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;1 Nonlinear Material Model Calibration ()

Broad

Nonlinear solid mechanics
Material modeling

J2 Metal Plasticity

v Strain Hardening

Specific to this talk




Nonlinear Solid Mechanics Eﬂq

*At Sandia we perform nonlinear solid mechanics

. ' . Contact: initially, the two L .
simulations of various systems

bodies do note exert force on
each other, but after some

. near : luti ’t scal ional
Nonlinear .the solution doesn’t scale proportionally displacement they abruptly do
to the applied loading
* In general the solution must be solved incrementally
* Implicit time integration

* Explicit time integration
*Types of nonlinearity in solid mechanics simulations
* Contact
* Geometric (large deformations)
* Material Geometric: the initially straight
* This is the aspect that usually needs to be calibrated beam buckles after some loading,

leading to a reduction in load
carrying capacity

While we rely on our FEA codes to accurately simulate contact and geometric nonlinearities, material
nonlinearity is largely modeled phenomenologically, dictated by user-defined parameters




Collagen is a hydrogel on macroscale, but it exhibits nonlinear
elastic behavior due to its microstructural response

Material Modeling

5

A

fiber straightening

*For solid mechanics, materials are often classified according to their: /
* Homogeneity: spatial variation J/ fiber stretching
* Anisotropy: directional dependence
* Nonlinearity: how does stiffness change with strain? strain
* Inelasticity: if unloaded, does material return to original state?

modulus

Tension test of a notched stainless steel 304L specimen [1]
*Whether a material can be considered homogeneous or isotropic
depends on the length-scales of interest.
* For most practical engineering calculations for metal structures, we
assume isotropic and homogeneous materials.

*Beyond very small strains, metals yield and have inelastic, nonlinear
deformations (plasticity).
*FEA of components for design evaluation can assume linear elasticity
and still be extremely valuable
* However, if you want to accurately simulate the response of metal
components under large deformations, must account for their plasticity

* If extreme loading is involved, material failure may also need to be modeled
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[1] Emery et. al., 2015 (https://doi.org/10.1002/nme.4935) o 01 02 03 04 05 06 07
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1 ]2 Metal Plasticity

*Stress tensor can be decomposed into:
* Volume changing (volumetric) deformation

* Related to normal stresses

*Shape changing (deviatoric) portion

* Related to shear stresses

*Metals generally plastically deform due to
deviatoric stresses S

*The “second invariant’” of the deviatoric
stress tensor is called ]2.

*Von Mises stress comes from |2

¢ Conveniently, Von Mises stress is equal to applied stress in
uniaxial tension

* Von Mises is a common “yield criterion” for metals

* Von Mises stress defines a cylindrical 3D yield surface in
“principal stress space”, with its axis along hydrostatic stress
states

¢ If a given material element’s principal stresses give a Von Mises
stress that is higher than the yield stress, the element will
deform plastically
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;1 Strain Hardening

01
°If a metal continues to be loaded past yield, it
begins “hardening”

* Complicated microstructural causes that can’t be practically
modeled, so phenomenological models are used

Expanded yield surface

*This can be understood as the yield surface expanding

(isotropic hardening) or translating (kinematic hardening) to

accommodate the increasing Von Mises stress Initial yield surface

*Very ductile alloys (e.g. 304L stainless steel) can
accommodate a lot of plastic strain/hardening before
fracture

* For ]2 plasticity, the hardening behavior can be described with a
“hardening curve”
* This can be obtained from a uniaxial tension test, up until necking

*In general, a hardening curve can only be directly obtained from a
test if the test has a uniform state of strain (or if one can reasonably
be assumed)

¢ If not, an inverse calibration procedure must be used

We often need to calibrate the hardening
curve for a given material model so that it
gives the correct response in a system model

Elastic unloading 01 Elastic unloading

Shifted yield
surface

Plastic deformation Plastic deformation

(hardening) (hardening)

09 02
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Effective Stress
(Von Mises)

Oyield

Hardening Curve Calibration: Conventional Methods

===s Model Initial Guess

=== Model Calibrated

Effective Plastic Strain

TEST
Measured response "
(load vs displacement)

!

MODEL CALIBRATION

Repeatedly simulate FE model,
GUESS DESIGN VARIABLES optimizing design variables so that
the model output better matches
the test data.

(hardening curve) —

|

Calibrated Design Variables

Typically described by analytical function,

e.g. 0 =0y + Ac)

Load

L

EQPS
0.0e+00 05 1 1.3e+00
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= EXperiment

==== Model Initial Guess

=== Model Calibrated
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Hardening Curve Calibration: Incremental Method

*Typically, the hardening curve would be described by an analytical function
for the previous method

* This limits how well you can match arbitrary load vs displacement curves

*An alternative approach would be to use a piecewise linear hardening curve
for more flexibility

* This 1s very difficult to calibrate using conventional methods if a lot of
segments are used in the piecewise curve

* The number of design variables gets big, and the load-displacement isn’t that sensitive to any one
segment

*Novel approach is to use an incremental solution strategy, calibrating each
individual segment of the piecewise linear hardening curve
* Now can use a root finding algorithm rather than cost function minimization

With this method, structural models can be more effectively
calibrated to arbitrary load-displacement response

Effective Stress

(Von Mises) 4

Oyield ===+ 1stsection initial guesses

== 15t section calibrated
2"d section initial guesses

2nd section calibrated

etc.
Effective Plastic Strain
Load

sssusw
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1%t section initial guesses
1%t section calibrated

2"d section initial guesses
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etc.
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Example: Uniaxial Tension

A.) FE model--symmetry BC's used to
represent full cylinder.

B.) Load vs Displacement Incremental
Calibration Results

C.) “Truth” hardening curve compared to
the calibrated hardening curve

D.) Model re-ran once with calibrated

hardening curve to verity the incremental
approach matches the final model
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+ I Example: Fastener Models ﬁ

« Calibrate fastener models of varying fidelity to tension 2500
tests of a given screw
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+1 Outline: Multiscale Uncertainty Propagation

Motivation

Hierarchical model for multiscale (multifidelity) uncertainty propagation

FE models used in the hierarchy

Deterministic calculations

Pretend probability and model

Another model — stochastic reduced-order model (SROM)

Low-fidelity predictions of failure L
High-fidelity predictions, followed by chaos

Higher-fidelity sanity |

Summary




" ‘ Motivation

f:rx—uy

If x is random, so is y (even when f 1s deterministic).

x might be random due to measurement errors, manufacturing defects, and
materials microstructure, etc. f might be random due to, ¢.g., random
boundary conditions.

The most general way to compute statistics for and predict tail behavior of
y is to generate samples of x and evaluate f(x) = y. We call this Monte Carlo

(MC) simulation.

For large systems, f 1s expensive.

For failure, we may want to include a lot of detail in f, which exacerbates
our situation and introduces multiple length scales of concern.

So, maybe we develop a multiscale numerical method for concurrent
multiscale simulation.



ne multiscale calculation is necessary but not sufficient

15

‘Engineering scale
(millions of DOFs)

\

Fine-scale model
(210s millions of DOFs*)

(*admittedly a bit gratuitous for the present example)

One multiscale calculation gives you this:  But you set out to predict this:

1. , . , { X ) . ( 1.
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The tail of the cumulative failure, which

One point for conditional probability of requires many MC samples.
N

failure Pr(ty < t|B;),
conditioned on choice of bolt B,. Pr(t; <t) = Z Pr(t; <t|B;)Pr(B;)

7=




Schematic of our hierarchical approach
Low-fidelity Probability of Failure

MCS of engineering-scale R
uncertain data response via SROM-surrogate § T E EZ
$8§ TERTEYY H(U;®)| i(u) + Vig(u) - (© — 65) éo_
fide I itY 503@ : Hot-spot selection & prioritization

*SROM e

prior distribution

For hotspot i, iterate.
Repeat for all hotspots.

1+ N
Pr(t; <t)=» Pr(t; <t|B;)Pr(B;)
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. > & .

ribution of Higher
/fallure fidelitl_'
prediction

Multiscale calculation
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17 Defining the “models”

In the following, we use a lot of “models.” Here we provide a high-level overview to

help keep things straight:

* Low fidelity finite element model (lofi FE) — a finite element model containing
lower-fidelity geometric representation.

* High fidelity finite element model (hifi FE) — a finite element model with
improved (relative to lofi FE) geometric fidelity.

* Truth finite element model — a finite element model used in lieu of experimental
data as a truth solution.

* Stochastic reduced-order model (SROM) — a surrogate model to expedite
uncertainty propagation.

* Lofi SROM and hifi SROM — SROMs built with the lofi FE and hifth FE models,
respectively.
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Component model

Insert variable-
fidelity fastener
model here

Finite element model(s)

Bolted component

Plug model (low fidelity)
* 1,920 elements
* Minimum element
edge: 0.022 —time
step ~ 1e-07
* Tied contact b/w
shank and nut

Threaded model (high
fidelity & truth)
* 180,000 elements
* Minimum element
edge: 0.0027” — time
step ~ 1e-08
* Frictional contact b/w
shank and nut threads

Bottom view

16,000 elements

Minimum element edge: 0.036” —
time step ~ 2e-07 s

BC’s: hold outside of (green) plate
fixed, apply 0x, dy, 0z at upper
surface of component (yellow)
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Lofi model

Miscellaneous (but important) details

. We use “plug” for low fidelity and (one or

two) full threads for high fidelity.

. We compare with “truth,” which employs

threaded models at all 4 locations.

. Material properties are from tension data on

fasteners, calibrated using the lofi model.

. LoFi will be plugs at all 4 locations.
. HiFi will be full thread at one, then two,

location(s) selected based on lofi results.

. There are convenient properties of

multifidelity models (combinations of 3 & 4
above) that we are still exploring, but at
least we expect it to be convergent because
we recover “truth” when you include HiFi
everywhere.

. Hardening is hardening - recovery form w/ 3

parameters = initial_yield, hardening,
recovery. (Allows us to parameterize the
hardening and include them as random
variates.)

. System fails when first bolt “fails.” This is

hard to define. Presently, we use a mesh-
dependent metric: max(eqgps) = 0.45




| Deterministic lofi & truth results
L Ofl model Deterministic calculations assume 0x = 0
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. 1 Model for randomness

Suppose, upon assembly, bolts 1 and 4 were the last two in the box, so that bolts 2 and 3 were
the first two from a new box, ze., different batch. Bolt properties are correlated as shown in
the matrix below. Hardening is weakly (and negatively) correlated with yield, and bolts 1, 4
and 2, 3 are weakly correlated. And there’s some quantifiable uncertainty in loading;

Bolts have random initial yield strength and hardening modulus, and the horizontal loading
angle 0 is random.

Yield is Beta distribution calibrated to aluminum data but scaled to have mean = 111,660.8
and standard deviation = 1,353.3 (psi).

Hardening is uniform calibrated to aluminum data, scaled to have mean = 898,637.0 (psi) and
standard deviation = 135,497.0 (psi).

0 is assumed uniform random between —1t/16, +1/16 (mean 0).

© Oy1 hl Oy2 h2 Oy3 h3 Oy4 h4

© [t. 00 o0 0 0 0 0 0 O
o, |0 1. =02 0 0 0 0 05 0
hy |0. =02 1. —-02 0. 0. 0. 0. 05
opp 0. 0. —02 1. —02 05 0 0. 0
he 0. 0. 0. 02 1. -02 05 0. O
o3 0. 0. 0. 05 —02 1. 02 0. O
hs 0. 0. 0. 0. 05 —02 1. -02 O
ogs |0. 05 0. 0. 0. 0 —02 1. —02
hsy 0. 0. 05 0 0 0 0 -02 1 |
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10,000 Samples -- Histograms and correlation

We use a translation model to obtain samples of
this random vector. Here 1s the outcome from
generating 10,000 samples.

[1.00 0.00 0.00 -0.01 0.01 0.00  0.01 0.01  —0.02]
0.00 1.00 -0.19 -0.01 -0.01 -0.01 0.01 0.48  0.00
0.00 -0.19 1.00 -0.01 0.01 0.00 0.01 -0.01 048

-0.01 -0.01 -0.01 100 -0.20 048 0.00 0.01 -0.01
0.0r -0.01 0.01 -020 1.00 0.00 048 0.00 -0.01
0.00 -0.01 0.00 0.48 0.00 1.00 —-0.19 0.01 0.00
0.01 0.01 0.01 0.00 048 -0.19 1.00 0.00 0.00
0.01 048 —0.01 0.01 0.00  0.01 0.00 1.00 —-0.19

—0.02 000 048 -0.01 -0.01 0.00 0.00 -0.19 1.00 |
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» | Lofi FE w/ 4 samples of random properties and loading angle

Low fidelity simulations of the first four samples. The dashed lines are from the
deterministic calculation, for comparison.

Time: 0.004000 - FE B1 | — FE 51
04| == FEB; 04| == FE B>
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N 03] == By W 03| == By
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6042 =By 60.2 == B;
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0.0 0.0
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Time (s) Time (s)
— FE B4 — FE B4 —
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L Bs | B,
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\ 2 —52 E
; gx f 001013)%7 bolt 2 fails first bolt 2 fails first
z ~ Ve . 00 5d
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Time (s) Time (s)
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Stochastic reduced-order model (SROM) @)

To develop a model that optimally represents the uncertainty in the input we choose
a discrete random variable ® . The SROM is then defined by the collection <9k:, ﬁk>
£ =1, ..., 7 that minimizes an objective function of the form:

max max o, |fis(r) — fis(r)| + max max Be|Fs(z) — Fy(x)| + Cou maéxlé(s,t) — ¢(s, 1)

1<r<r1<s<d r 1<s<d
\— _/ \— NG /
Y Y
moments cumulative distribution correlation
Estimates of SROM statistics given Estimates of sample statistics
SROM sample size m given g samples of ®
q
s ( E[@r Zpk Hk 3 :aS(T) — Z(l/q)(ei,s)r
i=1
X q
k=1 =1
5(87 t) — E[(:)S ét] — Zpk ék,s ék:,t Z 1/q 91 20 it
k=1 i=1

withn<<gand «, B, (>0 are weights and subject to probabilities pr > 0 and Zk pr = 1.
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»| Construction of SROM-based surrogate G

* SROM points Response surface

Example 2D probability density

= Aresponse surface is constructed for the structural response of the component, I1(#;®)

= The surface is a series of hyper-planes described with a first-order Taylor approximate of
the structural response

I, (u;©) = Y 1(O© € Ty)[Fr(u) + Vay(u) - (© — 6;)]
k=1

= The SROM samples are used as the expansion points §,“ and the domain ', are
determined by the Voronoi tessellation of the uncertain parameters

= Requires m*(d+1) FE calculations (we use m = 20 and d =9, so 200 FE calculations)

Assumes the quantity of interest is differentiable.

1



Lofi SROM predictions (same 4 samples)

26

For the first four random samples, we plot eqps in bolts 1-4 per the low fidelity FE model and
the SROM-based surrogate. There is error introduced with the SROM, but we’ve shown it
can be quite accurate in the ensemble, even for highly nonlinear problems (Emery e 4.,

Time: 0.004000 — FE Bl i——— — FE Bl m—
04| === FE B, 04| === FE B,
FE B3 FE B3
—— FEB4 —— FEB,
L O3 srRoMB; P03~ srRoMB;
g — — SROM B, 8‘ — — SROM B,
02 SROM B; % 02 SROM B;
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0.1 0.1 ?
bolt 3 fails first 7 bolt 2 fails first
X = . 922 0.0 0.0
: 0.000 0.001 0.002 0.003 0.004 0.005 0.000 0.001 0.002 0.003 0.004 0.005
62 =0.10431 Time (s) Time (s)
e — FEB; = — FEB; —_————
04| =—— FEB, 04| —— FEB,
FE B3 FE B3
~—— FEB4 —— FEB4
Q03— SrROM B, P03 srRoMB;
8’ — — SROMB, 8’ — — SROMB,
§ 0.2 SROM B3 ﬁ 0.2 SROM B3
‘ BE _EE — — SROM B, s — — SROM B4
2 ‘ =2 0l 0.1
o, = -0.01567 5, =-0.01225
& X . X . o2 o . ’ . o
v , y ?
5, = 0.10490 5,=0.10536 © o bolt 3 fails first| bolt ? fails first
0.000 0.001 0.002 0.003 0.004 0.005 0.000 0.001 0.002 0.003 0.004 0.005
Time (s) Time (s)

Failure appears to be dictated by the
sign of \Theta

T
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Thanks to the SROM-based surrogate, we can perform MCS w/ 10,000 samples for
the cost of 200 lofi FE simulations.

Y
o

—_— Pr(ty; < t|B1)
— Pr(t; <t|By)

Pr(t; < t|B3)
— Pr(tr <t|Ba)

o
oo

Low fidelity estimates of conditional probability ﬁ

o
o

o
o

o
N

Conditional cumulative probability

0.00225 0.00250 0.00275 0.00300 0.00325 0.00350 0.00375 0.00400
Timeto failure (s)

x\‘ |



«| Low fidelity estimate of total probability

The law of total probability allows us to compute the probability of failure (due to bolt
fracture) for our component. Pr(B) is easy to compute as the fraction of occurrences
when failure of bolt B; governs.

N
O Pty < tIBY) Pr(ty <t) =) Pr(t; <tB;)Pr(B;)
3 _— PrL(tf < t|Bz) =1
8 —— Pro(t; < t|Ba) R L
o — Pr (tr <) o ' Obvious
0.6 LAY = e e
S 2 O'BQ;i %:td choices for hifi
O - i 8'60 " Simulation
= 04 '
T
>
=
> 02
O
0.0
0.00225 0.00250 0.00275 0.00300 0.00325 0.00350 0.00375 0.00400
Timeto failure (s E



,1 Hifi; SROM estimate of total probability ()

We know our failure metric is mesh dependent (max[EQPS]) and sensitive to gradients, but the

full thread model is at bolt 3 for this calculation whereas the emphasis (conditional probability)
shifted to bolt 2.

What is this telling us? (Other than maybe the lofi model misled us in choosing bolt 3 for hifi.)

N

L0 Pro(tr < t|By) Pr(ty <t) = ;Pr(tf < t|B;) Pr(B;)
_,2’ — Prpo(tr < tlBg)
= 08 Pry(tr < t|B3) Bolt | Pr(B;)
_-g — Prltr <1|By) — 1 (0.0019
& 06 3 — 20.7263 <€— i
o s la 5718 IT SWITCHED!
.g - — 40.0002
E 5
>
=
S 0.2
O

0.0

0.0028 0.0030 0.0032 0.0034 0.0036 0.0038 0.0040
Timeto failure (s)




.1 Hifi, SROM estimate of total probability ()

Wow! Obviously, the lofi model dramatically underestimates the probability of failure at bolt
2. Hif1,, no doubt, over estimates it since there are no threads and a coarse mesh in bolt 3.
But what to believe and what to use for computing our multifidelity Pr?

N
1.0 Pr(t; <t)=> Pr(t; <tB;)Pr(B;)
=1
Fry
= 08 Bolt | Pr(B;)
:§ Pr.(tr <t|B1) - 110.
o 0.6 Pri(tr < t|B2) — 2(0.9375 €— ||/
o
: i e - 3o
'_% 0.4 I:)rL(tf < tlB4) .
= Pry,(tr <t)
=
> 02
@
0.0

0.0028 0.0030 00032 00034 0.0036 0.0038 0.0040 0.0042
Timeto failure ()




» 1 Comparing “truth” with lofi FE (same 4 samples)

We expect to see differences based on choice of max(eqps).
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» | Conditional and total probabilities: truth vs. lofi

Note the “truth” of the matter for the marginal probabilities.

=
o

—— Pri(tr <t|By)
Pro(tr < t|B3)
Pro(tr <t)
~—== Prr(tr <t|B2)
Prr(tr < t|B3)
Prr(ts <t)

o o o
S ()] )

Cumulative probability
|
|

e ’l’

o
o

Pr(t; <t)=> Pr(t; <tB;)Pr(B;)

0.0022 0.0024 0.0026 0.0028 0.0030 0.0032 0.0034
Timeto failure (s)

i=1
Bolt | Pr(B;)
110.
2(077 <4— &
31023 <€— truth
410.0




» | Compare conditional probabilities for bolt 2, 3

As expected, when computed with the high fidelity model, the conditional
probabilities for bolts 2 and 3 are reasonably close to the conditional “truth”
predictions.

With proper weighting, these would closely approximate “truth’s” total probability.
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‘ What to do with this?

If I cheat and pretend we somehow know the truth about the marginal

probabilities Pr(B), ze., use weights from the truth calculation, then the total

probability looks pretty reasonable. I am trying to understand how to improve

the estimates for Pr(B) based on the information we have from the series of .
simulations. But...
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‘ Hifi23

But based on the lofi estimates of Pr(B) and other obvious concerns about their
interaction, and certainly after the emphasis switch in the prediction by hifi,, it
seems reasonable to assume that the hifi model should include threaded bolts at
both locations 2 and 3 (simultaneously). And when you do...
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%‘ Summary

1. We propose a hierarchical model for efficient
propagation of uncertainty that includes
geometric parameters (0).

Summary of Pr(B;)

2. We develop a reduced-order geometry model Bolt lofi hifi 23 truth
and a reduced-order probability model. 1 0 0. 0.
3. Our lofi model confuses the marginal 2 0.3973  0.86 0.77
probabilities, but highlights hot-spots. i 0-60027 06104 00-203
4. When we listen carefully, we use hifi,; and do cpu hours 196_7 82,2'%00. 196,'036. =
pretty well for less computational cost.
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Research ideas Bod — P <0
o | — Prualtr <tlB2)
1. Use the lofi results to improve the SROM 2 6 Pri(tr < t|Bs)
for the hifi calculations, e.g., add SROM B ] = Pl <t
samples where the gradients are steep. % 04 :
2. Use ideas from importance sampling to (_é’ 5 E
hierarchically improve the SROM, we care =
about the tails. § 00
0.0028 0.0030 0.0032 0.0034 0.0036
3. Improved failure models for the fasteners, Timeto failure (s)

both hifi and lofi.



