

Hybrid Intrusion Detection System Design for Distributed Energy Resource Systems

PRESENTED BY

Adrian R. Chavez
adrchav@sandia.gov

Team Members: Christine Lai, Nick Jacobs, Shamina Hossain-McKenzie (PI), Birk Jones, Jay Johnson, Adam Summers

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Isolated Cyber and Physical IDSs are Insufficient

High penetration of DERs

- Improved voltage regulation on distribution circuits
- Expanded distribution hosting capacity
- Wide-area damping
- Frequency control
- Ancillary service

Added power generation needs to be protected

- Aggregators subversion could impact power system reliability, stability, and safety

Cyber detection

- Can detect suspicious behavior or known attack patterns
- Spoofed physical data may go undetected

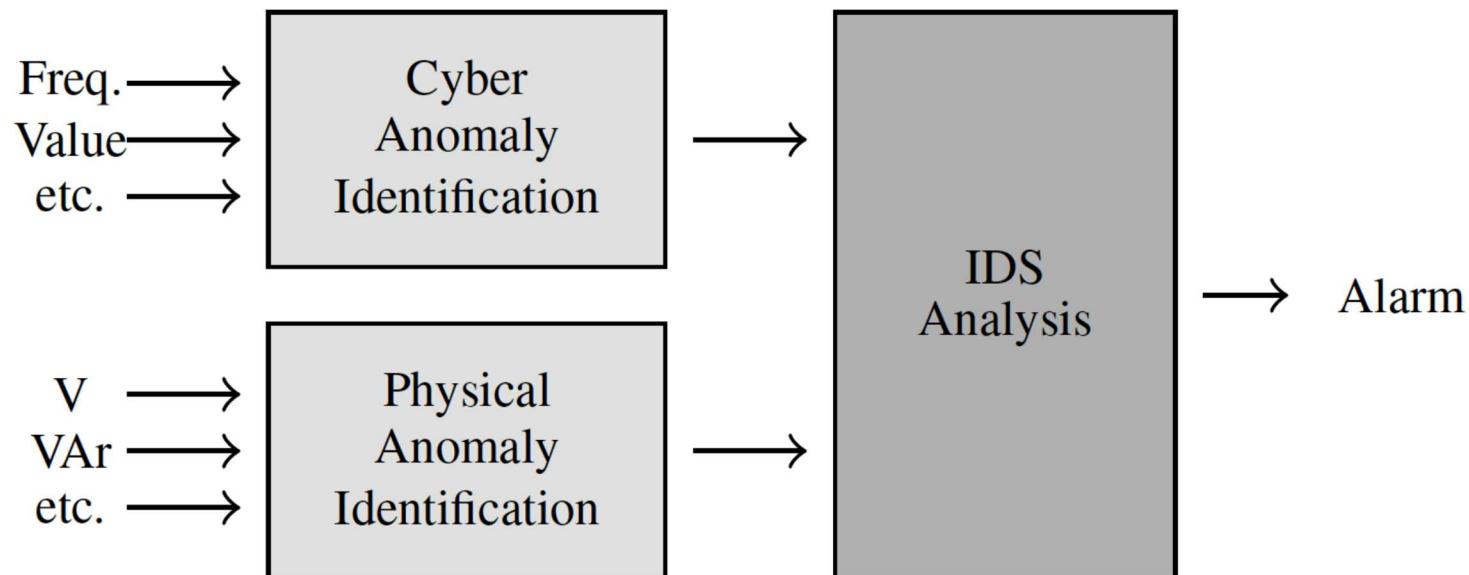
Physical detection

- Fault detection models can detect malicious events that impact grid
- Cannot detect cyber attacks in early stages to thwart malicious events

Cyber-Physical monitoring is needed

Intrusion Detection/Prevention System Categories

Signature Based	<p>Match specific strings or sequence of bytes that are indicative of malware</p> <p>Can detect already existing malware that has already been observed</p> <p>Does not catch zero-day attacks or other attacks that do not have signatures</p>
Behavioral Based	<p>Observe behavior and make classifications as normal or abnormal behavior</p> <p>Can potentially catch previously unseen malware</p> <p>Misclassification is possible, causing false-positives or false-negatives</p>
Both approaches typically need access to full unencrypted data	Data can be network traffic, host events, host files, network/host resource utilization, sensor measurements, etc.
Intrusion Prevention Systems automatically act/respond to detections	Block IP address, block packet, block executable, prevent future user logins, etc.


Hybrid Cyber-Physical IDS to Improve DER Security

Requires higher data throughput to meet real-time constraints of DER (milliseconds or better)

Event correlation matches multiple data streams to a single event

Provides enhanced situational awareness for operators of a DER

Increases difficulty for an adversary to defeat both a cyber-based and physical-based detection

Hybrid IDS Features

Physical

- Voltage
- Current
- Active, apparent, & reactive power
- Frequency

Network

- Frequency
- Setpoint values
- Source/destination IP addresses
- Source/destination ports
- Sequence numbers
- TTL, checksum
- TCP flags
- Source/destination MAC addresses
- IP version,
- Packet length,
- Throughput,
- Latency

Host

- File integrity
- Memory usage
- Processor usage
- Security logs

Combine signature and behavioral based IDS approaches

Sensitivity analysis should be performed to determine features on each system

Experiment Scenarios

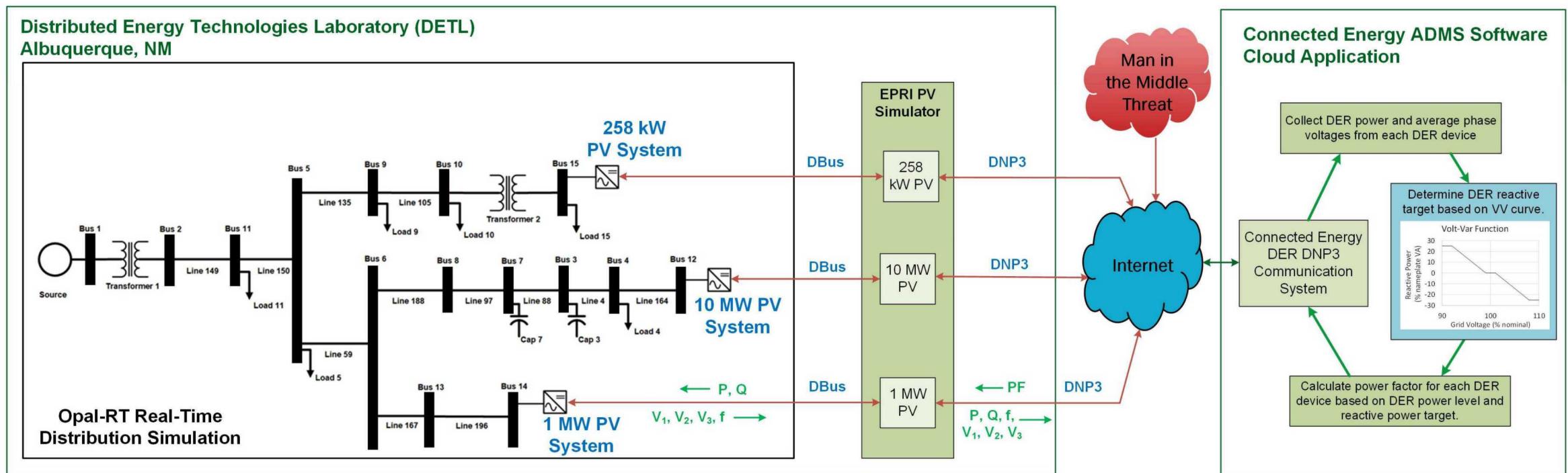
False Data Injection (control settings) - Replay, man-in-the-middle, or other techniques to alter setpoints sent to an aggregator

- Modbus or DNP3 without secure authentication

Insider Threat - Physical features may be intercepted and altered by an insider

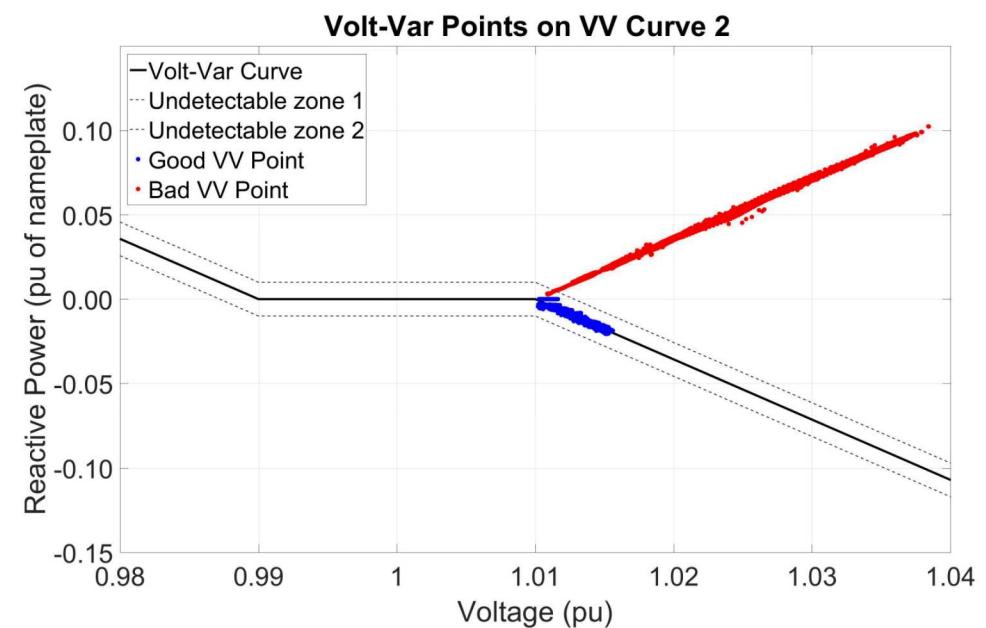
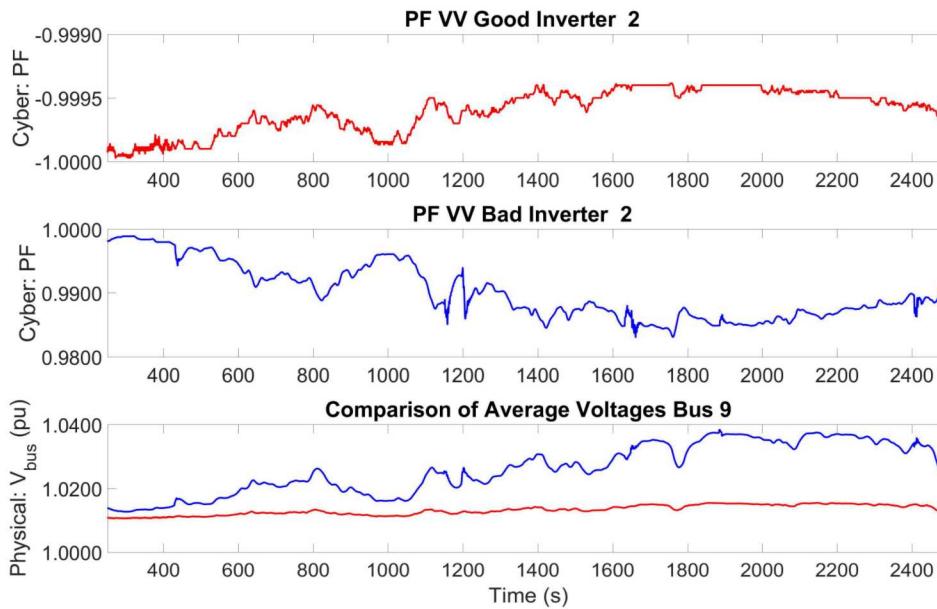
- Physical monitoring will be important

3 interoperable PV inverters (258 kW, 1 MW, and 10 MW)


- 440% PV penetration
- Simulated using Opal-RT 5600
- Modeled using EPRI PV simulator
- Hardware-in-the-Loop
- DNP3 communications

Power measurements captured (AC power, reactive power, AC voltage, frequency, etc.)

Power Factor configurable



Experiment Setup

- Volt-VAr profile represented by points: 92, 99, 101, and 108% of nominal voltage
- Reactive power profile represented by points 25, 0, 0, and -25% of the DER device
- Volt-VAr uses DTEL reactive power capabilities to drive towards nominal voltage
- Insider threat reversed sign of reactive power profile (-25, 0, 0, 25%) (MITM also applies)

Results

- 40-minute simulation
- Inverter absorbs reactive power in good inverter – voltage at Point of Common Coupling (PCC) close to nominal
- Bad inverter, voltage increases significantly
- Bounds were configured to alarm on Volt-VAr values – In cases of no voltage or current measurement, physical data could be extracted

Results (Cont.)

The table below summarizes our tests with different data streams available

1. Cyber + Physical = Detects All
2. Cyber = Detects Cyber & Cyber-Physical
3. Physical = Detects Physical & Cyber-Physical
4. Partial Cyber + Partial Physical = Detects Physical & Detects Cyber-Physical
5. Partial Physical = Detects Physical & Cyber-Physical
6. Partial Cyber + Partial Physical = Only Detects Cyber-Physical
7. Partial Cyber + Partial Physical = None Detected

Case	Physical Data			Cyber Data			Cyber & Physical Detect
	Current Phasor	Voltage Phasor	Reactive Power	Detect	PF Write	V Read	
1	✓	✓	✓	✓	✓	✓	✓
2					✓	✓	✓
3	✓	✓	✓	✓			✓
4	✓	✓		✓	✓		✓
5	✓	✓		✓			✓
6			✓			✓	✓
7		✓				✓	

Individual vs. Combined IDS Data Monitoring Approach

Physical data monitoring

- Disconnect attack - Adversary controls large number of PV inverters and issues disconnect
 - Causes line overloads, frequency/voltage violation, system instabilities
- Volt-VAr attack - Adversary manipulates inverter control by injecting arbitrary levels of reactive power
 - Voltage magnitude and phase angle affected
- Excludes host and network based information

Cyber data monitoring

- Detecting malformed Modbus packets exceeding maximum length
 - Potentially leads to Denial of Service (DoS) attack
- Unauthenticated/cleartext protocols can be spoofed
 - Mis-information can cause an operator to believe normal operations or can provide unauthorized control
- Does not have the full picture of the physical data to validate observed data

Need to connect detected cyber events to physical events

- DOE GMLC “Threat Detection and Response” project distinguishes cyber events from physical events
- Cyber/Physical- detections help determine responses
- Other approaches focus on power system models to compare actual data against predicted data
 - Limited awareness of actual causes of failures/anomalies (can be hardware or software failures)

Questions

Adrian R. Chavez
adrchav@sandia.gov

Shamina Hossain-McKenzie
shossai@sandia.gov