Introduction

A potentially attractive way to control nanoparticle assembly is to
graft one or more polymers on the nanoparticle, to control the
nanoparticle- nanoparticle interactions. Many parameters control
the phase behavior of polymer-grafted nanocompsites, and so
efficient and accurate computational methods to predict phase
behavior are desireable to help understand and guide experiments

to investigate phase behavior of polymer-grafted nanocomposites,
and show that the inclusion of thermal fluctuations is needed to
match experiment.

and design. We use Theoretically Informed Langevin Dynamics (TILD)
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Computational Expense

PNC Field Theory

* polymer field theory + nanoparticles
 can be mean-field or sampled with advanced techniques
e directly calculates the free energy

Theoretically-Informed Langevin Dynamics (TILD)

dt = pDF; + m(r, t) Langevin Equation

| dt .
i function

Leverages the advantages of both representations e each bead moves

\ Chao, Koski, Riggleman, Soft Matter (2017); Koski, Frischknecht, et al., Macromolecules (2017)

Z =2 /Dw exp(—H|w|) based on equilibrium partition function

Z= H/Dri(t) <5 [— ar: + BDF; + ni(r,t)]> Non-equilibrium partition

FF independently
) | e * interpolate particles to mesh
Particle-to-mesh ;JJ ;-‘ ‘:
scheme | | * calculate nonbond forces
p(r,t) o(r, 1) from fields on the mesh
Explicit access to Efficient caleulation * lose access to free energy
particle positions of non-bonded forces  » jncludes thermal fluctuations
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/Grafted Nanoparticles in Polymer Melts

Calculate binodals

explicit interfaces

Simulation analysis

Experiments

PMMA-grafted silica
NPs in PS
homopolymer melts

150°C, 5 days
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Fluctuations Mean-Field * Experiments show that fluctuations are
necessary to properly describe PNC phase

* Fluctuations capture the full effect of
depletion 1nteractions (not fully accounted

* Field-based simulations allow description of

macroscale phase behavior and development
of phase diagrams for PNCS!

fluctuations enhance phase separation!

Phase Behavior of Polymer-Grafted Nanoparticles

Jason P. Koski,' Mark J. Stevens,’ Nadia M. Krook,? Russell J. Composto,? Robert A. Riggleman,? Amalie L.

Mixed Brush Nanoparticles in

Solution

Single Particle Brush Structure

Yellow: Solvent
Red: Dislikes Solvent/Blue

Blue: Dislikes Solvent/Red
Silver: Neutral Particle

* Equal number of Red/Blue chains
 Red and Blue chains same size

* R, =particle radius

* R, =size of grafted chains

o =grafting density

*  %ap = A-B, x.= polymer-solvent interaction

* Phase Diagram generated from mean-
field calculations. Allows free energy
analysis to asses preferred structure

* Brush phases are a result of
competition of minimizing unfavorable
Red-Blue contacts and configurational
entropy

e TILD simulations show

defective single particle

brush structures Schematic
* Janus phase is robust to

mean-field phase diagram
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Increasing Particle Size

fluctuations

Uniform Grafting
Mean-Field

Koski and Frischknecht,

ACS Nano (2018)

Non-Uniform
Grafting

Fluctuations

Single-particle structure dictates many-particle assembly

Single
Particle

Many
Particle

o Small Clusters
1 | 5 | | —
[E,g ’
R | m %
S ""ﬂ o i
: 1 | O | = A
m -
o
0.5 -

0.5 1.0 1.5

/

\ Rya/Rp

C

"
» o
"

&

onnected Strings Nearly Vesicle Phase Separated

phase diagram calculated from

cluster size distribution
cluster shape (gyration tensor)

Koski, Bollinger, Stevens, Frischknecht, in preperation
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