

Ducted Fuel Injection (DFI) for Heavy-Duty Engines

SAND2019-4725PE

Charles J. Mueller

Sandia National Laboratories

Engine Combustion Research Department

Livermore, California

*Funded by: U.S. Dept. of Energy, Vehicle Technologies Office
Program managers: Michael Weismiller & Gurpreet Singh*

DOE Vehicle Tech. Office Annual Merit Review Mtg.

Hyatt Regency Crystal City, Arlington, Virginia

June 13, 2019 @ 9:00 am

Project ID: ACE131

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

SAND2019-XXXX-X

Overview

Timeline

- Project start: Oct. 1, 2018
- Project end: Sept. 30, 2019
- 56% complete

Budget

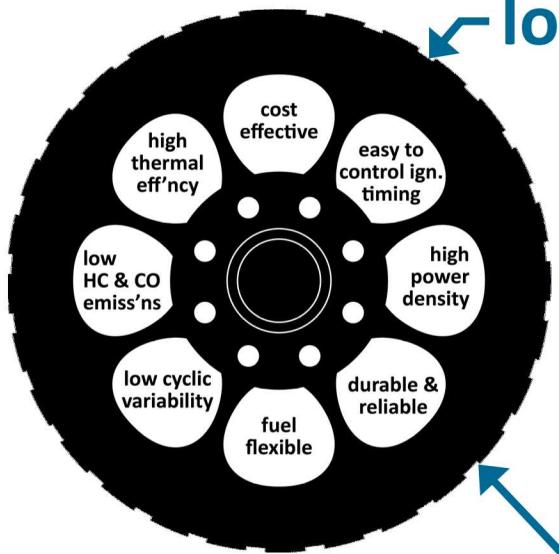
- FY19 funding: \$550k
 - Mueller: \$450k
 - Skeen: \$100k
- FY18 funding: \$0k

FY = fiscal year, runs Oct. 1 – Sept. 30; NO_x = nitrogen oxides; PI = principal investigator; MOU = Memorandum of Understanding; Co-Optima = Co-Optimization of Fuels and Engines program; CRADA = Cooperative Research & Development Agreement

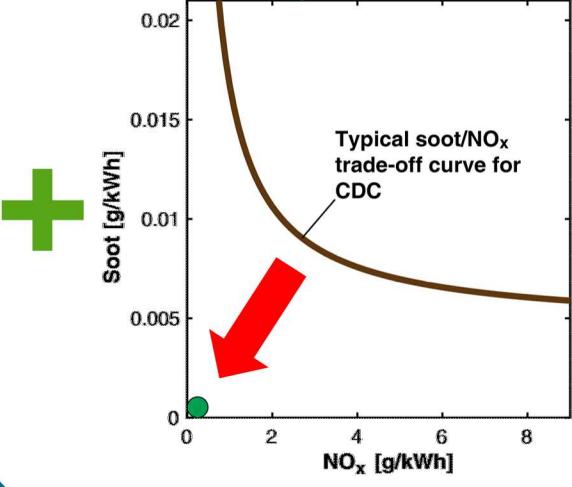
Barriers

- “The research areas of highest priority for clean diesel combustion are:
 - a. Reduced engine-out NO_x and particulate emissions
 - b. ...”

*from https://www.energy.gov/sites/prod/files/2018/03/f49/ACEC_TT_Roadmap_2018.pdf, Page 2.


Partners

- PI: Charles J. Mueller
- Co-Optima
- Caterpillar & Ford (CRADA)
- Advanced Engine Combustion MOU


Relevance

"The U.S. Department of Energy's Vehicle Technologies Office provides **low cost**, **secure**, and **clean** energy technologies to move people and goods across America." <https://www.energy.gov/eere/vehicles/vehicle-technologies-office>

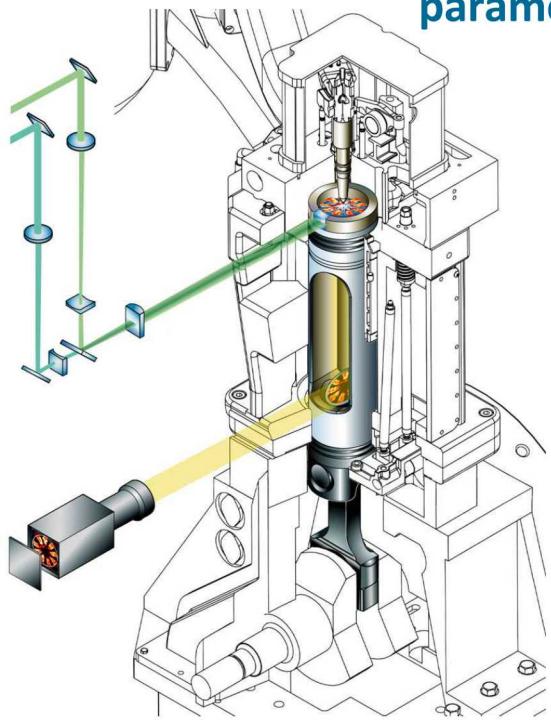

Our objective: Maintain all the desirable attributes of conventional diesel combustion (CDC)...

low cost clean

Co-Optima
(see FT077)

...with 10X – 100X lower soot & NO_x emissions

...while harnessing synergies with secure, domestic fuels.


Milestones

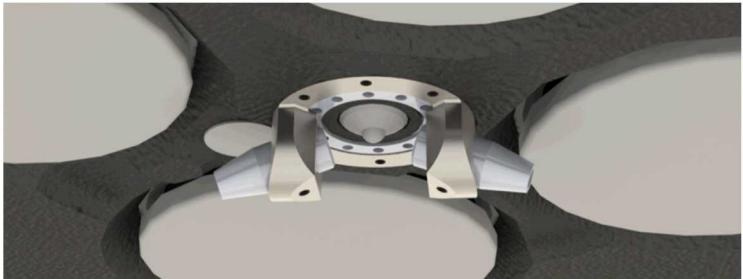
- **Dec. 31, 2018:** Install & align DFI two-duct holder in optical engine, and complete testing to determine whether DFI can break the soot/NO_x trade-off with conventional diesel fuel.
 - Completed.
- **Sept. 30, 2019:** Determine sensitivity of DFI to changing four engine operating-condition and/or fuel-injection parameters.
 - On track.

Approach

Designed to provide stakeholders with high-quality, relevant, unbiased experimental data for making informed decisions regarding DFI technology.

Using the **only DFI engine in the world** & guidance from industry, conduct sweeps of basic engine operating-condition & fuel-injection parameters to better understand **sensitivities**.

- **Swept variables**

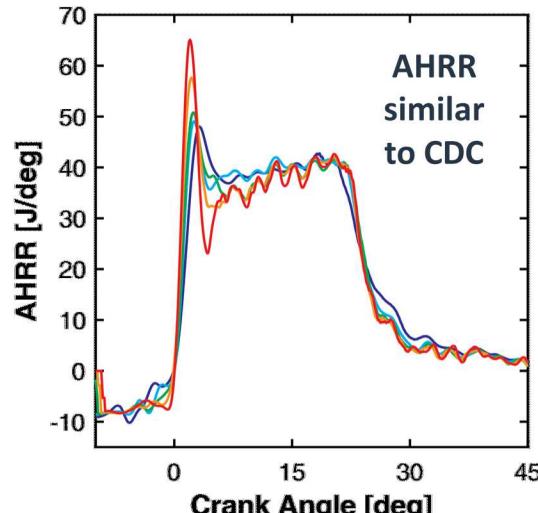
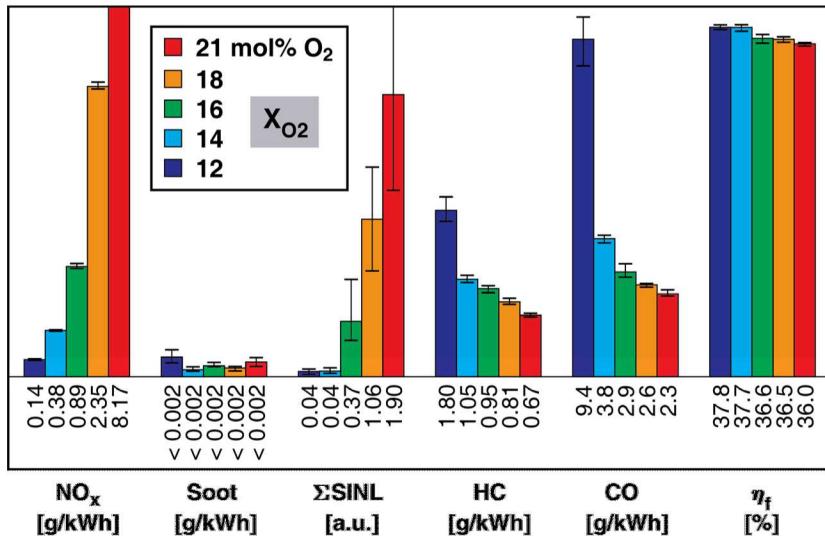

- Intake oxygen mole fraction, X_{O_2}
- Duration of injection, DOI
- Start of combustion, SOC
- Injection pressure, P_{inj}
- Intake manifold abs. press., IMAP
- Intake manifold temperature, IMT

- **Diagnostics**

- Cylinder pressure
- Emissions
- Natural luminosity (NL) imaging

Technical accomplishments

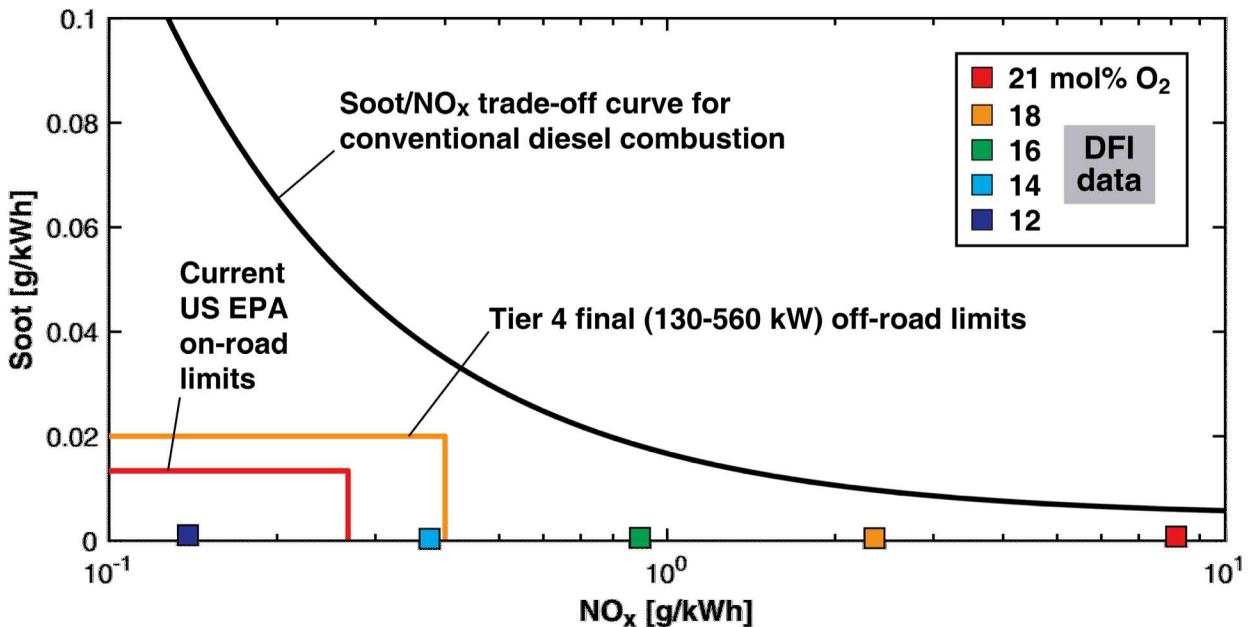
Successfully installed & aligned a two-duct holder to test DFI in the optical engine

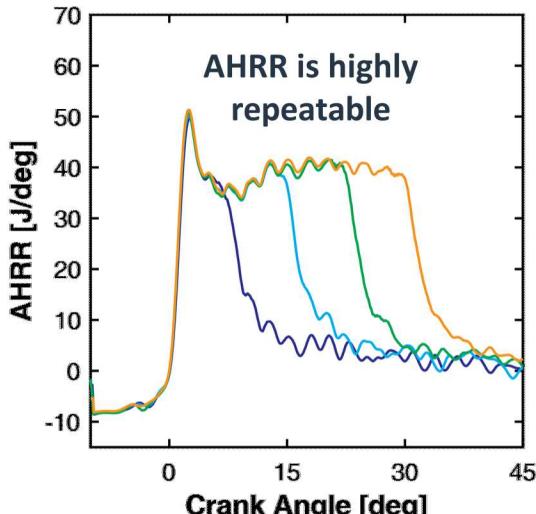
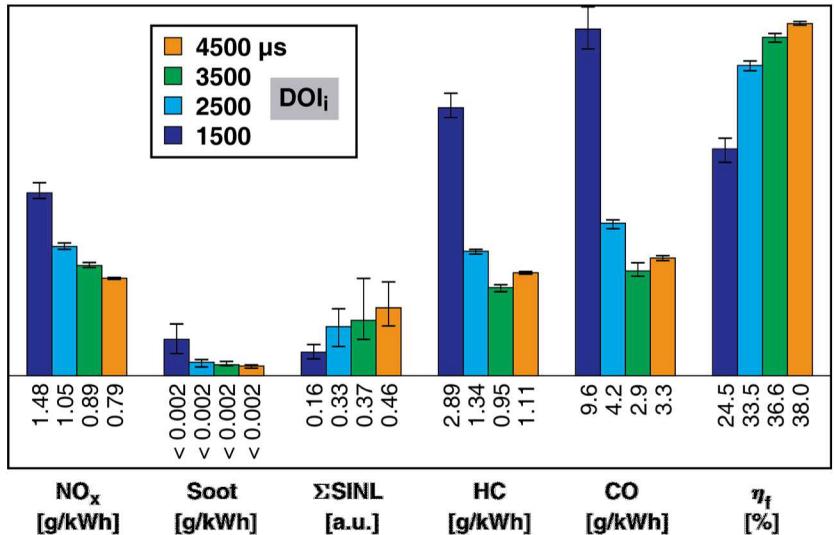
- **Duct configuration**
 - 2 mm inner diam., 12 mm long, inlet 3 mm from inj. orifice exit
- **Injector tip**
 - $2 \times 0.108 \text{ mm} \times 140^\circ$
 - Results in $\sim 2.6 \text{ bar}$ gross IMEP
- **Fuel**
 - No. 2 S15 certification diesel
- **1200 rpm engine speed**

Research engine	Single-cyl.
Cycle	4-stroke CI
Valves per cylinder	4
Bore	125 mm
Stroke	140 mm
Displacement per cylinder	1.72 liters
Conn. rod length	225 mm
Conn. rod offset	None
Piston bowl diameter	90 mm
Piston bowl depth	16.4 mm
Squish height	1.5 mm
Swirl ratio	0.59
Compression ratio	12.5:1
Simulated compr. ratio	16.0:1

IMEP = indicated mean effective pressure; S15 = 15 parts per million sulfur max.; CI = compression ignition

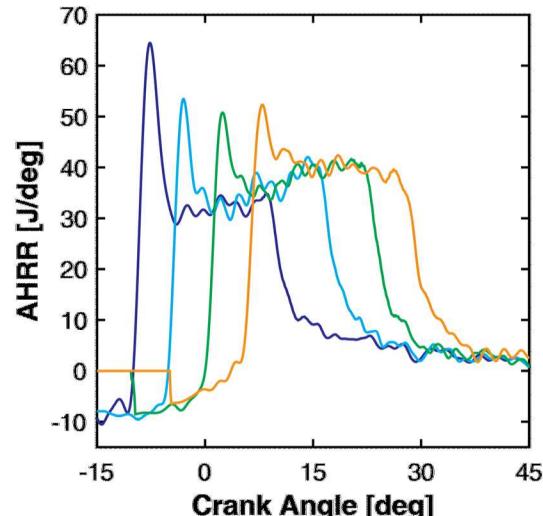
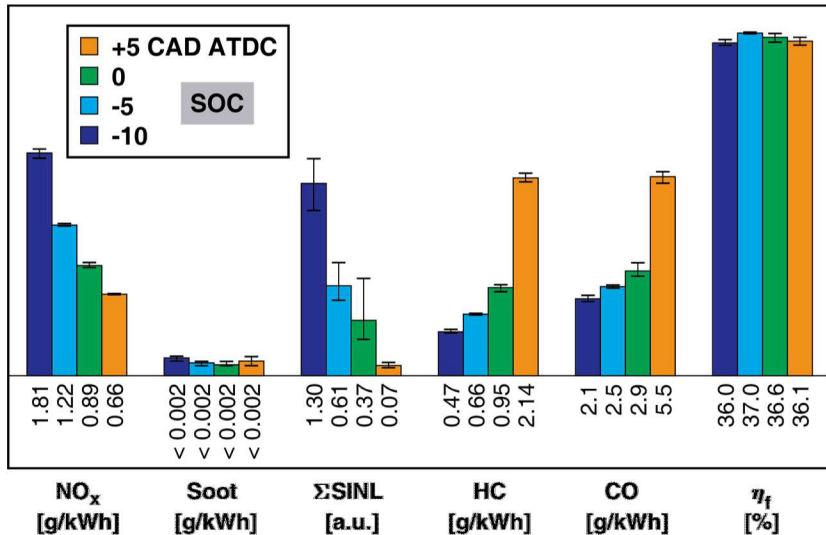

Intake oxygen mole fraction (X_{O_2}) sweep shows benefits of DFI with dilution.

- NO_x is dramatically \downarrow without a corresponding soot \uparrow
- HC & CO emissions \uparrow more significantly at highest dilution
- Fuel-conversion efficiency (η_f) improves with dilution



O_2 = molecular oxygen; $\Sigma SINL$ = temporally & spatially integrated natural luminosity (indicator of hot, in-cylinder soot); HC = hydrocarbon; CO = carbon monoxide; AHRR = apparent heat-release rate

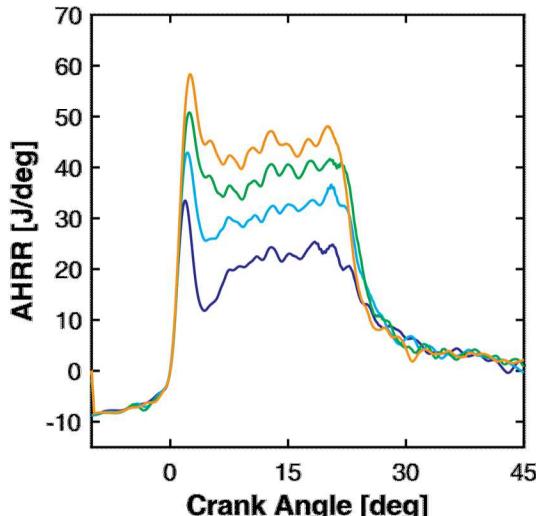
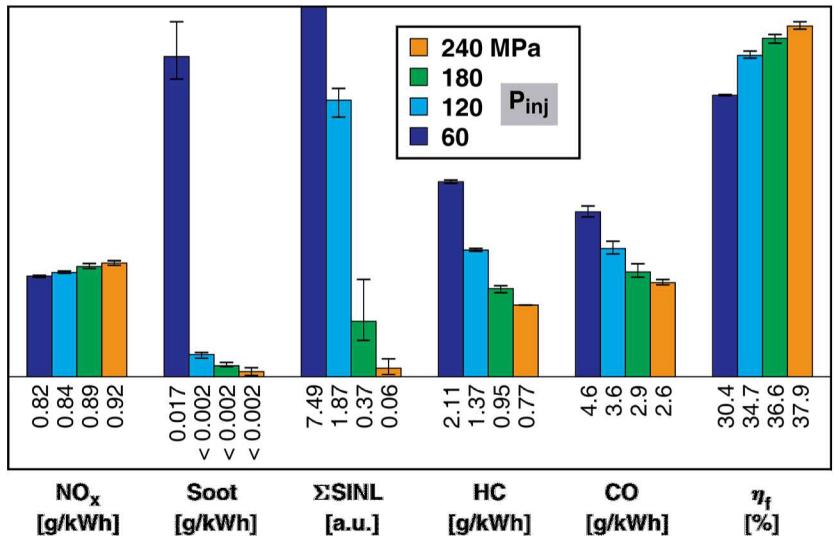
DFI with dilution can break the long-standing diesel soot/NO_x trade-off.

- DFI lowers soot by ~10X to ~100X with current diesel fuel
- Dilution lowers NO_x by ~20X to ~50X

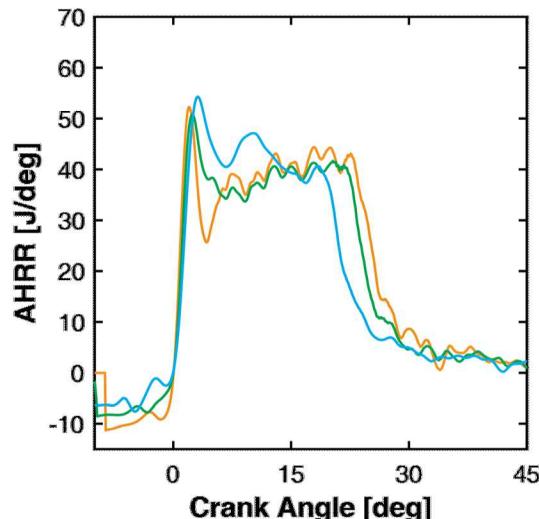
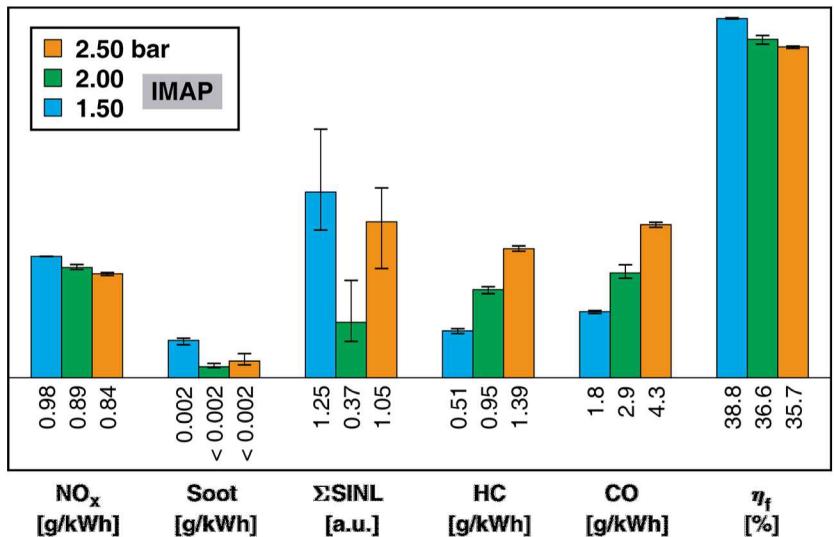


Duration of injection (DOI) sweep shows that longer injections tend to be better.

- Longer DOIs tend to produce lower indicated-specific NO_x, HC, & CO emissions, as well as higher η_f

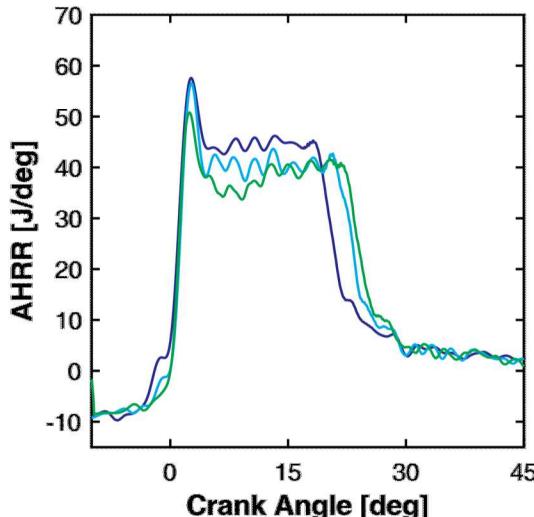
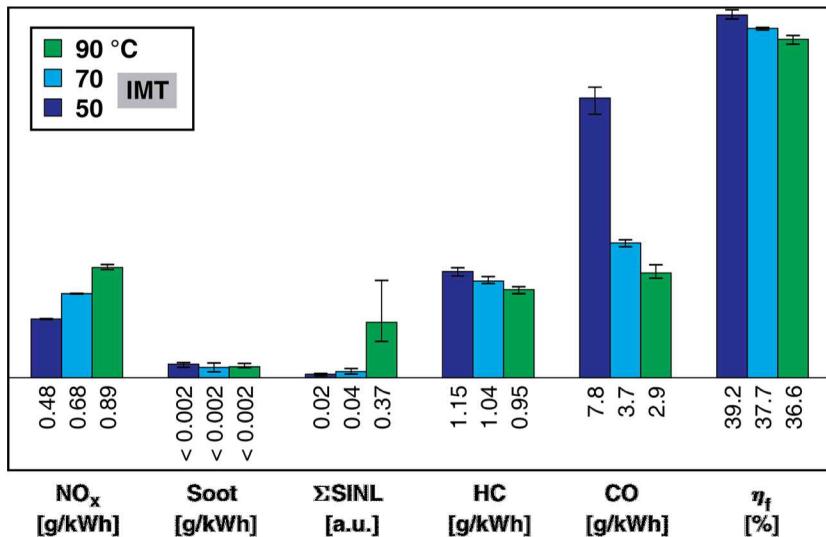
DOI_i = indicated duration of injection (i.e., duration of electronic trigger signal to injector driver)



Start of combustion (SOC) sweep shows that DFI behaves similarly to CDC.

- Retarding SOC causes NO_x ↓, HC & CO ↑
 - Also facilitates transition to LLFC (indicated by low Σ SINL)
- η_f does not change significantly for the studied SOC range



LLFC = leaner lifted-flame combustion (i.e., diesel combustion that does not produce soot); CAD ATDC = crank-angle degrees after top-dead-center

Injection pressure (P_{inj}) sweep shows that higher P_{inj} is largely beneficial.



- Soot, HC, CO, & η_f all improve as P_{inj} \uparrow
 - Highest P_{inj} of 240 MPa intermittently achieves LLFC
- Measureable soot can be produced if P_{inj} is too low

Intake manifold abs. pressure (IMAP) sweep: lower IMAP is generally better.

- HC, CO, & η_f all improve as IMAP \downarrow
 - But NO_x & soot degrade slightly
- Local minimum in Σ SINL at 2.00 bar IMAP baseline condition requires further study

Intake manifold temperature (IMT) sweep shows mixed results.

- NO_x, ΣSINL, & η_f all improve as IMT ↓
 - Should be beneficial for low NO_x under cold-start operation
 - LLFC intermittently achieved at 50 °C IMT
- HC & CO ↑ somewhat as IMT ↓

Responses to previous year's reviewers' comments

- No reviewer comments – this project was a new start in FY19.

Collaboration & coordination with other institutions

- **Co-Optimization of Fuels & Engines Program (Co-Optima)**
 - Two (2) DOE offices, nine (9) national labs, > 20 universities, > 80 stakeholder organizations, > 120 researchers
 - Fuel effects on DFI
- **DOE Technology Commercialization Fund CRADA**
 - Partners: Caterpillar Inc. & Ford Motor Co.
 - Two-year project, started in FY19
 - Overcoming barriers to DFI commercialization
- **Advanced Engine Combustion MOU**
 - 18 companies, 20 universities, seven (7) national labs
 - General guidance & oversight
- **Sibendu Som (Argonne National Lab) & Sotirios Mamalis (Stony Brook University): Large eddy simulations of DFI**

Remaining challenges & barriers

- **What is the potential for DFI to work at high load cond's?**
 - What are the effects of adding more ducts &/or using larger injector-orifice diameters?
- **How sensitive is engine-DFI performance to varying duct geometric parameters?**
 - E.g., duct inside diameter, duct length, & stand-off distance from injector-orifice exit plane to duct inlet plane
- **What are the fundamental physical processes governing DFI performance?**
 - How can they be used to determine optimal duct designs?
- **How can the slight drop in thermal efficiency be reversed?**
- **What is required to ensure duct alignment & durability?**

Proposed future research (rest of FY19 & FY20)

Any proposed future work is subject to change based on funding levels.

- Explore strategies for achieving **high load DFI operation**
 - Adding more ducts (six if possible, otherwise four)
 - Using larger injector-orifice diameters ($\sim \varnothing.175$ mm)
- Quantify sensitivity of engine-DFI performance to **varying duct geometric parameters**
 - Duct inside diameter ($\varnothing 2$ mm vs. $\varnothing 3$ mm)
 - Length (8 mm vs. 12 mm vs. 16 mm)
- Develop an improved understanding of the **fundamental physical processes** governing DFI performance
 - Use existing literature, theoretical analysis, & computational investigations

Summary

Relevance	This research directly supports the DOE Vehicle Technologies Office mission of providing “low cost, secure, and clean energy technologies to move people and goods across America” & a key industry objective of simultaneously lowering diesel NO _x & soot.
Approach	<ul style="list-style-type: none">Conducted the world’s first DFI experiments in an engine.All milestones are either completed or on track.
Technical accomplishments	<ul style="list-style-type: none">Tested DFI while sweeping X_{O₂}, DOI, SOC, P_{inj}, IMAP, & IMT.DFI with dilution can break the long-standing diesel soot/NO_x trade-off, potentially enabling a new generation of clean, cost-effective engines that are compatible with current fuels.In many regards, DFI performs similarly to CDC, except with substantially lower soot emissions.
Collaboration & coordination	The work is closely integrated with Co-Optima, the Advanced Engine Combustion MOU, & industry through a CRADA.
Future research	Addresses key technical barriers to DFI implementation: increasing load, understanding duct-geometry sensitivities, & optimizing performance for different applications.

Technical back-up slides

Reviewer-only slides

Publications & presentations

Journal & conference publications

1. Nilsen, C.W., Biles, D.E., & Mueller, C.J., "Using Ducted Fuel Injection to Attenuate Soot Formation in a Mixing-Controlled Compression-Ignition Engine," *SAE Int. J. Engines*, in press, Mar. 2019.
2. Yasutomi, K., Mueller, C.J., Pickett, L.M., & Skeen, S.A., "Investigation of the spray and combustion characteristics of four multi-component diesel surrogate fuels relative to their commercial target fuel," *THIESEL 2018 Conference on Thermo- and Fluid Dynamic Processes in Direct Injection Engines*, Valencia, Spain, Sept. 11-14, 2018.
3. Gehmlich, R.K., Mueller, C.J., Ruth, D.J., Nilsen, C.W., Skeen, S.A., & Manin, J., "Using Ducted Fuel Injection to Attenuate or Prevent Soot Formation in Mixing-Controlled Combustion Strategies for Engine Applications," *Applied Energy* **226**:1169-86, doi:10.1016/j.apenergy.2018.05.078, 2018.

Other publications/releases

DOE Vehicle Technologies Office FY 2018 Annual Progress Report, Advanced Combustion Systems and Fuels; U.S. DRIVE Highlights of Technical Accomplishments; Co-Optimization of Fuels & Engines FY18 Year in Review; Sandia FY18 Partnerships Annual Report; Sandia National Laboratories Intellectual Property Video: "Ducted Fuel Injection," <https://ip.sandia.gov/technology.do/techID=201>.

Patents

1. Mueller, C.J., "Ducted Fuel Injection," US Patent #10,161,626; issued Dec. 25, 2018.
2. Mueller, C.J., "Ducted Fuel Injection with Ignition Assist," US Patent #10,138,855; issued Nov. 27, 2018.

Presentations: 36 from this project since 2018 DOE Annual Merit Review meeting, two invited.

Critical assumptions & issues

- The potential barriers to the commercial implementation of DFI can be overcome, including:
 - Duct durability (thermal/mechanical fatigue, deposits)
 - Full-load operation (scaling to more ducts & larger orifices)
 - Spray/duct alignment (establishing & maintaining over life)
 - Combustion noise (maintaining within established limits)
 - Cold-start performance (maint'ing stability & low emiss'ns)
 - Thermal efficiency loss (modify combust. chamber design?)
 - Limited physical understanding (how to optimize?)
- Optical-engine results are adequately representative of results from production/metal engines
- Full electrification will not replace internal-combustion engines in the off-road sector before DFI is implemented