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Resilience vs. Reliability e

= Reliability — Low consequence high probability

Squirrels, birds, etc.
Traffic accidents
Trees/wind
Lightning

= Resilience - High consequence low probability events

Severe winter storms
Hurricanes
Tornados
Earthquakes

EMPs and GMDs
Fires

Physical attack
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Utilities are incentivized to be reliable not resilient = ==

= Utilities are often incentivized to be

more reliable (improve their SAIDI and Reward 4 ,

SAIFI mEtriCS) Performance ContiIWL!oug,’,
Based Capped
Regulation

Deadband

= Some utilities have performance based
regulation (PBR)

Low High

= i
Reliability / Reliability
= Large scale events (severe winter /
storms, hurricanes, etc.) are removed :

from the SAIDI and SAIFI metrics

7 Minimum Standard

Penalty

= Less incentive to invest in resiliency
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Primary project goals e

= Develop optimization models which find the optimal investments to improve
reliability, resiliency, and a weighted combination of the two.

= Help utilities see the trade-offs between investing more heavily in reliability or
resiliency.

= Help utilities develop rate recovery cases to justify large scale investments, by
qguantifying how that investment will improve their reliability and resiliency.

= [nform utilities and their stakeholders, DOE, DHS, and policy makers of cost-
effective infrastructure investment decisions that simultaneously improve
both reliability and resilience.
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Stochastic mixed integer program for o
optimal reliability investments N

Laboratories
Objective function . Goal: Determine the optimal investments to improve
ers . . . . g
— power distribution system reliability.

D
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for optimal reliability investments

RDP Algorithm

1: # Precondition: Package bundles is a list of upgrade
2: # bundles which can be used to upgrade

3 # the bundles’ respective outages.

4: # Postcondition: Returns the package bundle whose
5: # contribution to the objective function

6: # is optimal.

7: function max_obj(package bundles)

8 max=-1

9:  for each bundle in package bundles do

10:  objective contribution =0

11: for each package in bundle do

12:  increment objective_contribution by the package’s
13:  contribution to the objective function

14:  if objective_contribution > max:

15:  max = objective_contribution

16:  optimal bundle = bundle

17:

18: return optimal bundle

19:

20: global cache =[]

21:

22: function GRDP(feeder device pairs, budget)
23: if (feeder_device pairs, budget) is in cache do
24:  return cache[feeder device pairs, budget]
25:

26: ifbudget <0 do

27:  return empty list

28:

30: for each package in applicable upgrade packages for
31z feeder and device given in first pair from

32 feeder device pairs do

33:  ifthe cost of package > budget do

34:  return empty list

35: upgrade package bundles = a list with package
followed

36: by GRDP(feeder device pairs with first
element

37: removed, budget — cost of package)
38: cache[feeder device pairs, budget] =

39 max_obj(upgrade package bundles)
40: return cache[feeder_device_pairs, budget]

Model details

Goal: Determine the optimal investments to improve
power distribution system reliability.

Inputs to model: Historical outage data, investment
impact data, investment cost data

Model type: Generalized dynamic programming —
decision tree — based on classic Knapsack algorithm

Model efficiency (scalability): Good efficiency,
especially for large budgets and large outage sets,
worse on large systems than previous model
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Resiliency investment optimization

= The goals are to push the mean consequence and the tail of the

consequence to the left.
Reduced
Mean

= Reducing the tail, reduces the

Q
Q
o 4
consequence from the large 3
worst-case scenarios 2 %e_ciuced
3 al
Gy
o
= Resilience metrics used in this = |
project are Loss of Load and Eﬂ 3
' 1 IR S— =
Duration. : :
/ \ Consequences

Resilience of System !
after Improvements Baseline System
Resilience
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Project goals

= Determine optimal investment locations to improve power system
resilience.

= Determine worst case buses, lines, generators which if taken out,
would cause the greatest damage.

= Determine if a large impact can be achieved by hardening only a few
particular components




Stochastic mixed integer program for optimal
resilience investments

Minimize
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Resilience Sets
Transmission lines
Generators
Buses
Outage scenarios
Set of scenarios under which transmission line [ goes
offline
Set of scenarios under which generator g goes offline
Set of scearios under which bus b goes offline

Discrete set of times: duration each component is out of

service

Set of generators connected to bus b
Set of transmission lines leaving bus &
Set of tranmssion lines entering bus b
Set of i for buses, g
transmission lines

Resilience Parameters
Bus from which transmission line [ leaves
Bus transmission line [ enters
Susceptance of tranmission line /
Thermal limit of transmassion line |
Bus containing generator g
Ramp-up limit of generalor g dispatch level
Ramp-down limit of generator g dispatch level
Start-up limat of generator g distpatch level
Shut-down limit of generator g dustpatch level
Upper limit of generator g dispatch level
Lower limit of generator g dispatch level
Demand at bus &
Load weighting factor at bus b
Cost of hardening transmission line /
Cost of hardening generator g
Cost of hardening bus b
Probability of scenanio w occuning
Numbser of ime peniods line / is affected by event in
scenario w with no hardening
Number of ime penods generator g 15 affected by
event in scenano w with no hardening
Number of time peniods bus b is affected by event in
scenario w with no hardening
Probability of scenanio w occuring
First term in objective dunng baseline model run with
0 budget
Second term in objective dunng baseline model rin
with 0 budget

Resilience Vanables
Load Shed With Duration in MW - similar to the
SAIDI reliability metric
Load Shed — sumilar to the SAIFI reliability metne
Power flow through transmission line / at time 7 in
SCENANO W
Generator dispatch level for generator g at time 7 in
SCENANO w
Load shed at bus b at time r in scenario w
Phase angle for bus b at ime 7 in scenation w
On/off status of line / at time 1 during scenario w
On/off status of generator g at ime r duning scenario w
On/off status of bus b at time r during scenano w
Binary indicating whether or not transmission line /15
hardened
Binary indicating whether or not generator g is
hardened
Binary indicating whether or not bus b is hardened
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Model details
Goal: Determine the optimal investments to improve power
system resilience (loss of weighted load and duration).

Inputs to model: Scenario data from threats listing component
outages off time and recovered time. Investment cost data.

Model type: Nonlinear mixed integer program. Linearized
through new and old techniques

Model efficiency (scalability): Poor efficiency, especially for
larger systems, and a large number of scenarios
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A two-stage stochastic generalized disjunctive programming @) i
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formulation for optimal resilience investments
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Algorithm 1= Modied Benders Decomposition

Input: Master problem M. subpeoblenss P, (=) for all
w €10 [wy ], absolute tolerance, «
Output: Lower and upper bounds for partially relaved

problem, LB and UB, and optimal solutson =*
within tolerance ¢

1 LB .

1 UB  4x

» while Ul - LB < « do

¢« sohe M

let the (£, y_,. @) be the optimal solution and © be the
optumal value
e, = v =5 oo

? LB~

. forcach w < (1) [y ] do

. solve ¥ P ()

" ket v, be the optimal valoe, and =_ and A be the

opaimal pramal and dual solutions respectively
o end
% P '

[0 WUB > w then

" UB +u

" * -

" ond

" forcach o € 11 (] do

" a4, -Az.—2)eM
[ ond

» end
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Transmission lines

Generatons

Buses

Discrete set of times after a seenario occurs, starting
with time |

Set of generators contained in bus b

CEU - Set of transmission lines leaving bus b
¥

G
£
Lo,
I

Set of transmission lines entening bus b
Set of transimission lines either leaving of entenng bus
b

Parameters

B™® Bus from which transmission line [ leaves

B Bus transmission line [ enters
) Susceptance of transmission line [
P Thermal limit for transmission line |
B,  Bus containing generator g
RU, Ramp-up limit of generator ¢ dispatch level
RD, Ramp-down limit of gencrator g dispatch level
SU, Start-up limit of generator g dispatch level
SD, Shut-down limit of generator ¢ dispatch Jevel
P Lower linst of generator g dispatch kevel
P, pper limit of generator ¢ dispatch kevel
Dy Demand at bus b
Ay Load conversion factor at bus b
& Cost of hardening transmission line
C, Cost of hardening pencrator g
Cy  Cost of hardening bus b
K Budget
X, Number of tme penods hine [ i affected by event with
no hardening
X,  Number of time peniods generator g is affected by event
with no hardening
X;  Number of tme perods bus b s affected by event with
no hardening
By Baseline load shed, calculated by taking first term in
objective during model run with 0 badget
B;  Basehne load shed af ime 1. calkculated by taking second
term in objective duning model run with O budget
1, Prionty level of bus b for restoration
Vanables
Common 10 both models
Pis Power flow through transmission line [ at time t
Por  Generator dispatch level for generstor g at time t
e Load shed at bus b duning time 1
0y, Phase angle for bus b at time 1
Wit On/off status of line I at ime 1
Binary indicating whether or not transmission line [ is
hardened
e Binary indicating whether or not generator g is hardened
s Binary indicating whether or not bus b is hardened
ky Cost incurred by line |
k, Cost incurred by generator g
ks Cost incurred by bus b
voy  Indicator if generator g is on but not in startup at time
uy'y  Indicator if generator g is off or in shutdown at time 1

Lartup
u,“ - " Indicator if generator g is starting up at time

Model details

Goal: Determine the optimal investments to improve power
system resilience (loss of weighted load and duration).

Inputs to model: Scenario data based on historical large scale
events that include outaged components and time off and time
recovered.

Model type: A two-stage stochastic generalized disjunctive
program.

Model efficiency (scalability): Decent efficiency, still needs
improvement, but can solve on the IEEE RTS96 system with 50

scenarios.
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A co-optimization stochastic mixed integer model to improve ) B
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reliability and resiliency

minimize[Resiliency metric + Reliability metric]
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Transmsssson lines
Generators
Buses

Crutage scenancs
Setof under which ¥ tine | goes

offline

Sen of scemanos under whach fesenntor ¢ poes offme

Set of sceartos under which bus § goes oflime

Duacrete st of taes: duration each component is out of

e

Set of gemerators comnected to bas b

Set of wamamsissicn bnes leaving bus &

Sex of wammsion lines eatering bus &

Set of mvestments for buses, gemerators, and

anamace lmes

Deice types

Fotdes [

Upgrade

Ti4  Upgrade optices for device type o im feeder |

Cuuzages

23 Upgrade optices that emprove the mumber of customers
cutaged m cutage o if apphed
Upgrade opticas that smprove the dumion of cutage is
cutage o 1f apphied.

5 Outage camaes

Parameters

Badget

Bus from which tranemission lme [ leaves

By tramimaniacn ke [ esten

Sasceprance of trammison Ime [

Thermal kst of transmissicn bne [

B coslamamng protieen

Ramp up limin of generator g dispasch level

Ramp.down mit of generator ¢ dispatch level

Srart-np Lt of geserator ¢ dustpanch beved

St down limit of gemerator g distpaach level

Upper bnmat of penerator ¢ duspatch level

Lower limat of generator £ durpaich level

Diemand ot bus &

Load wiesghsing fursce ot bus &

~o -,l;;:i5| NBRE powar

oo

g~

gy iy
EEES

Pl

st of hardemmg Samemission lme |

Cont of hardensag peatacy ¢

Cost of hardening bus &

Probability of scenario w occarmg

Number of Gme perods kne /s affected by evest i

scenario w with 5o hardening

X Number of tume persods generator ¢ 1 affected by
eTent = soemn W mith a0 hardenmag

e Namber of fime persods bus b i affected by eventim
SCEBM0 W Wilh 55 hardesing

Fu Probabitery of scemano w occansg

Bme  Futtorm m objestve dwmg bevelme mode] nm with
0 badget

Bus Second term im chjective during baseline modil run
i O

G Nusmber of customens cutage o affects

L Diuraticn of catage &

& Dievace type of cutage &

M Dievice ID of cutage o (also gives feeder ID Incation)

&

G

I.

MO AOO S
~fedealal

Camee of outage o
Cont 10 purchase upgrade w
Number of certomens oviage o affects fte vpmmade w
= Draratsim of ostage © afer vppisde
Buamy Baseline SAIDI value
Buam Baseline SATF] valoe
N Numsber of customers i 1otal system
Variables
LSWD Load Sked With Duratica is MW - ssmilar to the
SAIDI reliability metric

s Load Sked ~ sinzilar to the SAIF] relasbility muetric

P Power flow thecugh transmission bine | 81 time £ im
SCENAno w

P Gienerator dispatch bevel for generaice g ot time ¢ i
HERGARG W

Po® Lead shed at bus b at time 1 in scemanio w

[ T Phnse angle for bus b af time ¢ in soenstion w

e O/ status of lme [ af e ¢ dunng scemarnd w

" On'olf starus of genersioe g o1 time ! daring sceasric w

i On/off wtatus of bus & at time ¢ during scenans w

[ Banary sndacating whatier of ot transmissaon lies /i
hardensd

i Bunary inducating whether o not generator g is
hardensd

n Banary indscating whether or not bus b is hardened

ks Binary indscating whether or not to spply upgrade « €
L4 to device type d in feader |

S4IDNy  SAIDI valse after upgrades

4IRSy SAIFI value after upgrades

[£Y Nusber of custoeners which cutage o affects after

upgrade

Model details

Goal: Determine the optimal investments to improve power
system reliability and resilience. See the trade offs between the
two.

Inputs to model: Scenario data based on historical large scale
events that include outaged components and time off and time

recovered. In addition, utility historical outage data, investment

impact data, and investment cost data.

Model type: Nonlinear mixed integer program, linearized
through new and old techniques

Model efficiency (scalability): Poor efficiency, especially for
larger systems, and a large number of scenarios
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Reliability results on Full utility data

Objective vs Budget
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Resilience results on IEEE RTS-96 system

Co-op results on IEEE RTS-96 system

Resiliency vs Reliability Pareto Frontiers

e

50000

100000
150000
200000
250000
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300000
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Reliability

T T
1.75 1.80

Pareto frontiers weighting Reliability vs. Resiliency.

areto frontiers of weighting SAIDI or SAIFI more. Whether you weight SAIDI
duration) more or SAIFI (frequency of events) more, the results are similar.
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Questions?




