUC), and many more

We are looking at higher energies and temperatures



Stopping a fast moving ion

Understanding how fast moving ions are slowed is essential to understanding the energy
balance in inertial confinement fusion

> Generation of plasmons necessary to capture the proper behavior

Born-Oppenheimer TDDFT
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Warm Dense Deuterium

Stopping at 10 g/cc and 2 &V 0oy
(dead center of the DOE/Bonitz diagram)
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Stopping Work [eV]

Warm Dense Deuterium
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Electronic Stopping Work [eV)

Warm Dense Deuterium

Stopping at 10 g/cc and 2 &V
(dead center of the DOE/Bonitz diagram)
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Stopping Power [eV/Ang.]

A Closer Look at the Forces

There might is more to extract than a single number

(note: still deuterium at 10 g/cc,
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31 I Outlook

« Funding for this work began under an LDRD and transitioned into the Science
Campaign

* In future, we will develop this to extract DC conductivity under normal and high field
conditions ( near-term )

+ Also aim to improve non-LTE treatment for extraction of electron-ion energy transfer (
medium-term )



