
Unclassified Unlimited Release
D. Sunderland, N. Ellingwood, D. Ibanez, S. Bova,

J. Miles, D. Hollman, V. Dang

(1)1iWiiitr

. -it

Kokkos RoadMap

Christian R. Trott, - Center for Computing Research

Sandia National Laboratories/NM

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energys National Nuclear Security Administration under contract DE-NA-0003525.

SAND2019-4547 PE

SAND2019-4605PE

7.

r ik Backend Plan =
• OpenMP Update FY19/20:

• OpenMP compiler/runtime now much better than it used to be

=> Don't need to write my own scheduler anymore

• use OpenMP 4 capabilities for host backend

• Custom reductions, vectorization, etc.

• CUDA FY19/20

• 2019 CUDA Graphs support -> see later

• AMD Ready end

• Existing ROCm backend based on AMD recommendation

Buggy compiler prevents compiling of any apps, worked around bugs in unit tests

• Starting new backend using HIP compiler front end, early FY20 standard capabilities

• Intel GPU (ANL Aurora)

• Initial capabilities (i.e. enough to do our standard tutorial) end of FY20

• Full production support FY21

: Harmonized Hierarchical Parallelism =
parallel_for("Bigkernel", TeamPolicy<>(N,AuT0,8) KOKKOS_LAMBDA (const team_t& team) {
parallel_for(TeamvectorRange(team,M), [&] (const int j) {
// Allowed to call ThreadvectorRange here??

});

//...
parallel_for(TeamThreadRange(team,M), [&](const int j) {
// would TeamThreadRange be allowed to be vectorized?
parallel_for(ThreadvectorRange(team,K), [&] (const int k) {
//...

});

//...
});

1);

• What are the semantics of the inner loop?

• What nesting levels am l allowed to call where?

: Harmonized Hierarchical Parallelism =
• Reusing RangePolicy for "no other nesting"

• Get "nested executor" for loops which have another nesting level

• Kind of needs C++17 for template deduction from ctr arguments

parallel_for("BigKernel", TeamPolicy<>(N,AUT0,8) KOKKOS_LAMBDA (Dnst team_t& team) {

1 parallel_for(Rangepolicy(team,M), [&] (const int j) {
H11 owed LU c.al l I Pired vecLorkdnye 'ere..

});

//

Iparallel_for(TeamThreadRange(team,m), [&](const thread_t, const int i) { l
// would TeamThreadRange be allowed to be vectorized?

pallel_for(RangePolicy(thread_t,k), [&] (const int k) {

Generic Execution Space Instances

• Added CUDA stream support as interop, but whatabout a general interface

• Propose e.g. Kokkos::partition(ExecSpace,PartitioningRule) functionality

auto instances = partition(DefaultExecutionspace(),);

parallel_for("Init. ,RangePolicy<>(,N),functor_init);
para11e1_for("A",RangePolicy<>(instances[0],0,N),functor_A);
para11e1_for("6",RangePolicy<>(instances[1],0,N),functor_B);
para11e1_for("c",RangePolicy<>(instances[2],0,N),functor_c);
para11e1_for("D",RangePolicy<>(instances[3],0,N),functor_D);
parallel_for("End",RangePolicy<>(,N),functor_end);

L_J Li LJ LJ

• Is equal partitioning enough?

• If partitioning is not possible, fail or just return same instance 4 times?

: Pipelining Kernels

• Often dependency is only iteration to iteration.

• Exploiting this provides caching bene fits, e.g.

parallel_for("Axpbyn,N,KOKKos_LAYBDA (onst int i) {
c(i) a(i)+b(i);

}),
parallel_reduce("Dot",N,KoKKos_LAMBDA (const int i, doublE& lsum)
lsum c(i)*c(i);

},sum);

{

• Pipeline interface promises only iteration to iteration dependency

• What about reductions, and using reduction result in the next kernel?

• Mix of RangePolicy/TeamPolicy??

7.
Latency Limited Kernels =

• Many applications run into latency limits

• Targeting 1000 timesteps or solver iterations per second

• Need to optimize for kernels of 20us or less runtime

• Underlying Programming Models have limits

• CUDA launch latency 3us (Skylake) to 12us (Power9)

• OpenMP max loop rate about lus/per loop

• Allocation rate limited

• CUDA UVM allocation takes 200us!

• MPI communication?

CUDA Graphs
Launch 3 Kernels

CUDA graphs: launch multiple kernels as one

Host Launch 3-10us

Device Grid Setup 1 us

Compute Kernel

■ CUDA has interface to record Kernel launches, and then dispatch in bulk

■ Can resolve dependencies according to streams
// Start by initating stream capture
cudastreamBeginCapture(streaml);
// Build stream work as usual A<<< streaml >>>();
cudaEventRecord(el , streaml); B<<< streaml >>>();
cudaStreamWaitEvent(stream2, el); C<<< stream2 >>>();
cudaEventRecord(e2, stream2);
cudaStreamWaitEvent(streaml , e2); D<<< streaml >>>();
// Now convert the stream to a graph
cudaStreamEndCapture(streaml , &graph);

cudaGraphlnstantiate(&instance, graph);
// Launch executable graph 100 times
for(int i=0; i<100; i++)
cudaGraphLaunch(instance, stream);

: Kokkos Options To Leverage Graphs =

• InterOp option: make the CUDA API capture Kokkos parallel _for etc. correct

• Capture in a coarse grained scope:

Kokkos::View<dnumr> reduce_result();
graph = Kokkos::capture_kernel_graph([=] () {

Kokkos::parallel_for(,N,KOKKOS_LAMBDA(onst int i) f...1);
Kokkos::parallel_reduce("A",N,KOKKOS_LAMBDAG:onst int i, dot.
Kokkos::parallel_for(,N,KOKKOS_LAMBDA()nst int i) {

Aouble r = reduce_result();

(nt i=0;i<10;i++)
Kokkos::execute_graph(graph);

• Problem: what if I want an MPI call in this loop?

& r) {...},reduce_result);

7 Capturing Host Events =
• Maybe capture as host_spawn?

• The captured host lambda must stay valid, e.g. capture comm class as
const?

Kokkos::View<dnuhlr> reduce_result();
auto graph = Kokkos::capture_kernel_graph(scheduler,[=] () {

Kokkos::parallel_for(,N,KOKKOS_LAMBDA()nst int i) 1...1);
Kokkos::parallel_reduce("A",N,KOKKOS_LAMBDA(=onst int i,
scheduler.spawn(SingleTask, [=] (team_t) {
comm.reduce(reduce_result);

});
Kokkos::parallel_for(,N,KOKKOS_LAMBDA(Const int i) {

JouDie r = reduce_result();

(nt i=0;i<10;i++)
Kokkos::execute_graph(graph);

& r) { • .},reduce_result);

:Coarse Grained Tasking =

• Somewhat awkward to capture the whole region

• Expressing dependencies indirectly just via ExecSpace instances is suboptimal

• Make parallel dispatch return "futures" and execution policies consume
dependencies instead

auto fut_1 = parallel_for(RangePolicy<>("Funct1", 0, N), fl);

auto fut_2a = parallel_for(RangePolicy<>("Funct2a", fut_1„ N), f2a);
auto fut_2b = parallel_for(RangePolicy<>("Funct2b", fut_1„ N), f2b);

auto fut_3 = parallel_for(RangePolicy<>("Funct3", all(fut_2a,fut2_b), N), f3);
fence(fut_3);

• Could build graph under the hood and submit upon fence?

• What about eager execution?

• Insert MPI via host_spawn?

7.
r, More Generic Properties =
• Which properties are valid for which ExecutionPolicies?

• Dynamic Schedule, index type, ExecutionSpace, ...

• Fi MAI to tell which properties are required, vs hints?

• How do l add a property in a generic context?

• C++ -> require/prefer mechanism

• May return the same object
template<class exec_t>
void foo(exec_t exec) {
auto exec_dynamic = require(exec,schedule<Dynamic>());
parallel_for(exec_dynamic, ...);

}

template<class exec_t>
void foo(exec_t exec) {
auto exec_chunked = prefer(exec,chunksize(16));
parallel_for(exec_chunked, ...);

}

: Aligning Kokkos with the C++ Standard
• Long term goal: move capabilities from Kokkos into the ISO standard

• Concentrate on facilities we really need to optimize with compiler

Move accepted features
to legacy support

t

Kokkos Legacy
a

Implemented legacy
capabilities in terms of
new C++ features

rm. Kokkoluslill

C++ Backport Ammob-

Propose for C++

t

C++ Standard

J

=

Back port to compilers we got

C++ Atomic Ref
■ atomic ref<T> in C++20

■ Provides atomics with all capabilities of atomics in Kokkos

Atomic ops on "POD" types with operators

Wrap non-atomic object

■ atomic_ref(a[i])+=5.0; instead of atomic_add(&a[i],5.0);

7.
C++ MDSpan =

tAik

• Provides customization points which allow all things we can do with Kokkos::View

• Better design of internals though! => Easier to write custom layouts. ©

• Also: arbitrary rank (until compiler crashes) and mixed compile/runtime ranks ©

• More verbose interface though ®

• We hope will land early in the cycle for C++23 (i.e. early in 2020)

• 4 Template Parameters

• Scalar Type

• Extents -> rank and compile timensions

• Layout

• Accessor -> return type of operator, storage handle, and access function

view<int**[5],Layouneft,memoryTraits<Atomic»
=
basic_mdspan< ,extents<dynamic_extent,dynamic_extent, >,layout_left,accessor_atomic< »

: C++ MDSpan =

• How to get MemorySpaces?

• accessor memspace<int,CudaSpace>

• mdspan is non-owning?

• Derive Kokkos View from MDSpan

• store the extra reference count handle

• Provide allocating constructors

• Or: use accessor with shared_ptr as data handle ...

• What about subviews?

• subspan is part of the proposal

iw
Other thingsr-

• Resilience

• See Jeff's talk from Tuesday

• PGAS support

• See Christian's talk from Tuesday

• SIMD Support

• Remember discussion from Tuesday

• Documentation, Documentation, Documentation

=

: Timeline Summary =
• FY19/20

• CUDA Graphs Support

• Initial AMD HIP backend

• ExecSpace Instances

• FY20

• Coarse grained tasking

• Initial Intel GPU backend

• AtomicRef/MDSpan utilization (via backport)

• C++14 requirement

• FY21

• Production AMD and Intel GPU backend

