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A potentially attractive way to control nanoparticle assembly is to
graft one or more polymers on the nanoparticle, to control the
nanoparticle- nanoparticle interactions. Many parameters control
the phase behavior of polymer-grafted nanocompsites, and so
efficient and accurate computational methods to predict phase
behavior are desireable to help understand and guide experiments
and design. We use Theoretically Informed Langevin Dynamics (TILD)
to investigate phase behavior of polymer-grafted nanocomposites,
and show that the inclusion of thermal fluctuations is needed to
match experiment.
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Coarse - Grained

Computational Expense

PNC Field Theory

polymer field theory + nanoparticles
can be mean-field or sampled with advanced techniques
directly calculates the free energy

3 Dw exp(-7-t[w]) based on equilibrium partition function

dri

dt

Theoretically-Informed Langevin Dynamics (TILD) 

13DF2 +m(r,t) Langevin Equation

dri
3 = Dri(t) (6 [   ,61)117, rh(r, td) Non-equilibrium partition

dt
function

Leverages the advantages of both representations

Particle-to-mesh
scheme

i)(r, t)

Explicit access to
particle positions

p(r,t)

Efficient calculation
of non-bonded forces

• each bead moves
independently

• interpolate particles to mesh
• calculate nonbond forces

from fields on the mesh
• lose access to free energy
• includes thermal fluctuations

Chao, Koski, Riggleman, Soft Matter (2017); Koski, Frischknecht, et al., Macromolecules (2017)
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Grafted Nanoparticles in Polymer Melts

Calculate binodals from

simulations with two

explicit interfaces

Simulation analysis
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Experiments

PMMA-grafted silica
NPs in PS

homopolymer melts

Fluctuations
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• Experiments show that fluctuations are

necessary to properly describe PNC phase

behavior.

• Fluctuations capture the full effect of

depletion interactions (not fully accounted

for at mean-field).

• Field-based simulations allow description of

macroscale phase behavior and development

of phase diagrams for PNCS!

fluctuations enhance phase separation!

J. P. Koski et al, in review
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Mixed Brush Nanoparticles in
Solution

Single Particle Brush Structure

Yellow: Solvent
Red: Dislikes Solvent/Blue
Blue: Dislikes Solvent/Red
Silver: Neutral Particle

• Equal number of Red/Blue chains

• and Blue chains same size
• R = particle radius
• Rg = size of grafted chains

• a = grafting density

• XAB = A-B, Xs = polymer-solvent interaction

• Phase Diagram generated from mean-
field calculations. Allows free energy

analysis to asses preferred structure
• Brush phases are a result of

competition of minimizing unfavorable

Red-Blue contacts and configurational
entropy

• TILD simulations show
defective single particle

brush structures
• Janus phase is robust to

fluctuations

Koski and Frischknecht,
ACS Nano (2018)

Schematic
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mean-field phase diagram
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Single-particle structure dictates many-particle assembly
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Particle

Many
Particle
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Connected Strings Nearly Vesicle Phase Separated

phase diagram calculated from
• cluster size distribution
• cluster shape (gyration tensor)

Koski, Bollinger, Stevens, Frischknecht, in preperation
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