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I, Nonlinear Material Model Calibration

Background: what is being calibrated?

Broad

Nonlinear solid mechanics

Material modeling

J2 Metal Plasticity

Strain Hardening

Specific to this talk



Nonlinear Solid Mechanics

•At Sandia we perform nonlinear solid mechanics
simulations of various systems

•Nonlinear : the solution doesn't scale proportionally
to the applied loading
• In general the solution must be solved incrementally
• Implicit time integration

• Explicit time integration

• Types of nonlinearity in solid mechanics simulations
• Contact

• Geometric (large deformations)

• Material

• This is the aspect that usually needs to be calibrated

Contact: initially, the two
bodies do note exert force on
each other, but after some
displacement they abruptly do

Geometric: the initially straight
beam buckles after some loading,
leading to a reduction in load
carrying capacity

While we rely on our FEA codes to accurately simulate contact and geometric nonlinearities, material
nonlinearity is largely modeled phenomenologically, dictated by user-defined parameters



5 I Material Modeling

•For solid mechanics, materials are often classified according to their:

• Homogeneity: spatial variation

• Anisotropy: directional dependence

• Nonlinearity: how does stiffness change with strain?

• Inelasticity: if unloaded, does material return to original state?

•Whether a material can be considered homogeneous or isotropic
depends on the length-scales of interest.
• For most practical engineering calculations for metal structures, we
assume isotropic and homogeneous materials.

•Beyond very small strains, metals yield and have inelastic, nonlinear
deformations (plasticity).

• FEA of components for design evaluation can assume linear elasticity
and still be extremely valuable

• However, if you want to accurately simulate the response of metal
components under large deformations, must account for their plasticity
• If extreme loading is involved, material failure may also need to be modeled

[1] Emery et. al., 2015 (https://doi.org/10.1002/nme.4935)

Collagen is a hydrogel on macroscale, but it exhibits nonlinear
elastic behavior due to its microstructural response
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6 I J2 Metal Plasticity

•Stress tensor can be decomposed into:

• Volume changing (volumetric) deformation

• Related to normal stresses

• Shape changing (deviatoric) portion

• Related to shear stresses

•Metals generally plastically deform due to

deviatoric stresses S

• The "second invariant" of the deviatoric

stress tensor is called J2.

•Von Mises stress comes from J2

• Conveniently, Von Mises stress is equal to applied stress in
uniaxial tension

• Von Mises is a common "yield criterion" for metals
• Von Mises stress defines a cylindrical 3D yield surface in
"principal stress space", with its axis along hydrostatic stress
states

• If a given material element's principal stresses give a Von Mises
stress that is higher than the yield stress, the element will
deform plastically
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7 I Strain Hardening

*If a metal continues to be loaded past yield, it
begins "hardening"
• Complicated microstructural causes that can't be practically
modeled, so phenomenological models are used

•This can be understood as the yield surface expanding
(isotropic hardening) or translating (kinematic hardening) to
accommodate the increasing Von Mises stress

•Very ductile alloys (e.g. 304L stainless steel) can
accommodate a lot of plastic strain/hardening before
fracture

• For J2 plasticity, the hardening behavior can be described with a
"hardening curve"
• This can be obtained from a uniaxial tension test, up until necking

•In general, a hardening curve can only be directly obtained from a
test if the test has a uniform state of strain (or if one can reasonably
be assumed)
• If not, an inverse calibration procedure must be used

We often need to calibrate the hardening
curve for a given material model so that it
gives the correct response in a system model
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8 Hardening Curve Calibration: Conventional Methods

Effective Stress
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9 I Hardening Curve Calibration: Incremental Method

-Typically, the hardening curve would be described by an analytical function
for the previous method
• This limits how well you can match arbitrary load vs displacement curves

•An alternative approach would be to use a piecewise linear hardening curve
for more flexibility

• This is very difficult to calibrate using conventional methods if a lot of
segments are used in the piecewise curve
• The number of design variables gets big, and the load-displacement isn't that sensitive to any one
segment

•Novel approach is to use an incremental solution strategy, calibrating each
individual segment of the piecewise linear hardening curve
• Now can use a root finding algorithm rather than cost function minimization

With this method, structural models can be more effectively
calibrated to arbitrary load-displacement response

Effective Stress

(Von Mises)

Uyield

Load

• • •

1st section initial guesses

1st section calibrated

2nd section initial guesses

2nd section calibrated

etc.

Effective Plastic Strain

Experiment

1st section initial guesses

15t section calibrated

2nd section initial guesses

2nd section calibrated

etc.

l 1 
 uu2 3 u4
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10 Example: Uniaxial Tension

A.) FE model--symmetry BC's used to
represent full cylinder.

B.) Load vs Displacement Incremental
Calibration Results

C.) "Truth" hardening curve compared to
the calibrated hardening curve

D.) Model re-ran once with calibrated
hardening curve to verify the incremental
approach matches the final model
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11 Example: Fastener Models

• Calibrate fastener models of varying fidelity to tension
tests of a given screw

Plug model
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„ I Outline: Multiscale Uncertainty Propagation

Motivation

Hierarchical model for multiscale (multifidelity) uncertainty propagation

FE models used in the hierarchy

Deterministic calculations

Pretend probability and model

Another model — stochastic reduced-order model (SROM)

Low-fidelity predictions of failure

High-fidelity predictions, followed by chaos

Higher-fidelity sanity

Summary



14 1 Motivation

f • X I- y.

If x is random, so is y (even when f is deterministic).

x might be random due to measurement errors, manufacturing defects, and
materials microstructure, etc. f might be random due to, e.g., random
boundary conditions.

The most general way to compute statistics for and predict tail behavior of
y is to generate samples of x and evaluate f(x) = y. We call this Monte Carlo
(MC) simulation.

For large systems, f is expensive.

For failure, we may want to include a lot of detail in f, which exacerbates
our situation and introduces multiple length scales of concern.

So, maybe we develop a multiscale numerical method for concurrent
multiscale simulation.



15 1
One multiscale calculation is necessary but not sufficient

Engineering scale
(millions of DOFs) Multiscale calculation

(XXLarge)

Fine-scale model
,< (>_1Os millions of DOFs*)
><"

(*admittedly a bit gratuitous for the present example)

One multiscale calculation gives you this: But you set out to predict this:
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Schematic of our hierarchical approach
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17 1 Defining the "models"

In the following, we use a lot of "models." Here we provide a high-level overview to
help keep things straight:

• Low fidelity finite element model (lofi FE) — a finite element model containing
lower-fidelity geometric representation.

• High fidelity finite element model (hifi FE) — a finite element model with
improved (relative to lofi FE) geometric fidelity.

• Truth finite element model — a finite element model used in lieu of experimental
data as a truth solution.

Stochastic reduced-order model (SROM) — a surrogate model to expedite
uncertainty propagation.

• Lofi SROM and hifi SROM — SROMs built with the lofi FE and hifh FE models,
respectively.



18 1

Finite element model(s)

Bolted component

Insert variable-
fidelity fastener
model here

Bottom view

Component model
• 16,000 elements
• Minimum element edge: 0.036" —

time step — 2e-07 s
• BC's: hold outside of (green) plate

fixed, apply 6x, 6y, 6z at upper
surface of component (yellow)

Plug model (low fidelity)
• 1,920 elements
• Minimum element

edge: 0.022 — time

step — le-07

• Tied contact b/w

shank and nut

Threaded model (high

fidelity & truth)

• 180,000 elements
• Minimum element

edge: 0.0027" — time

step — le-08
• Frictional contact b/w

shank and nut threads



19 1
Miscellaneous (but important) details

Hifi2 mode(

1. We use "plug" for low fidelity and (one or
two) full threads for high fidelity.

2. We compare with "truth," which employs
threaded models at all 4 locations.

3. Material properties are from tension data on
fasteners, calibrated using the lofi model.

4. LoFi will be plugs at all 4 locations.
5. HiFi will be full thread at one, then two,

location(s) selected based on lofi results.
6. There are convenient properties of

multifidelity models (combinations of 3 Et 4
above) that we are still exploring, but at
least we expect it to be convergent because
we recover "truth" when you include HiFi
everywhere.

7. Hardening is hardening - recovery form w/ 3
parameters = initial_yield, hardening,
recovery. (Allows us to parameterize the
hardening and include them as random
variates.)

8. System fails when first bolt "fails." This is
hard to define. Presently, we use a mesh-
dependent metric: max(eqps) = 0.45



I Deterministic lofi & truth results
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21  Model for randomness
Suppose, upon assembly, bolts 1 and 4 were the last two in the box, so that bolts 2 and 3 were

the first two from a new box, i.e., different batch. Bolt properties are correlated as shown in

the matrix below. Hardening is weakly (and negatively) correlated with yield, and bolts 1, 4

and 2, 3 are weakly correlated. And there's some quantifiable uncertainty in loading.

Bolts have random initial yield strength and hardening modulus, and the horizontal loading

angle 0 is random.

Yield is Beta distribution calibrated to aluminum data but scaled to have mean = 111,660.8

and standard deviation = 1,353.3 (psi).

Hardening is uniform calibrated to aluminum data, scaled to have mean = 898,637.0 (psi) and
standard deviation = 135,497.0 (psi).

0 is assumed uniform random between -7/16, +7/16 (mean 0).

O 0-y1 h1 ay2 h2 0-Y3 h3 a 4 h4

O 1. 0. O. O. O. O. O. O.

ayl O. 1. -0.2 0. 0. 0. 0. 0.5
h1 0. -0.2 1. -0.2 0. 0. 0. 0.

ay2 0. 0. -0.2 1. -0.2 0.5 0. 0.
h2 0. 0. 0. -0.2 1. -0.2 0.5 0.
Cry3 O. O. O. 0.5 -0.2 1. -0.2 O.
h3 O. O. O. O. 0.5 -0.2 1. -0.2

ay4 O. 0.5 O. O. O. O. -0.2 1.
h4 O. O. 0.5 O. 0. 0. O. -0.2

O.

0.
0.5
0.
0.
O.
O.

-0.2
1.



22 1 10,000 Samples -- Histograms and correlation

We use a translation model to obtain samples of
this random vector. Here is the outcome from
generating 10,000 samples.
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23 Lofi FE w/ 4 samples of random properties and loading angle

Low fidelity simulations of the first four samples. The dashed lines are from the
deterministic calculation, for comparison.
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24 1 Stochastic reduced-order model (SROM)
To develop a model that optimally represents the uncertainty in the input we choose

a discrete random variable 6 . The SROM is then defined by the collection (19k, Pk)
k = 1 , . . . , m that minimizes an objective function of the form:

max max as dris(r) — fts(r)1 + max max Os1Fs(x) — Es (x)1 + Cs' t 
max

1<r<f- 1<s<d ' x lGs<d s,t

moments

o(s, 0 — a(slt)1

cumulative distribution correlation

Estimates of SROM statistics given
SROM sample size m

rn

its(r) = EKY,s1 = pk (ek,$)r
k=1

m

Ps (x) = PO, < x) =

4s, t) = E[O, 0- ]

k=
m

k=1

Pk 1(ek,s < X)

Pk 6k,s 6k,t

Estimates of sample statistics
given q samples of 0

q

As (7) =

'6(s, t) =

i=

i=

i=

with n << q and al /3, (> 0 are weights and subject to probabilities 13k > 0 and > :k/5k = 1.



„ I Construction of SROM-based surrogate

Example 2D probability density * SROM points
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Response surface

irk(u) + V k (11) • (0 — 011(u; 0) l

• A response surface is constructed for the structural response of the component, Fl(u;O)

• The surface is a series of hyper-planes described with a first-order Taylor approximate of

the structural response
rn

FIL (tt; O) = 1(0 e Fk) [irk (11) Virk (11) • (e — O>0]

k=1

• The SROM samples are used as the expansion points Ok* and the domain Fk are
determined by the Voronoi tessellation of the uncertain parameters

• Requires rn*(d+1) FE calculations (we use rn = 20 and d = 9, so 200 FE calculations)

Assumes the quantity of interest is differentiable.



26 1 Lofi SROM predictions (same 4 samples)

For the first four random samples, we plot eqps in bolts 1-4 per the low fidelity FE model and
the SROM-based surrogate. There is error introduced with the SROM, but we've shown it
can be quite accurate in the ensemble, even for highly nonlinear problems (Emery et al.,
IJNME 2016).
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27
Low fidelity estimates of conditional probability

Thanks to the SROM-based surrogate, we can perform MCS w/ 10,000 samples for
the cost of 200 lofi FE simulations.
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28 Low fidelity estimate of total probability

The law of total probability allows us to compute the probability of failure (due to bolt
fracture) for our component. Pr(B) is easy to compute as the fraction of occurrences
when failure of bolt Bi governs.

1.0

0.8
TD

0.6
0_
a)>
IQ 0 4
w

0.2
(.)

0.0

PrL(tf < tlBi)

PrL(tf < tlB2)
PrL(tf < tlB3)
PrL(tf < tlB4)

Pri(tf < t)

I f

0.00225 0.00250 0.00275 0.00300 0.00325 0.00350 0.00375 0.00400
Time to failure (s)

Pr(tf < t) = >2, Pr(tf < W3,i) Pr(Bi)
i=i

Bolt Pr(Bi)

Obvious1 0.—

0.3973 4—
choices for hifi

— 2 2nd

3 0.6027 1st
simulation

4—

0.— 4



„ I Hifi3 SROM estimate of total probability

We know our failure metric is mesh dependent (max[EQPS]) and sensitive to gradients, but the
full thread model is at bolt 3 for this calculation whereas the emphasis (conditional probability)
shifted to bolt 2.

What is this telling us? (Other than maybe the lofi model misled us in choosing bolt 3 for hifi.)
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30 Hifi2 SROM estimate of total probability

Wow! Obviously, the lofi model dramatically underestimates the probability of failure at bolt
2. Hifi2, no doubt, over estimates it since there are no threads and a coarse mesh in bolt 3.
But what to believe and what to use for computing our multifidelity Pr?
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31 Comparing "truth" with lofi FE (same 4 samples)

We expect to see differences based on choice of max(eqps).
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32 Conditional and total probabilities:truth vs. lofi

Note the "truth" of the matter for the marginal probabilities.
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33 Compare conditional probabilities for bolt 2, 3

As expected, when computed with the high fidelity model, the conditional
probabilities for bolts 2 and 3 are reasonably close to the conditional "truth"
predictions.

With proper weighting, these would closely approximate "truth's" total probability.
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341 What to do with this?

If I cheat and pretend we somehow know the truth about the marginal
probabilities Pr(131), i.e., use weights from the truth calculation, then the total
probability looks pretty reasonable. I am trying to understand how to improve
the estimates for Pr(B) based on the information we have from the series of
simulations. But...
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35 Hifi23

But based on the lofi estimates of Pr(B) and other obvious concerns about their
interaction, and certainly after the emphasis switch in the prediction by hifi3, it
seems reasonable to assume that the hifi model should include threaded bolts at
both locations 2 and 3 (simultaneously). And when you do...

Summary of Pr(Bi)

Bolt lofi hifi 23 truth
1 0. 0. 0.
2 0.3973 0.86 0.77
3 0.6027 0.14 0.23
4 0. 0.0 0.0
cpu hours 196.7 82,300. 196,036.
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36 I Summary
1. We propose a hierarchical model for efficient

propagation of uncertainty that includes
geometric parameters (0).

2. We develop a reduced-order geometry model
and a reduced-order probability model.

3. Our lofi model confuses the marginal
probabilities, but highlights hot-spots.

4. When we listen carefully, we use hifi23 and do
pretty well for less computational cost.

Research ideas
Use the lofi results to improve the SROM
for the hifi calculations, e.g., add SROM
samples where the gradients are steep.

2. Use ideas from importance sampling to
hierarchically improve the SROM, we care
about the tails.

3. Improved failure models for the fasteners,
both hifi and lofi.

C.)

Summary of Pr (Bi)

Bolt lofi hifi 23 truth
1 0. 0. 0.
2 0.3973 0.86 0.77
3 0.6027 0.14 0.23
4 0. 0.0 0.0
cpu hours 196.7 82,300. 196,036.
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