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This project has created open-source components for a commercial platform
to address the spectrum of distribution circuit and DER management,
including: state estimation, voltage regulation, protection, economic
optimization, communications and cybersecurity.

This solution safely allowed PV penetrations of 50% or greater by providing
real-time visibility into distribution circuits and optimizing the active and
reactive power (P/Q) DER settings to meet voltage regulation, protection and
economic objectives in the presence of forecast uncertainty.
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➢ Provide real-time feeder visibility/visualization
➢ Operate DERs to keep feeder voltages within
ANSI C84.1-2006 limits

➢ Maintain protection with high penetrations of DER
on distribution circuits

➢ Minimize economic costs using multi-objective
optimization

➢ Create information exchange recommendations
➢ Generate cyber security recommended practices
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Developing a standardized information model for exchange
between the utility, control systems, and field devices enables

3rd party DERMS integration.

Georgia Tech and Sandia technologies released as open-source algorithms and incorporated them into a commercial
software product developed by BPL Global. The core technologies being developed are:
1. Distribution System Distributed Quasi-Dynamic State Estimator
• Generates the voltage profile and power flow estimation with

scalable solution from feeder telemetry
• Operates on partitioned distribution system with solutions at up

to 60 times/second
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See: A.P.
Meliopoulos, G.
Cokkinides, B. Xie, C.
Zhong, J. Johnson,
"Full State Feedback
Control for Virtual
Power Plants,"
Sandia Technical
Report, SAND2017-
10178, September
2017.

2. Estimation-Based Protection
• Detects faults and protects the system by

isolating the faulted section of circuit
• Signals reclosers, breakers, or other switching

operations
• Operates extremely fast after collecting state-

estimation results (typically below 1 ms)
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See: Y. Liu, A. P. S.
Meliopoulos, R. Fan, L.
Sun and Z. Tan,
"Dynamic State
Estimation Based
Protection on Series
Compensated
Transmission Lines," in
IEEE Transactions on
Power Delivery, vol. 32,
no. 5, pp. 2199-2209,
Oct. 2017.

3. Persistence forecasting
• Uses historical data and clear sky index to

generate PV power forecast
• 1-15-sec time-step with a 10-min horizon
• Forecast uncertainty characterized by

historical record to be used in the optimization
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See: J. Johnson, et al., "Design and Evaluation of a Secure Virtual Power
Plant," Sandia Technical Report, SAND2017-10177, September 2017.

4. Robust optimization taking into account forecast
uncertainty
• Construct an uncertainty set Q for the DER power

injections
• Define DER power injections in terms of ut
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where / is the set of all DERs with uncertain injections for time intervals in T
ut: vector of uncertain DER power injections
X: nominal value of the DER power injection
[xf - 61, xf + al]: range of uncertainty
el': Budget of uncertainty set

See: D. Bertsimas, E. Litvinov, A. Sun, J. Zhao, and T. Zheng, Adaptive Robust
Optimization for the Security Constrained Unit Commitment Problem, IEEE Transactions
on Power Systems, 28, 1, 52-63, 2013.
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Programmable Distribution Resource Open Management Optimization System (ProDROMOS)

(Prodromos is Greek for "forerunner" and the prodromoi were a light cavalry army unit in ancient Greece used for scouting missions.)
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1 Distribution System Distributed Quasi-Dynamic State
Estimator (DS-DQSE) ingests feeder telemetry, DER
and customer data, and generates the voltage profile
and power flow estimation.

2. The Estimation-Based Protection (EBP) scheme
detects faults and protects the system by isolating the
faulted section of the distribution circuit by
recloser/breaker/switching operations.

3. The forecasting component provides short-term (e.g.,
10 minute) forecasts of PV power output and load using
recent system states and statistical irradiance modeling
in conjunction with PV performance models.

4. A dispatch optimization engine determines the
necessary active and reactive (P/Q) power settings for
groups of DERs to maintain voltage and distribution
protection systems for the next time period (-1-5
minutes) considering the economic impact of
curtailment and non-unity power factor operations.

5. The communications system uses the SCADA and
DER control network to update DER operations and get
new data from the power system.

1 DEMONSTRATIOr I WITH POWER HARDWAP" 1N-THE-1.100P
The ProDROMOS system was demonstrated using a power hardware-in-the-loop system
(PHIL) at the Distributed Energy Technologies Laboratory (DETL) at Sandia and in a field
demonstration on a National Grid feeder with a utility-scale PV installation.
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100 Microinverter installation at DETL. The active
and reactive power of each of the devices can be
changed to provide voltage regulation and
protection on the simulated power system.
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Example utility feeder models augmented with
additional PV systems for high PV penetration
simulations with the ProDROMOS system.
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PHIL power and information flows with the ProDROMOS system controlling real and simulated DER.
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Different voltage regulation results for the National Grid feeder model.
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