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2 | Isolated Cyber and Physical IDSs are Insufficient

High penetration of DERs

« Improved voltage regulation on distribution circuits
« Expanded distribution hosting capacity

» Wide-area damping

« Frequency control

« Ancillary service

Added power generation needs to be protected

» Aggregators subversion could impact power system reliability, stability, and safety

Cyber detection

« Can detect suspicious behavior or known attack patterns
« Spoofed physical data may go undetected

Physical detection

« Fault detection models can detect malicious events that impact grid
« Cannot detect cyber attacks in early stages to thwart malicious events

Cyber-Physical monitoring is needed




3 | Intrusion Detection/Prevention System Categories

Signature Based

Match specific strings or sequence of bytes that are indicative of malware
Can detect already existing malware that has already been observed

Does not catch zero-day attacks or other attacks that do not have signatures

Behavioral Based

Observe behavior and make classifications as normal or abnormal behavior
Can potentially catch previously unseen malware

Misclassification is possible, causing false-positives or false-negatives

Both approaches
typically need
access to full
unencrypted data

Data can be network traffic, host events, host files, network/host resource
utilization, sensor measurements, etc.

Intrusion Prevention
Systems
automatically
act/respond to
detections

Block IP address, block packet, block executable, prevent future user logins,
etc.



+ | Hybrid Cyber-Physical IDS to Improve DER Security

Requires higher data
throughput to meet
real-time constraints of
DER (milliseconds or
better)

Event correlation
matches multiple data

Increases difficulty for
an adversary to defeat

Provides enhanced

situational awareness

streams to a single for operators of a DER

event

both a cyber-based and
physical-based detection

Freq.——> Cyber
Value——> Anomaly
etc. — Identification

—> Alarm

Vv — Physical
VAr —> Anomaly
etc. —m— Identification




5 | Hybrid IDS Features

« Voltage

e Current

« Active, apparent, & reactive power
» Frequency

» Frequency

« Setpoint values

« Source/destination IP addresses
« Source/destination ports

» Sequence numbers

e TTL, checksum

» TCP flags

« Source/destination MAC addresses
« IP version,

» Packet length,

» Throughput,

 Latency

« File integrity

* Memory usage
 Processor usage
« Security logs

Combine signature and behavioral based IDS approaches

Sensitivity analysis should be performed to determine features on each system




6 | Experiment Scenarios

False Data Injection (control settings) - Replay, man-in-the-middle, or other

techniques to alter setpoints sent to an aggregator
* Modbus or DNP3 without secure authentication

Insider Threat - Physical features may be intercepted and altered by an insider

« Physical monitoring will be important

e 3 interoperable PV inverters (258 kW, 1 MW, and 10 MW)

* 440% PV penetration

« Simulated using Opal-RT 5600

» Modeled using EPRI PV simulator
« Hardware-in-the-Loop
« DNP3 communications

Power measurements captured (AC power, reactive power, AC voltage,

frequency, etc.)

Power Factor configurable




7 | Experiment Setup

*Volt-VAr profile represented by points: 92, 99, 101, and 108% of nominal voltage

*Reactive power profile represented by points 25, 0, 0, and -25% of the DER device

*Volt-VAr uses DETL reactive power capabilities to drive towards nominal voltage

*Insider threat reversed sign of reactive power profile (-25, 0, 0, 25%) (MITM also applies)

Distributed Energy Technologies Laboratory (DETL)
Albuquerque, NM
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Results

*40-minute simulation
*Inverter absorbs reactive power in good inverter — voltage at Point of Common Coupling
(PCC) close to nominal
°Bad inverter, voltage increases significantly
*Bounds were configured to alarm on Volt-VAr values — In cases of no voltage or current
measurement, physical data could be extracted
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9 | Results (Cont.)

The table below summatrizes our tests with different data streams available

1. Cyber + Physical = Detects All
2. Cyber = Detects Cyber & Cyber-Physical
3. Physical = Detects Physical & Cyber-Physical
4. Partial Cyber + Partial Physical = Detects Physical & Detects Cyber-Physical
5. Partial Physical = Detects Physical & Cyber-Physical
6. Partial Cyber + Partial Physical = Only Detects Cyber-Physical
7. Partial Cyber + Partial Physical = None Detected
Physical Data Cyber Data
Case | Current Phasor | Voltage Phasor | Reactive Power | Detect | PF Write | V Read | Detect | Cyber & Physical Detect
1 v’ v’ v’ v’ v’
2 v’ v’
3 v’ v’ v’
4 v’ v’ v’
5 v’ v’
6 v’ v’
7 v’ v’




10 | Individual vs. Combined IDS Data Monitoring Approach

mmmmm Physical data monitoring

« Disconnect attack - Adversary controls large number of PV inverters and issues disconnect
« Causes line overloads, frequency/voltage violation, system instabilities

« Volt-VAr attack - Adversary manipulates inverter control by injecting arbitrary levels of reactive power
« Voltage magnitude and phase angle affected

« Excludes host and network based information

Cyber data monitoring

» Detecting malformed Modbus packets exceeding maximum length
« Potentially leads to Denial of Service (DoS) attack
» Unauthenticated/cleartext protocols can be spoofed

 Mis-information can cause an operator to believe normal operations or can provide unauthorized
control

« Does not have the full picture of the physical data to validate observed data

e Need to connect detected cyber events to physical events

« DOE GMLC “Threat Detection and Response” project distinguishes cyber events from physical events

« Cyber/Physical- detections help determine responses

« Other approaches focus on power system models to compare actual data against predicted data
 Limited awareness of actual causes of failures/anomalies (can be hardware or software failures)
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