7602 eopicorfriy

Unclassified Unlimited Release

D. Sunderland, N. Ellingwood, D. Ibanez, S. Bova,
J. Miles, D. Hollman, V. Dang

Christian R. Trott, - Center for Computing Research
Sandia National Laboratories/NM

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

~ Backend Plan =

= OpenMP Update FY19/20:
= OpenMP compiler/runtime now much better than it used to be

= =>Don’t need to write my own scheduler anymore
= use OpenMP 4 capabilities for host backend
= Custom reductions, vectorization, etc.
= CUDAFY19/20
= 2019 CUDA Graphs support -> see later
= AMD Ready end
= Existing ROCm backend based on AMD recommendation
= Buggy compiler prevents compiling of any apps, worked around bugs in unit tests
= Starting new backend using HIP compiler front end, early FY20 standard capabilities
= |ntel GPU (ANL Aurora)
= |nitial capabilities (i.e. enough to do our standard tutorial) end of FY20
= Full production support FY21

”. ° [° o
. Harmonized Hierarchical Parallelism @&,

parallel_for("BigKernel", TeamPolicy<>(N,AUTO,8) KOKKOS_LAMBDA (const team_t& team) {
parallel_for(TeamvectorRange(team,M), [&] (const int j) {
// Allowed to call ThreadvectorRange here??
¥);

i -
parallel_for(TeamThreadrRange(team,M), [&](const int j) {

// Would TeamThreadRange be allowed to be vectorized?
parallel_for(ThreadvectorrRange(team,K), [&] (const int k) {
VI
3);
Lf o n
¥);
B

= What are the semantics of the inner loop?
= What nesting levels am | allowed to call where?

= Harmonized Hierarchical Parallelism @i

= Reusing RangePolicy for “no other nesting”
= Get "nested executor” for loops which have another nesting level
= Kind of needs C++17 for template deduction from ctr arguments

para11e1_for("BigKerne]", TeamPolicy<>(N,AUTO,8) KOKKOS_LAMBDA (const team_t& team) {
parallel_for(RangePolicy(team,M), [&] (const int j) {-]

/7 ATIOwed O calt Tnreadvectorrange nercee
3;
/ /

rgara]1e1_for$TeamThreadRangegteam,MzI [&] (const _thread_t, const int j) {

// Would TeamThreadRange be allowed to be vectorized?
parallel_for(RangePolicy(thread_t,K), [&] (const int k) {
e
3);
& -
B;
B

_ Generic Execution Space Instances .

= Added CUDA stream support as interop, but whatabout a general interface
" Propose e.g. Kokkos::partition(ExecSpace,PartitioningRule) functionality

auto instances = partition(DefaultExecutionSpace(),4);
parallel_for(’Init",RangePolicy<>(0,N),functor_init); _W -
parallel_for("A",RangePolicy<>(instances[0],0,N), functor_A);

parallel_for("B",RangePolicy<>(instances[1],0,N),functor_B); - p— - —
parallel_for("c",RangePolicy<>(instances[2],0,N),functor_C); ﬁ lij E i!j

parallel_for("D",RangePolicy<>(instances[3],0,N), functor_D);

parallel_for(”end",RangePolicy<>(0,N),functor_end); -sm-

= |s equal partitioning enough?

= |f partitioning is not possible, fail or just return same instance 4 times?

” Pipelining Kernels B

= Often dependency is only iteration to iteration.
= Exploiting this provides caching bene fits, e.g.

parallel_for("Axpby",N,KOKKOS_LAMBDA (const int i) {
c(i) += a(i)+b();

3);

parallel_reduce("Dot",N,KOKKOS_LAMBDA (const int i, double& Tsum) {
Tsum += c(i)*c(i);

},sum);

= Pipeline interface promises only iteration to iteration dependency
= What about reductions, and using reduction result in the next kernel?
= Mix of RangePolicy/TeamPolicy??

” Latency Limited Kernels N

Many applications run into latency limits
= Targeting 1000 timesteps or solver iterations per second
= Need to optimize for kernels of 20us or less runtime

Underlying Programming Models have limits
= CUDA launch latency 3us (Skylake) to 12us (Power9)
= OpenMP max loop rate about 1us/per loop

Allocation rate limited
= CUDA UVM allocation takes 200us!
MPI communication?

” CUDA Graphs =

1 Lebecatwiee
Launch 3 Kernels

-:- -: - Host Launch 3-10us

CUDA graphs: launch multiple kernels as one - Device Grid Setup 1us

- ‘I I Compute Kernel

= CUDA has interface to record Kernel launches, and then dispatch in bulk

= Can resolve dependencies according to streams

/l Start by initating stream capture
cudaStreamBeginCapture(stream1);

// Build stream work as usual A<<< ..., stream1 >>>(); ;;/uli:laGrahphInstatntlioelxte(&inshta1r(1)%et,.graph);
cudaEventRecord(e1, stream1); B<<< ..., stream1 >>>(); p a_u:(_:_oe'f;:goall _+e+grap e
cudaStreamWaitEvent(stream2, e1); C<<< ..., stream2 >>>(); or(int i=0; |)| .)
cudaEventRecord(e2, stream?): cudaGraphLaunch(instance, stream);

cudaStreamWaitEvent(stream1, e2); D<<< ..., stream1 >>>();
/l Now convert the stream to a graph
cudaStreamEndCapture(stream1, &graph);

” Kokkos Options To Leverage Graphs &,

= |nterOp option: make the CUDA API capture Kokkos parallel for etc. correct
= Capturein a coarse grained scope:

Kokkos: :View<double> reduce_result("red");
auto graph = Kokkos::capture_kernel_graph([=] O {
Kokkos: :parallel_for("A",N,KOKKOS_LAMBDA(const int i) {...});
Kokkos: :parallel_reduce("A",N,KOKKOS_LAMBDA(const int i, double& r) {...},reduce_result);
Kokkos: :parallel_for("A",N,KOKKOS_LAMBDA(const int i) {
double r = reduce_result();

b
1);

for(int i=0;i<10;1++)
Kokkos: :execute_graph(graph);

" Problem: what if | want an MPI call in this loop?

” Capturing Host Events B

= Maybe capture as host_spawn?

= The captured host lambda must stay valid, e.g. capture comm class as
const?

Kokkos::view<double> reduce_result("red");
auto graph = Kokkos::capture_kernel_graph(scheduler,[=] () {
Kokkos: :parallel_for("A",N,KOKKOS_LAMBDA(const int i) {...});
Kokkos: :parallel_reduce("A",N,KOKKOS_LAMBDA(const int i, double& r) {...},reduce_result);
scheduler.spawn(SingleTask, [=] (team_t) {
comm.reduce(reduce_result);
5
Kokkos: :parallel_for("A",N,KOKKOS_LAMBDA(const int i) {
double r = reduce_result();

;o
1);

for(int i=0;1i<10;i++)
Kokkos: :execute_graph(graph);

~ Coarse Grained Tasking R

= Somewhat awkward to capture the whole region
= Expressing dependencies indirectly just via ExecSpace instances is suboptimal

= Make parallel dispatch return “futures” and execution policies consume
dependencies instead

auto fut_1 = parallel for(RangePolicy<>(“Functl”, @, N), f1);

auto fut_2a = parallel for(RangePolicy<>(“Funct2a”, fut_1,0, N), f2a);

auto fut_2b = parallel for(RangePolicy<>(“Funct2b”, fut_1,0, N), f2b);

auto fut_3 = parallel for(RangePolicy<>(“Funct3”, all(fut_2a,fut2_b),0, N), f3);
fence(fut_3);

= Could build graph under the hood and submit upon fence?
= What about eager execution?

" |nsert MPI via host_spawn?

~ More Generic Properties =

= Which properties are valid for which ExecutionPolicies?
= Dynamic Schedule, index type, ExecutionSpace, ...

= How to tell which properties are required, vs hints?

= How do | add a property in a generic context?

" C++ ->require/prefer mechanism
= May return the same object

template<class exec_t>

void foo(exec_t exec) {
auto exec_dynamic = require(exec,Schedule<bynamic>());
parallel_for(exec_dynamic, ..);

}

template<class exec_t>

void foo(exec_t exec) {
auto exec_chunked = prefer(exec,Chunksize(16));
parallel_for(exec_chunked, ..);

}

= Aligning Kokkos with the C++ Standard &

= Long term goal: move capabilities from Kokkos into the ISO standard
= Concentrate on facilities we really need to optimize with compiler

Move accepted features
to legacy support

Propose for C++

Kokkos Legacy C++ Standard

Implemented legacy
capabilities in terms of Back port to compilers we got
new C++ features C++ Backport

" C++ Atomic Ref B

= atomic_ref<T> in C++20

= Provides atomics with all capabilities of atomics in Kokkos
= Atomic ops on “POD” types with operators

= Wrap non-atomic object
= atomic_ref(a[i])+=5.0; instead of atomic_add(&a[i],5.0);

” C++ MDSpan B

= Provides customization points which allow all things we can do with Kokkos::View
= Better design of internals though! => Easier to write custom layouts. ©
= Also: arbitrary rank (until compiler crashes) and mixed compile/runtime ranks ©
= More verbose interface though ®
= We hope will land early in the cycle for C++23 (i.e. early in 2020)
= 4 Template Parameters
= Scalar Type
= Extents ->rank and compile timensions
= Layout
= Accessor -> return type of operator, storage handle, and access function

View<int**[5],LayoutLeft,MemoryTraits<Atomic>>

basic_mdspan<int,extents<dynamic_extent,dynamic_extent,5>,layout_left,accessor_atomic<int>>

” C++ MDSpan R

= How to get MemorySpaces?

= accessor_memspace<int,CudaSpace>
" mdspan is non-owning?

= Derive Kokkos View from MDSpan

= store the extra reference count handle

= Provide allocating constructors

= QOr: use accessor with shared_ptr as data handle ...
= What about subviews?

= subspan is part of the proposal

™ Other things -

= Resilience
= See Jeff’s talk from Tuesday
= PGAS support
= See Christian’s talk from Tuesday
= SIMD Support
= Remember discussion from Tuesday

= Documentation, Documentation, Documentation

” Timeline Summary B

= FY19/20
= CUDA Graphs Support
= |nitial AMD HIP backend
= ExecSpace Instances
= FY20
= Coarse grained tasking
= |nitial Intel GPU backend
= AtomicRef/MDSpan utilization (via backport)
= C++14 requirement
= FY21
= Production AMD and Intel GPU backend

