

Advanced Computing for Automated and Connected Vehicles

for

DOE Vehicle Technologies Office
May 2019

DRAPER

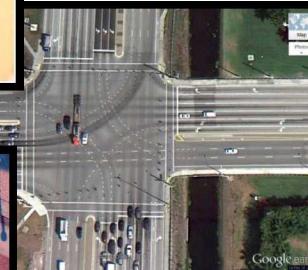
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline

- Brief history of self-driving car development
- Computing requirements for automated driving
- Computing technology
- Taking action
- Backups
 - example of device-level microelectronic innovation
 - safety considerations

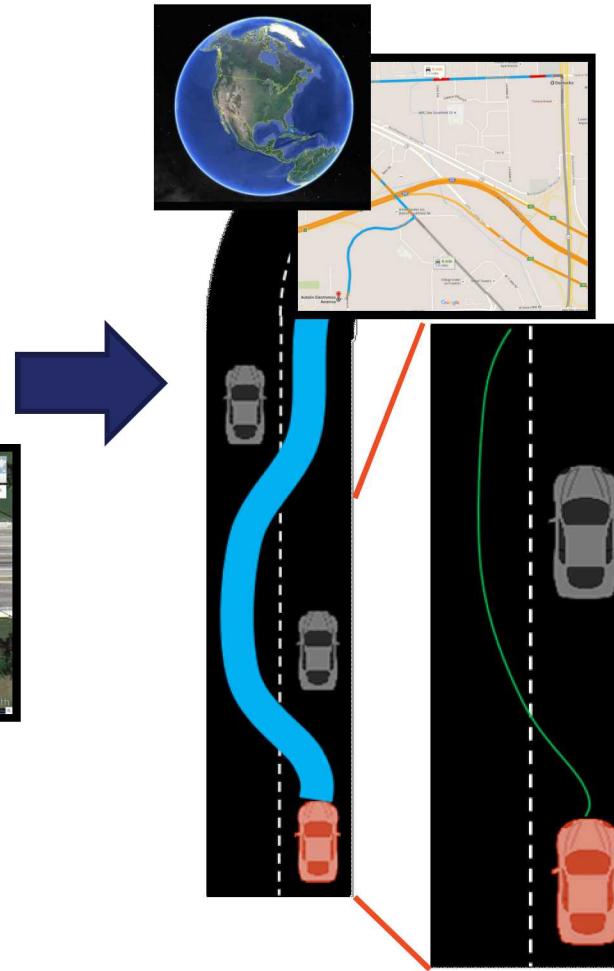
Self-Driving Cars

(Very Roughly) Approximating Human Driving

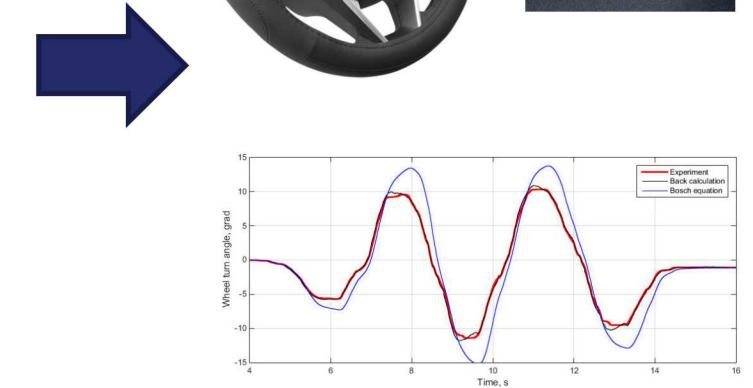


Perceive
Roads, cars, pedestrians, signals

D R A P E R



Think
Plan routes, lanes of travel,
precision maneuvers around traffic

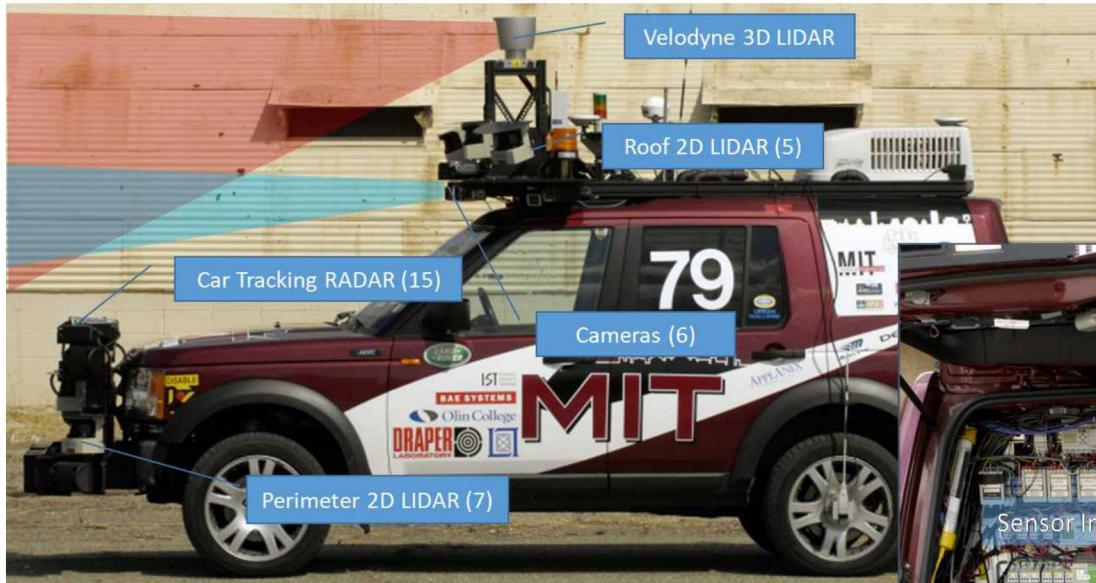


Act
Control the steering, throttle
and brake to follow plans

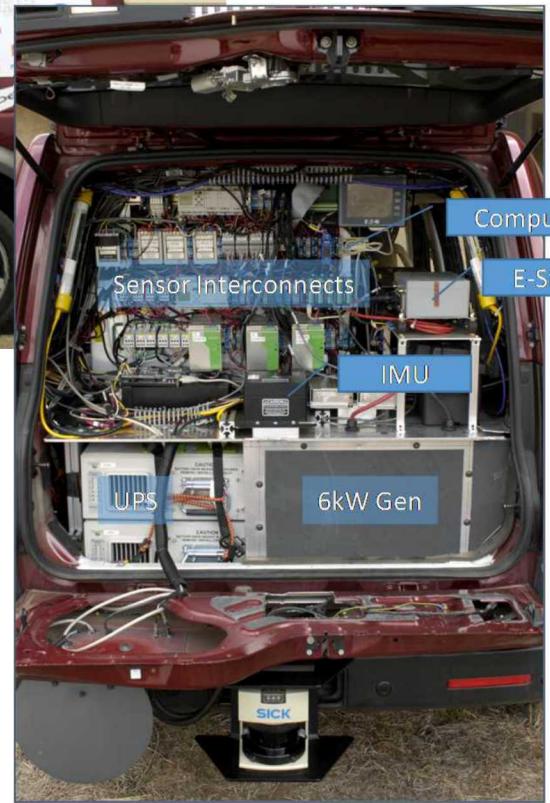
DARPA Self-Driving Grand Challenges

- DARPA Pushed Self-Driving Technology for Military Operations
- 2004 & 2005 Off-Road Races
 - 130 miles through the desert
 - 2004: no finishers
 - 2005: Stanford, CMU
- 2007 Urban Challenge
 - 60 mile mission < 6 hours
 - Drive on city streets, obey traffic rules
 - Robot & human traffic interaction
 - CMU, Stanford, VT, MIT were top 4 finishers (6 total)

Team MIT DARPA Urban Challenge Racer - Talos



13 LIDAR, 15 RADAR, 6 Cameras, and a 500lb Computer



Urban Challenge Was Possible Because DARPA Ignored ...

Brake, Turning, and Traffic Signals

- All intersections 4-way stops and mapped
- No visual sign reading required
- Very low speeds, awkward behavior OK

Roadway, Lane Detection & Weather

- Precision map of road & lane locations provided
- Southern CA weather

Pedestrians and Complex Traffic

- No pedestrians on course
- Controlled, low density traffic

Long Range Car Tracking (km Scale)

- Low speed short range (30 m) intersections
- Controlled traffic

2008	2012	2014	2016	2018
------	------	------	------	------

CMU

Waymo
Testing ~ 600 vehicle fleet in 6 States, Limited L5 autonomy taxi service starts

Stanford

Virginia Tech

MIT/Draper

DARPA Urban Challenge (2007)

Demonstrated fully autonomous driving under strictly controlled conditions

D R A P E R

Lexus

Delphi

Ford

Google

Moves into fleet testing & custom sensor and vehicle design

Uber

Begins small fleet operations in Pittsburgh

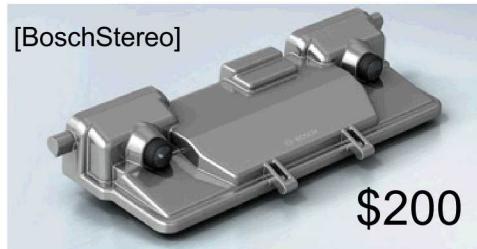
Fatal accident in Arizona and concerns about performance stall efforts

GM, Nissan, Volvo Deploy Automated Highway Driving
All limit usage and monitor driver to avoid over-trust by consumers

OEM's & Suppliers
Start to consider automated driving as viable for future vehicles, begin internal R&D. Public road testing by Delphi.

Costs of Sensing and Computing

Assisting a Human Driver on the Highway



3D Radar with target tracking

Stereo / Mono HD EO, Multispectral Cameras w/ lane & object tracking/classification

\$5
IMU/GPS
(5m accurate)

\$800
Air-cooled low-power (5W) computer w/ Giga-Flop Processing

Autopilot uses customized automotive cameras and radars with mid-range GPU computing

Self-Driving, Replacing a Human

\$5,000 x 4

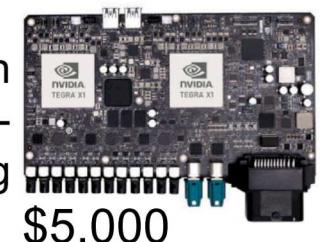
LIDAR (Short Range)

\$40,000
IMU/GPS (10cm accurate)

\$30,000

LIDAR (Long Range)

\$500 x 4
[FLIR EOCam]
HD+ EO/IR Cameras,



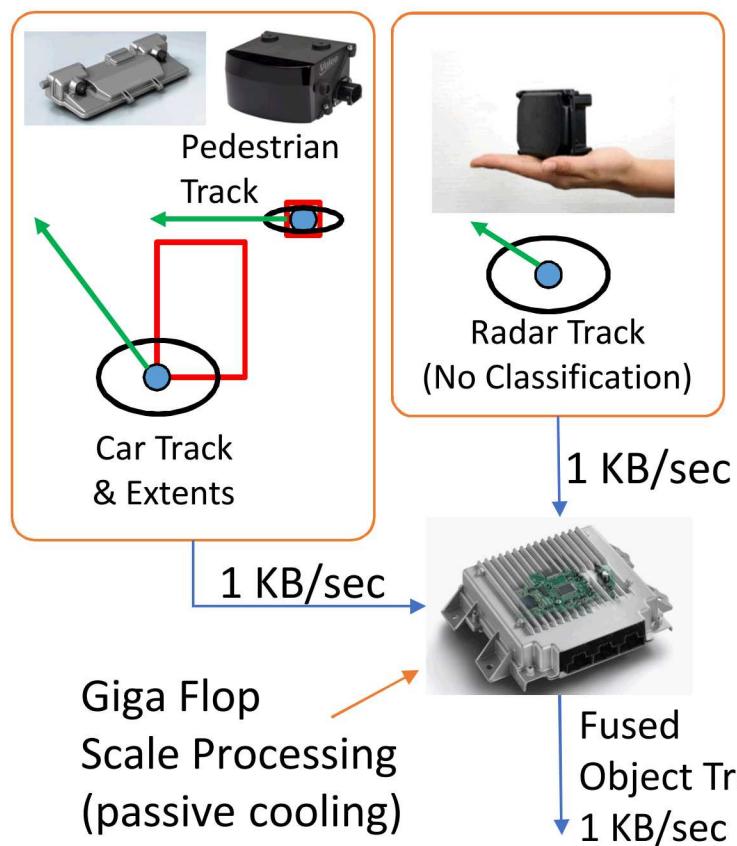
\$2000?
\$97,000
Liquid-cooled high power (200W) Terra-Flop Processing

D R A P E R

Uber

cruise

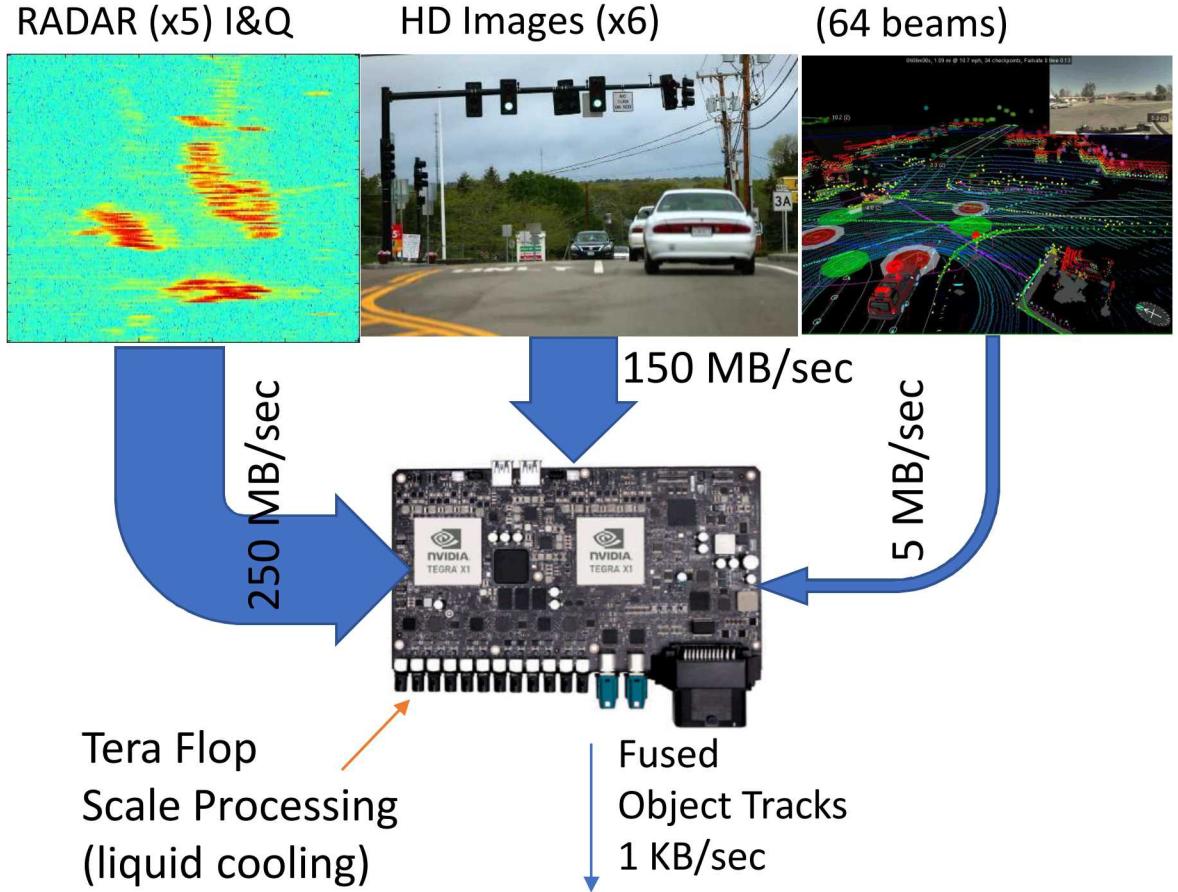
Computing for Driver Assistance vs. Self-Driving Research



Little to no influence on the classification and tracking algorithms in each ADAS sensor

Very low input data bandwidth and processing requirements for fusion

D R A P E R



Very high input data bandwidth and processing performance requirements

Optimized fusion across all sensor inputs within one core set of algorithms

Many (familiar) Challenges Remain

Brake, Turning, and Traffic Signals

- Recognizing car signals limited to nearest neighbors
- Traffic lights must be 3D mapped

Roadway, Lane Detection & Weather

- Most (including Waymo) still rely on HD maps of all roads/lanes before driving
- Growing, but still very limited exposure to inclement weather

Pedestrians and Complex Traffic

- Recognizing pedestrians is 80% (in good visibility)
- Prediction of intent for pedestrians and cars is still rudimentary

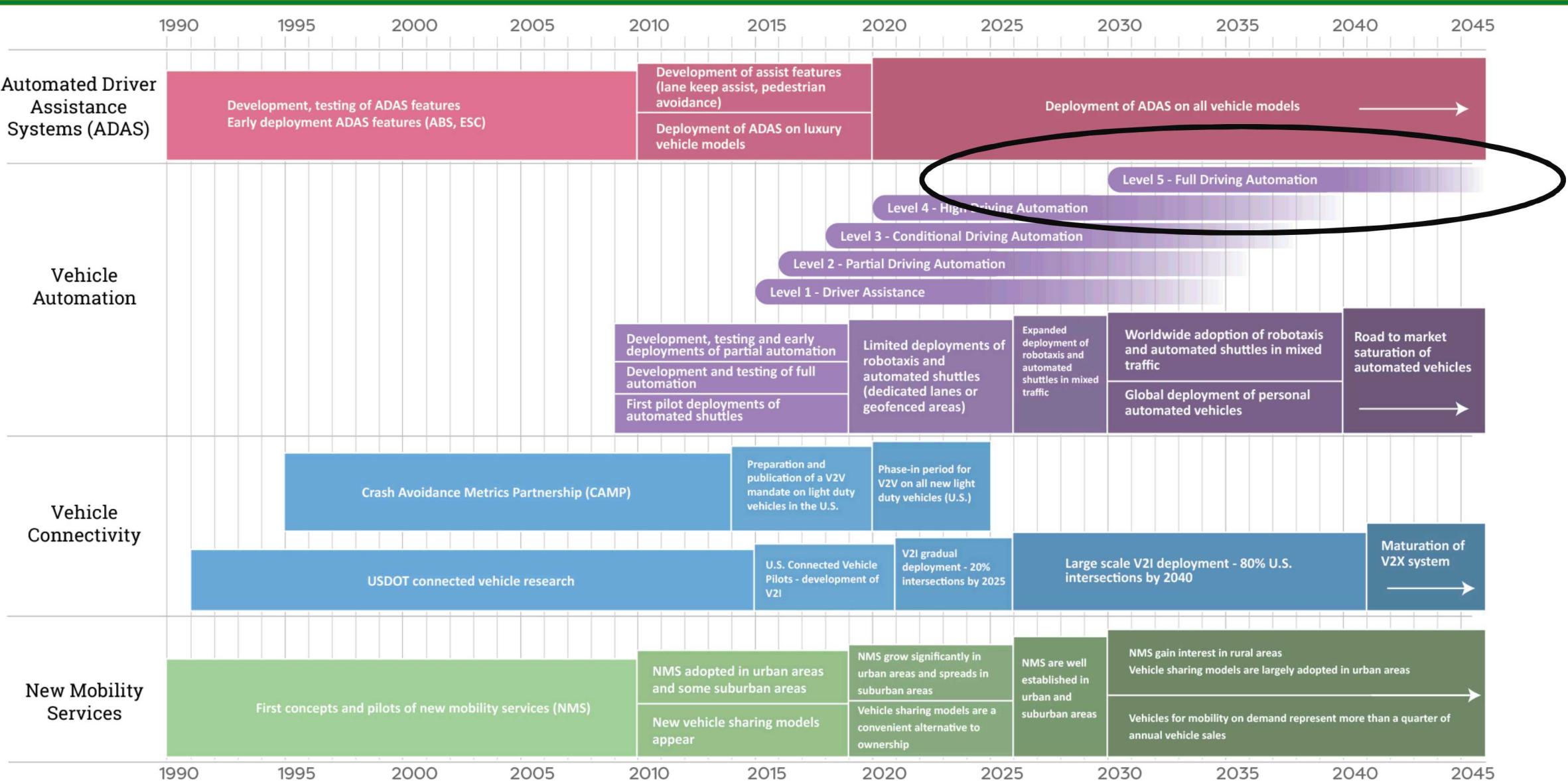
Long Range Car & Pedestrian Tracking (km scale)

- Reliable car tracking is limited to 200 m ranges
- Pedestrian tracking 100 m in best visibility

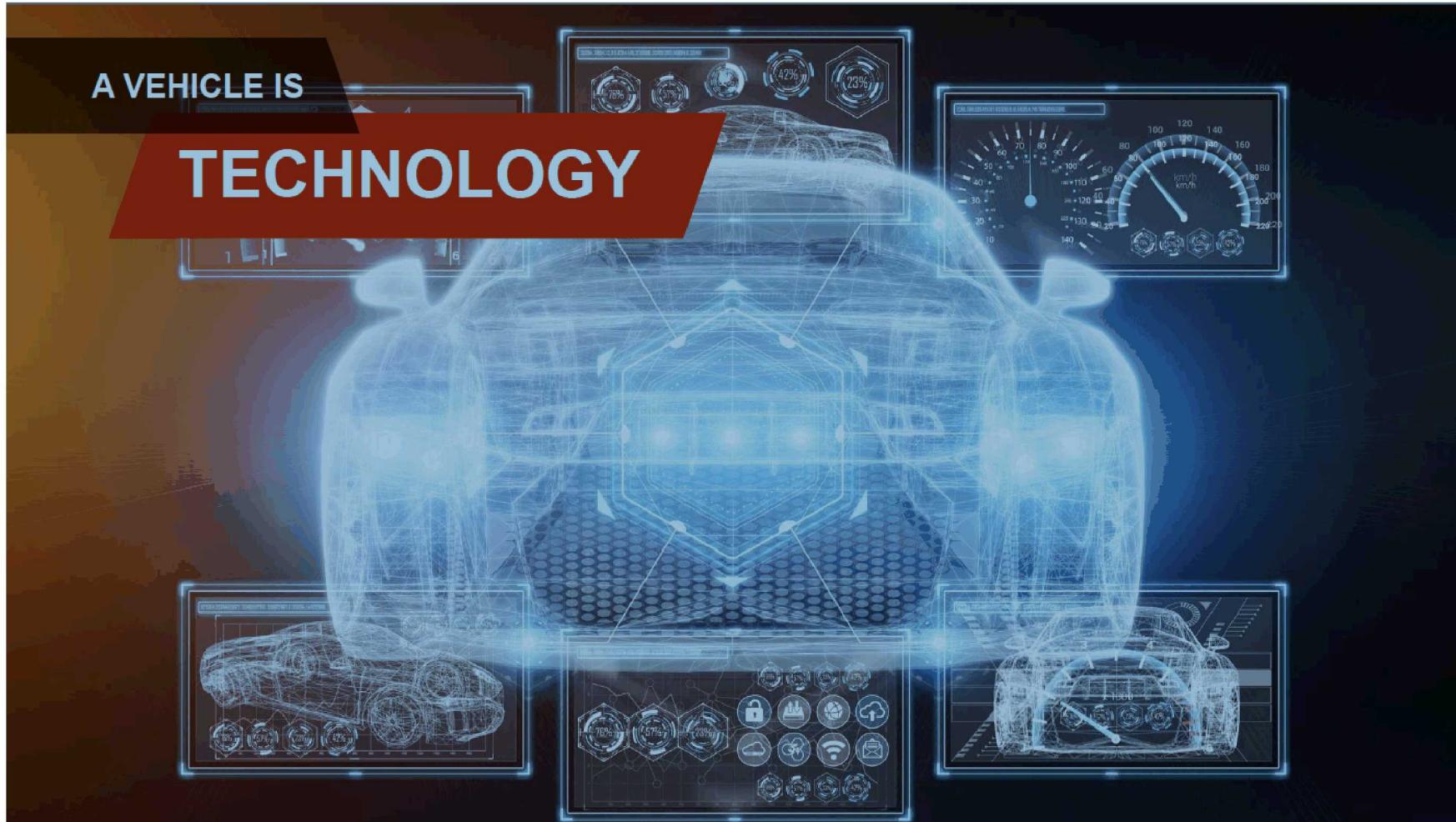
Self-driving efforts today are carefully selecting and mapping their environments to maximize reliability

Advanced Computing Requirements for Automated Driving

Ten-year gap predicted between Level 4 and Level 5 consumer deployment



Advanced computing compromises more than just perception and logic



Horsepower

Data-power

Performance

Connectivity

Projected computing performance and power

Early prototype self-driving

<https://www.wired.com/story/self-driving-cars-power-consumption-nvidia-chip/>

HPC must meet CAV
size, weight, and power
constraints

~1 petaflops
~100 W or less
~10 TOPS/watt

Full level 5
automated driving

>10x less power
>10x compute performance
~100 teraflops
~1000 W
~0.1 TOPS/watt

TOPS == Trillion (tera) Operations

CAV == Connected & Automated Vehicle

Early prototype self-driving

HPC must meet CAV
size, weight, and power

~1 petaflops

loss

Power requirements

- Assume battery electric storage increases at most linearly
- Reduce energy consumption from ~10% of battery to ~1%
- Power includes communication, cooling, and redundancy
- Bounding target – the human brain is a 30 W system

~100 teraflops
~1000 W
~0.1 TOPS/watt

5

self driving

CAV == Connected & Automated Vehicle

HPC must meet CAV
size, weight and power

~1 petaflops

~1000W
loss

Computing requirements

- Estimating computing operations per second to grow by at least an order of magnitude in moving from Level 4 to Level 5 driving
- Advanced sensing results in > 10X increase in data, requiring similar increase in computing capability
- Google TPU and Apple A11 are estimated ~ 1 TOPS/W at die level; similar recent claims by Nvidia and Tesla

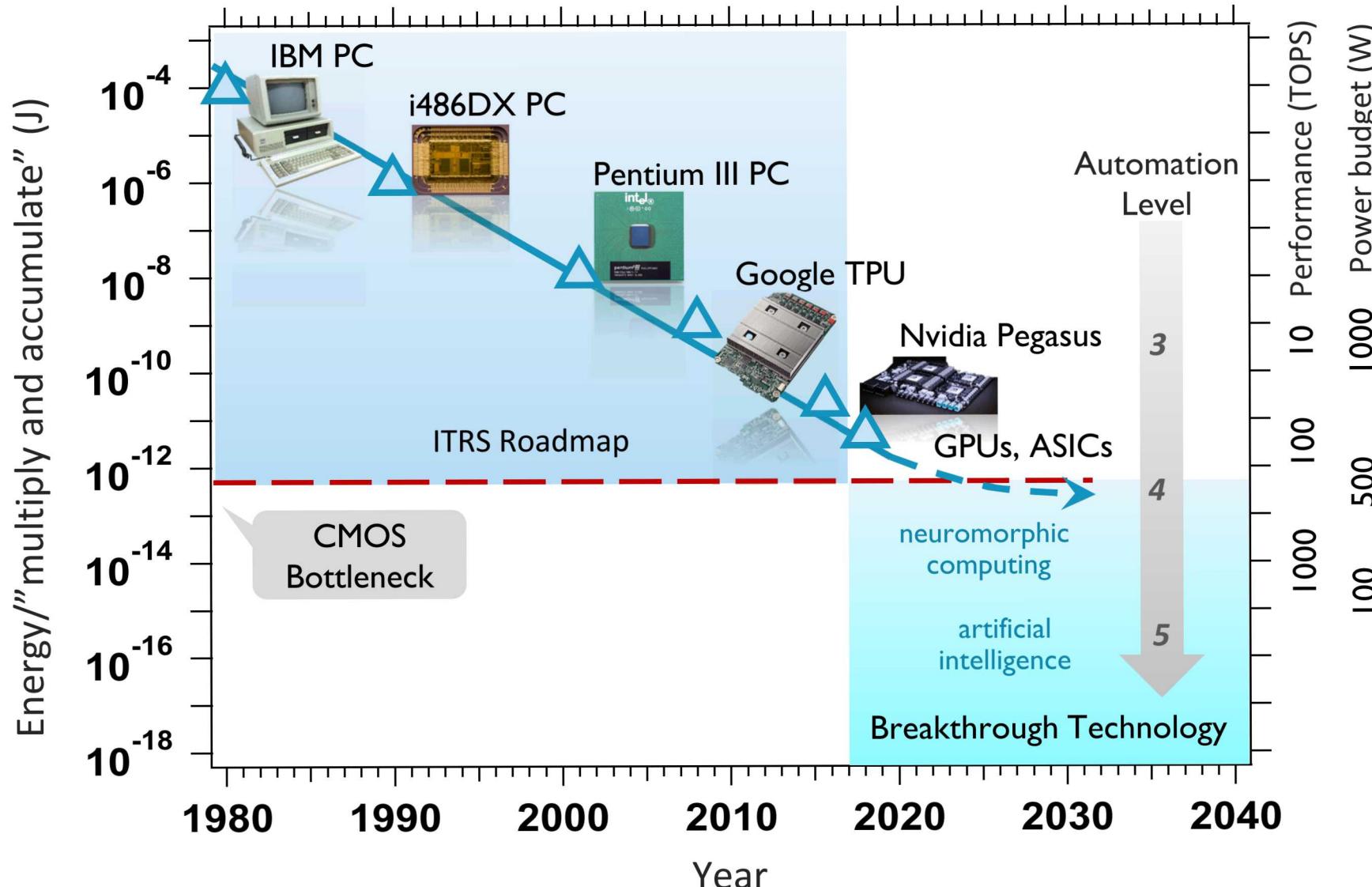
~1000W
~0.1 TOPS/watt

Early prototype self-driving

<https://www.wired.com/story/self-driving-cars-power-consumption-nvidia-chip/>

CAV == Connected & Automated Vehicle

Energy efficiency of computing and the need of CAV's – a challenging problem



Computing Technology

Why now for computing industry? — convergence of four critical trends

Technology:

- End of Dennard scaling: power becomes the key constraint
- Slowdown in Moore's Law evidenced by flattening of transistor cost takedown

Architectural:

- Limitation and inefficiencies in exploiting instructional level parallelism and in the prevailing von-Neumann architecture

Applications:

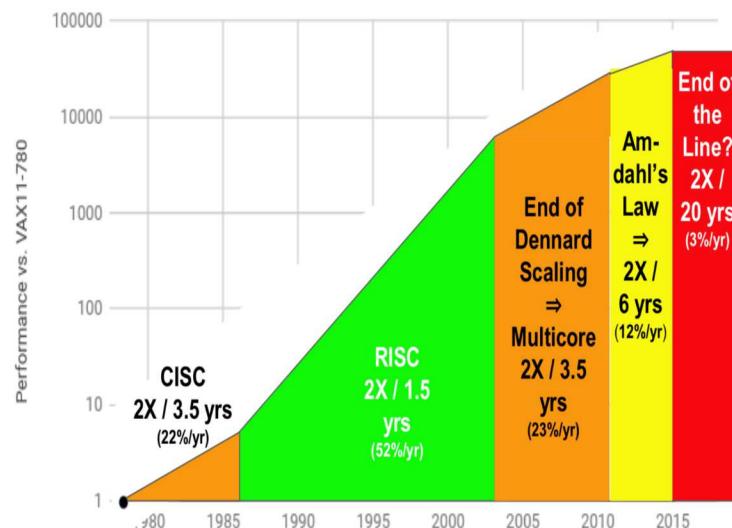
- Shift from desktop to mobile and IoT
- Ultra-scale cloud computing and artificial intelligence/machine learning workloads

Industry collaborations:

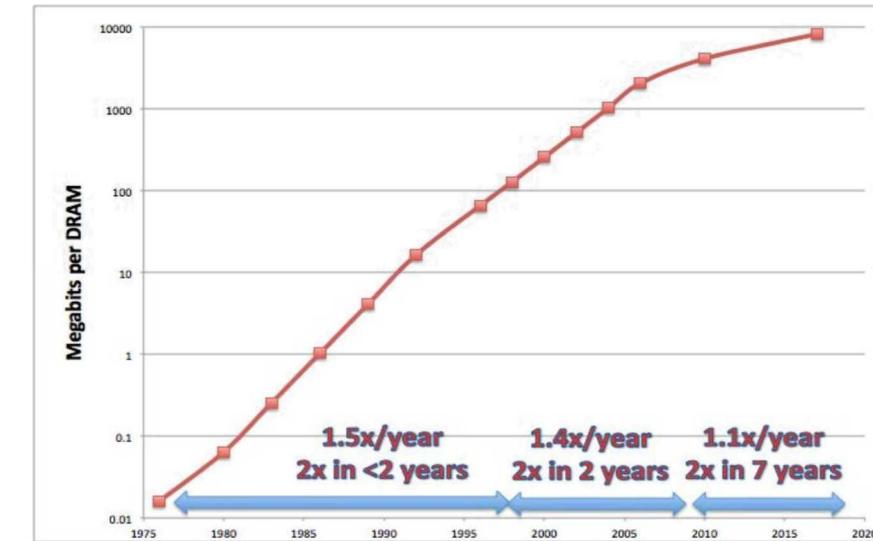
- End of International Technology Roadmap for Semiconductors (ITRS) roadmap
- Decline in SRC participation and the end of SEMATECH (absorbed in SUNY)

Evidence of Moore's Law slowdown – scaling is in a crisis

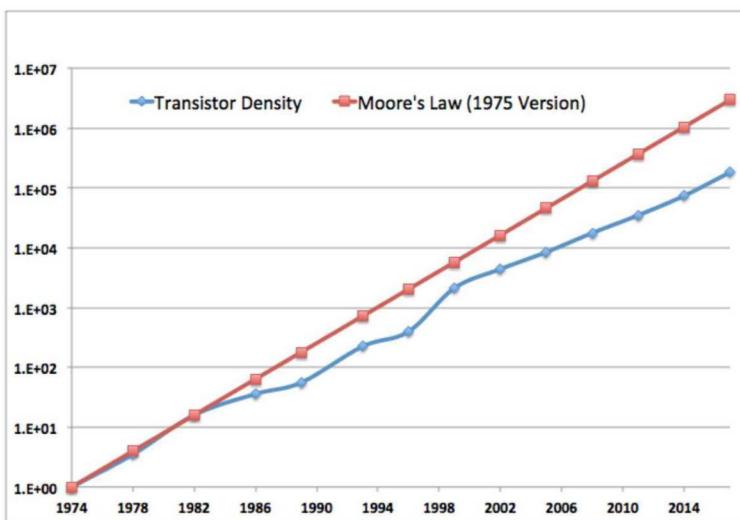
CPU single core performance



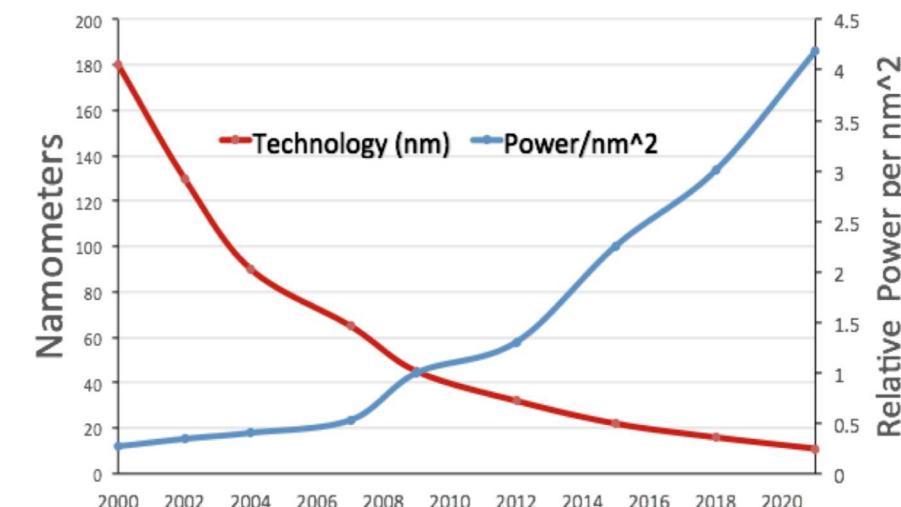
DRAM density roll-off



Intel CPU density roll-off

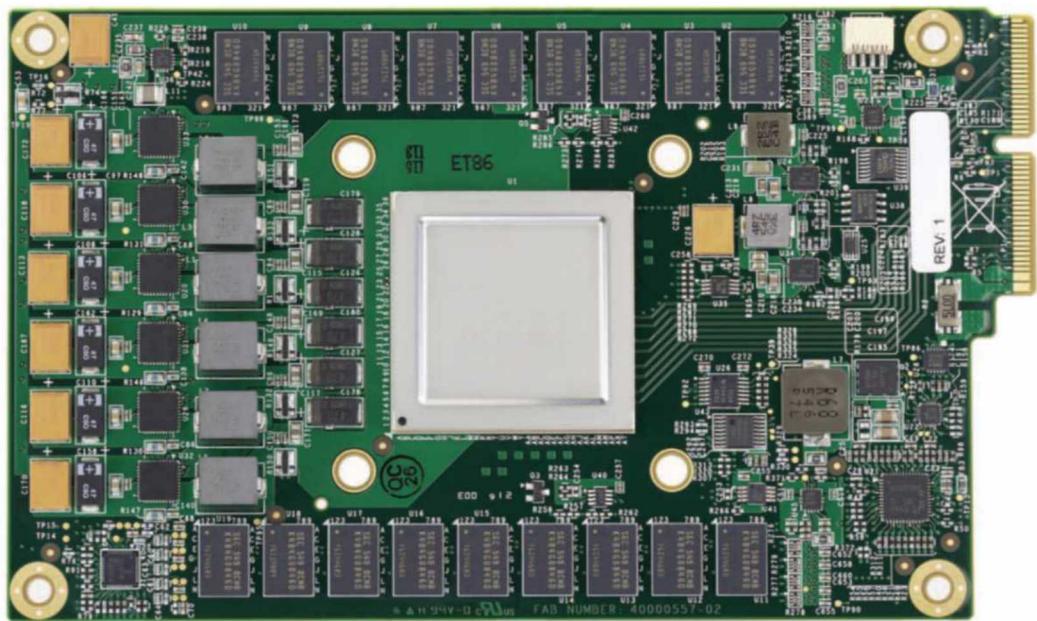
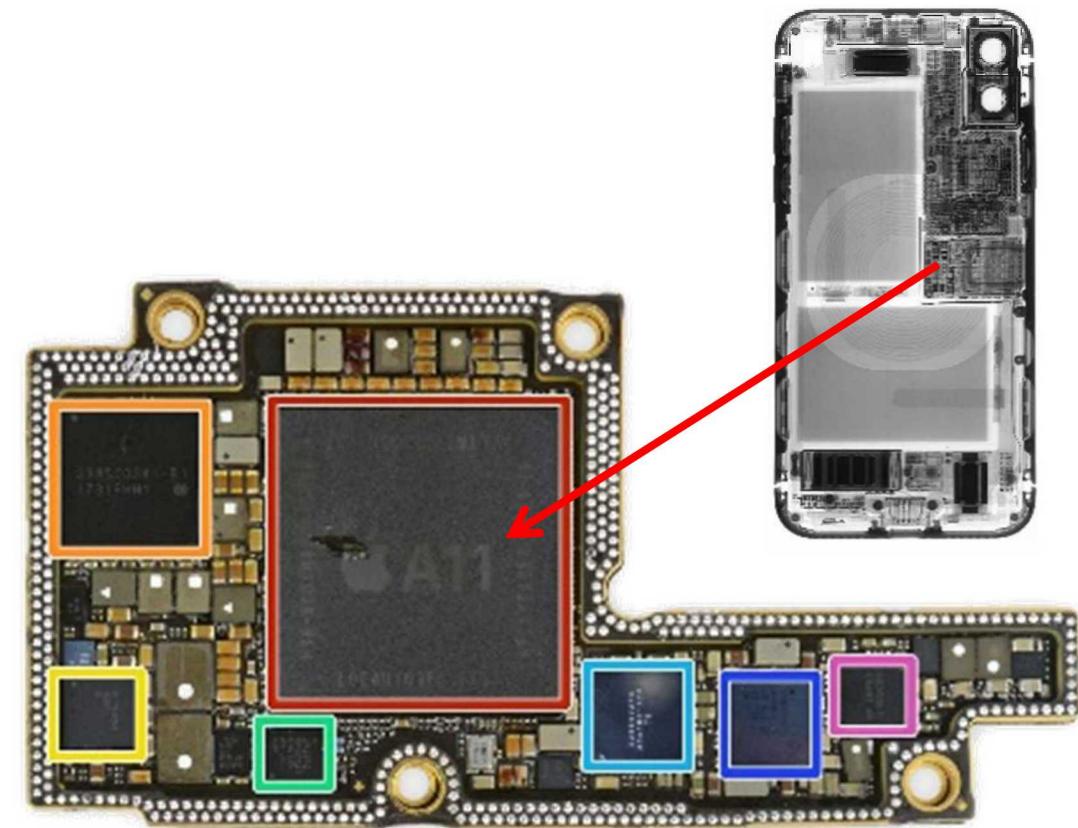


Transistor power takes off

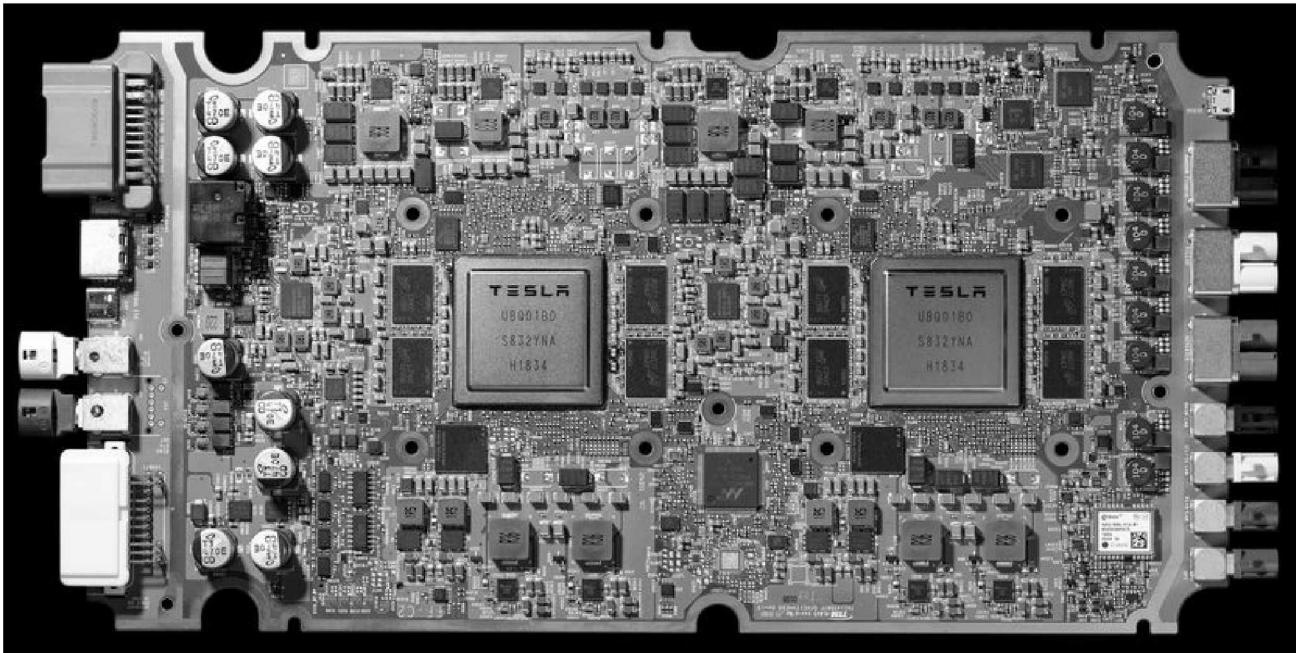


Digital accelerators will get us to ~ 1 TOPS/watt

- Tensor Processing Unit (TPU): machine learning accelerator in use by Google since 2015
- Core: matrix multiply unit
- Die level performance of 2.3 TeraOps/W
- Apple A11: iPhone 8 and X main system on a chip (SoC) processor
- Estimated > 1 TeraOp/W, or < 1 pJ/op



In the news...

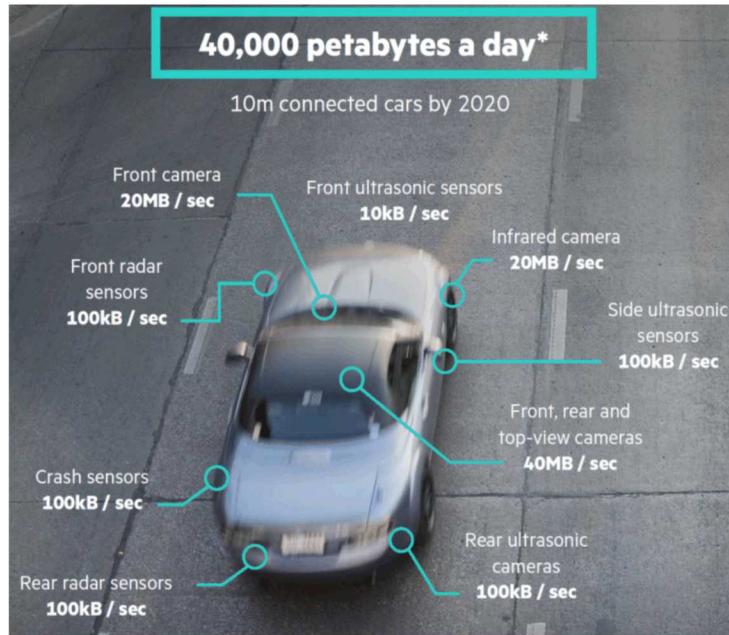
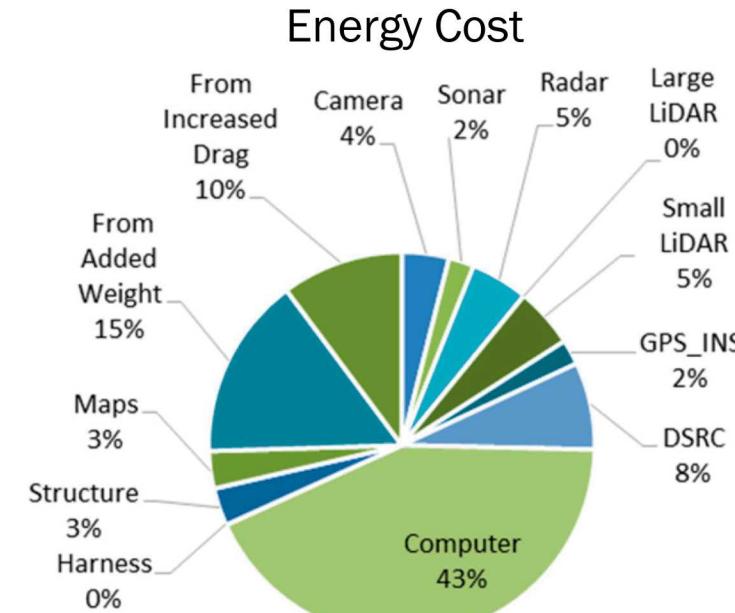


Tesla's new self-driving computer contains the “best chip in the world,” according to Elon Musk. Credit: Tesla, April 2019

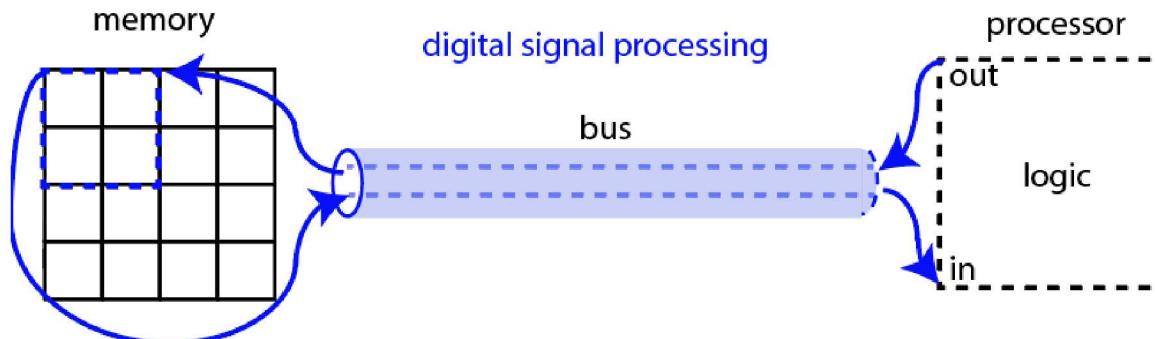
Nvidia agrees with Tesla's take on self-driving cars, but corrects specifics – Digital Trends, April 2019

“The Xavier processor features a programmable CPU, GPU, and deep learning accelerators, delivering 30 TOPs. We built a computer called DRIVE AGX Pegasus based on a two-chip solution, pairing Xavier with a powerful GPU to deliver 160 TOPS, and then put two sets of them on the computer, to deliver a total of 320 TOPS”

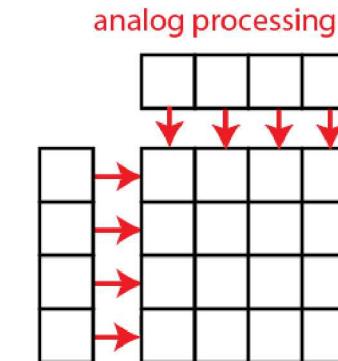
New approach is needed to meet low-energy computing demand



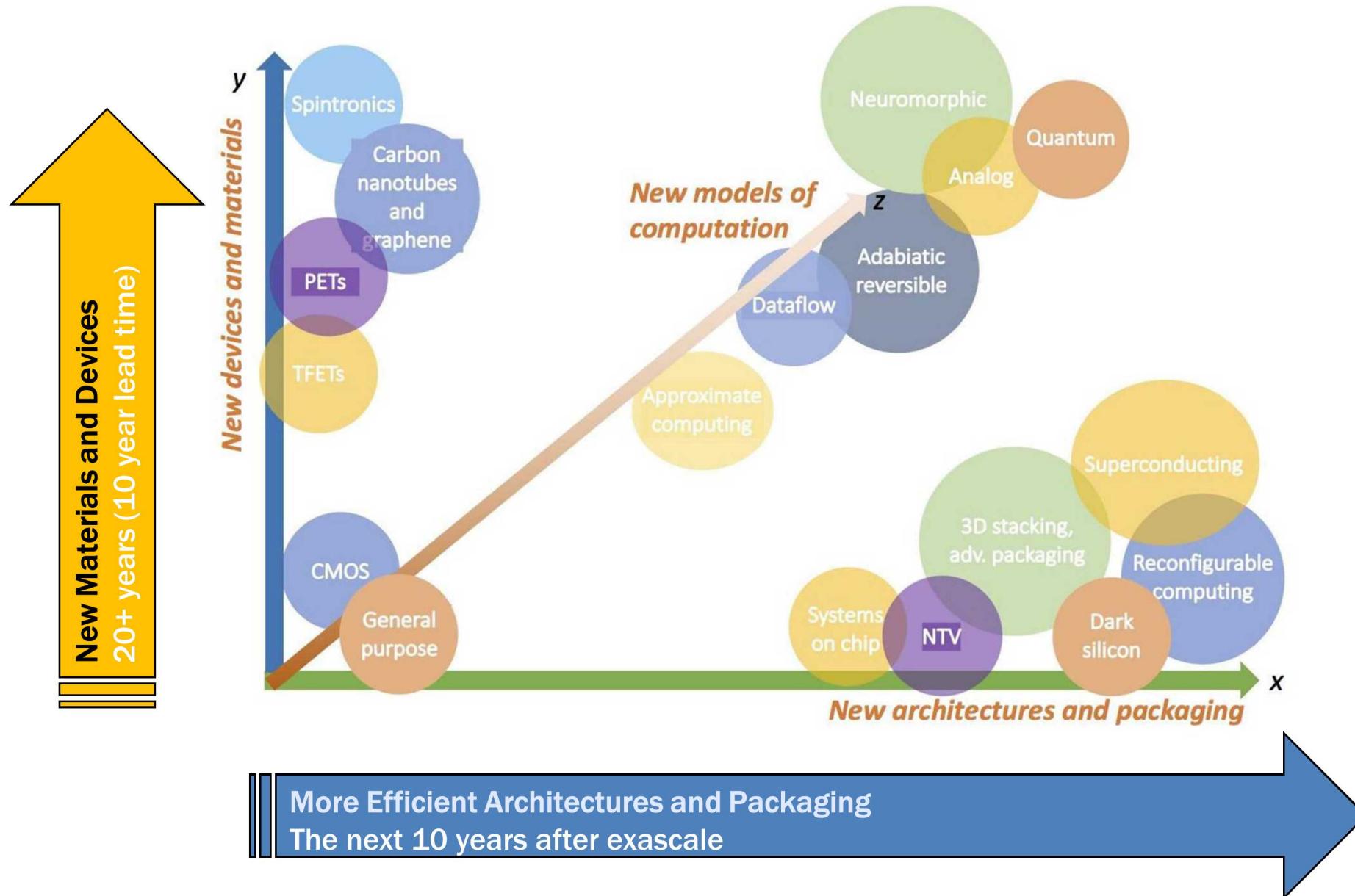
Gawron et. al. *Environ. Sci. Technol.* 52, 3249-3256 (2018)



fundamental flaw: processing separate from memory creates efficiency bottleneck



Many unproven candidates yet to be investigated at scale



Taking Action

National priorities, July 2018

EXECUTIVE OFFICE OF THE PRESIDENT
WASHINGTON, D.C.

July 31, 2018

M-18-22

MEMORANDUM FOR THE HEADS OF EXECUTIVE DEPARTMENTS AND AGENCIES

FROM: MICK MULVANEY
DIRECTOR, OFFICE OF MANAGEMENT AND BUDGET

A handwritten signature in black ink, appearing to read "Mick Mulvaney".

MICHAEL KRATSIOS A handwritten signature in black ink, appearing to read "Michael Kratsios".
DEPUTY ASSISTANT TO THE PRESIDENT
OFFICE OF SCIENCE AND TECHNOLOGY POLICY

SUBJECT: FY 2020 Administration Research and Development Budget Priorities

“Agencies should prioritize investment in research and infrastructure to maintain U.S. leadership in strategic computing, *from edge devices to high-performance computing, that accelerates delivery of low power, high performance devices*; supports a national high-performance computing ecosystem; and explores novel pathways to advance computing in a post-Moore's Law era”.

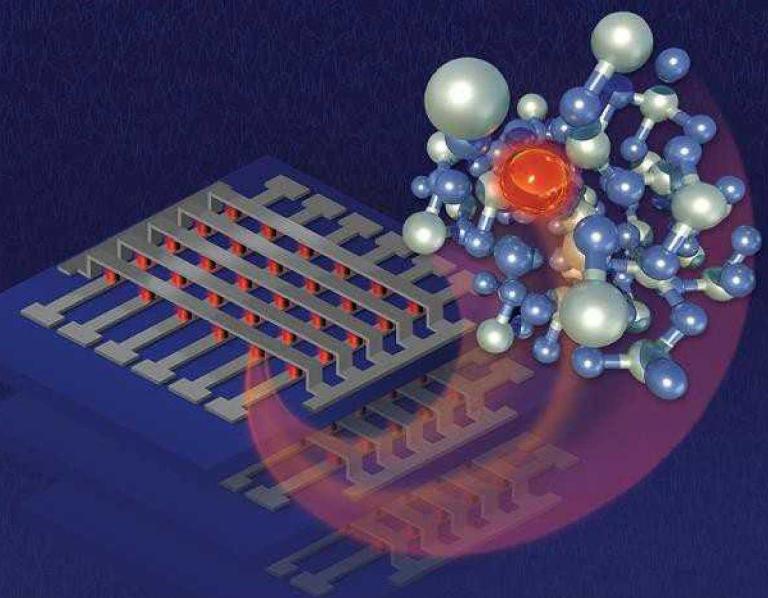
Semiconductor Industry Association policy recommendations, April 2019

“Semiconductors — the tiny chips that enable modern technologies — are critical to America’s economy, job creation, technology leadership, and national security. For 50 years, America has led the world in semiconductor innovation, driving transformative advances in nearly every modern technology, from computers to mobile phones to the Internet itself. **Today, semiconductors underpin the most exciting “must-win” technologies of the future, including artificial intelligence to power self-driving cars and other autonomous systems, quantum computing to analyze huge volumes of data and enhance digital encryption, and advanced wireless networks to seamlessly connect people at unprecedented speeds and security.**

To secure America’s leadership in these future technologies for the next 50 years, the United States must continue to lead the world in semiconductor research, design, and manufacturing.”

Call To Action

Basic Research Needs for Microelectronics



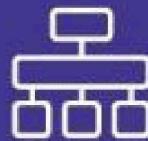
*Discovery science to revolutionize microelectronics
beyond today's roadmaps*

- Significant challenges as CMOS extends below 5nm
- The end to Moore's Law will impact U.S. industry and competitiveness
- The importance of this issue and its technical complication will require *innovative approaches* to keep the U.S. in a leadership position
- Solving a problem of this scale will require "*whole of government*" approach and a robust *public/private partnership* to apply the best research from *industry, academia and government research facilities* to allow the U.S. to successfully make this technology transition
- **DOE, and particularly the Office of Science, will play a significant role in this effort**
- **DOE-SC was charged with organizing a *Basic Research Needs Workshop* to define the highest priority research directions**

Principles of co-design underpin five priority research directions

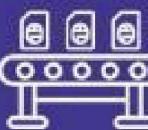
Multiscale Co-Design Framework

Algorithms and programming paradigms



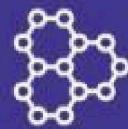
System architecture design and modeling

Interconnects and component integration



Devices and circuits

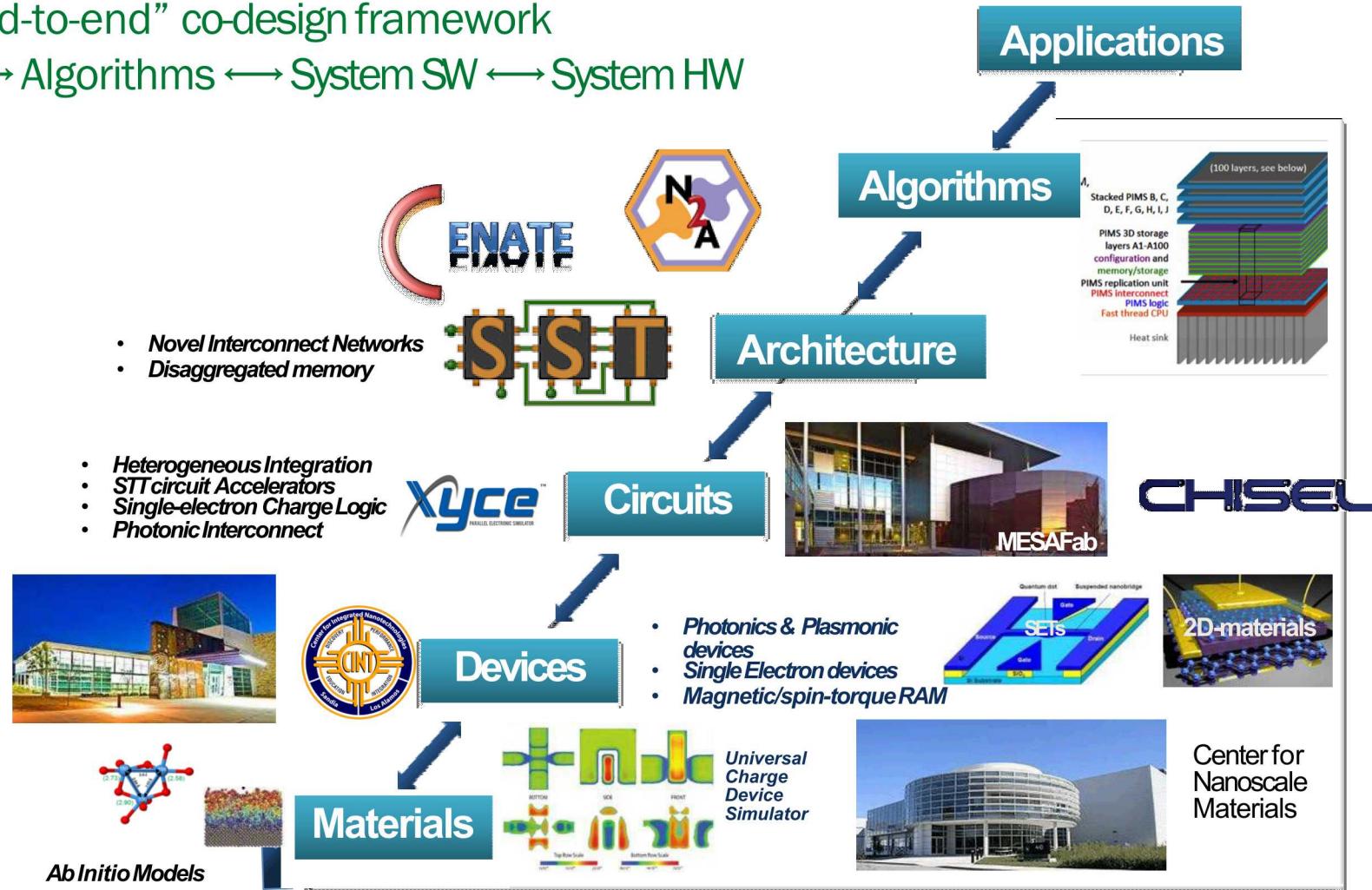
Physics of logic, memory, and transport



Fundamental materials science and chemistry

Multiscale co-design approach – a collaborative approach to meet the urgent need

- Develop an “end-to-end” co-design framework
- Applications \longleftrightarrow Algorithms \longleftrightarrow System SW \longleftrightarrow System HW



Validating the need with industry

Will fully automated vehicles be viable with conventional computing approaches, or will they require a step-change in computing?

What are the energy requirements to support on-board sensing and computing for fully automated vehicles?

What advanced computing approaches could reduce the energy requirements for fully automated vehicles while meeting their computational requirements?

WORKSHOP ON ADVANCED COMPUTING FOR CONNECTED & AUTOMATED VEHICLES

Date: May 7, 2019

The U.S. Department of Energy's (DOE) Vehicle Technologies Office (VTO) invites you to the Workshop on Advanced Computing for Connected & Automated Vehicles (CAVs) at Lawrence Berkeley National Laboratory in Berkeley, California.

This one-day summit will explore advanced microelectronics and computing approaches that can help meet future energy, cost, and computational requirements for CAVs. The workshop will bring together experts from the microelectronics industry, autonomous vehicle innovators, national laboratories, and academics in a precompetitive forum to discuss critical questions, including:

- What system sensing and computing architectures will fully automated vehicles require, and how much energy will those technologies consume?
- What advanced computing approaches could reduce the energy requirements for fully automated vehicles while meeting their computational requirements?

RSVP TODAY TO JOIN THE DISCUSSION

MAY 2019

7

Lawrence Berkeley National Laboratory
Berkeley, CA

U.S. DEPARTMENT OF ENERGY **OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY**

In Cooperation With:

NHTSA

Summary

- Technology is available to get to Level 4 driving, but there appears to be a significant gap to achieve full Level 5
- We estimate that 10 TOPS/watt (minimum) should be a target computing performance goal for Level 5 driving
- There appears to be a credible path to ~ 1 TOPS/watt
- Beyond 1 TOPS/watt requires new computing architectures and microelectronic devices
- There is a role for EERE offices to advance fundamental developments in materials, device physics, and algorithm from TRL 1 up through TRL 4
 - manufacturing
 - devices and prototypes

Backups

Examples of microelectronics devices

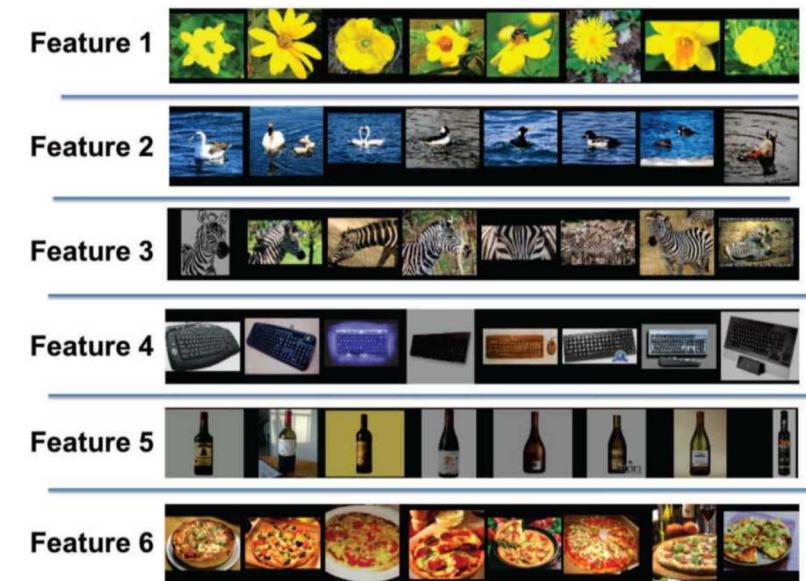
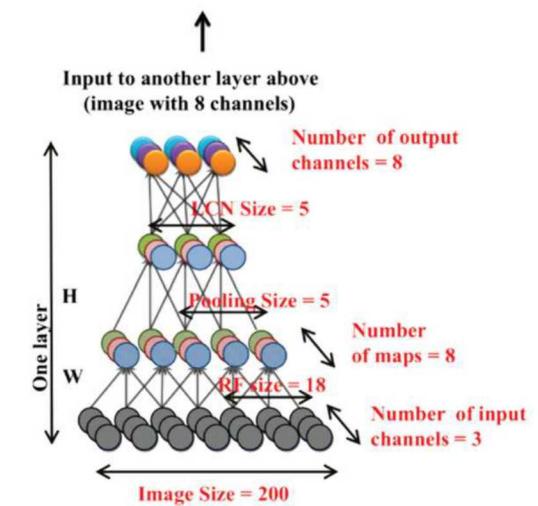
Automated driving safety

Evolution of Computing Machinery



Why should we continue these gains?

- Google Deep Learning Study
 - 16000 core, 1000 machine GPU cluster
 - Trained on 10 million 200 x 200 pixel images
 - Training required 3 days
 - Training dataset size: no larger than what can be trained in 1 week
- What would they like to do?
 - ~2 billion photos uploaded to internet per day (2014)
 - Can we train a deep net on one day of image data?
 - Assume 1000 x 1000 nominal image size, linear scaling (both assumptions are unrealistically optimistic)
 - *Requires 5 ZettaIPS to train in 3 days*
(*ZettaIPS = 10^{21} IPS; ~5 billion modern GPU cores*)
 - World doesn't produce enough power for this!
 - Data is increasing exponentially with time
- Need $>10^{16}$ – 10^{18} instruction-per-second on one IC
 - Less than 10 fJ per instruction energy budget



Computers are fast and efficient at implementing task-specific instructions

$$\frac{dx}{dt} = x^2$$

```
x=1;
dt = 0.01;
for i = 1:1000 {
    dxdt = x.^2;
    xnew = dt*dxdt;
    x = xnew; }
end
```

Computers struggle when there are no clear instructions for the task

Which one of these images is a cat?

Image recognition
Autonomous driving
Natural language processing

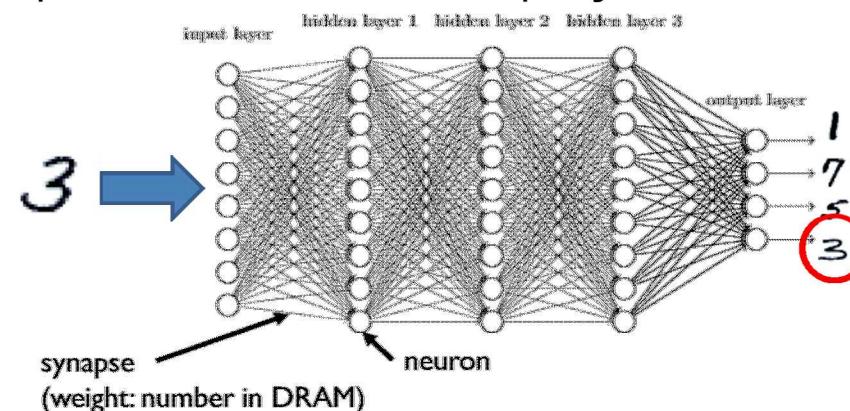
Artificial neural networks: use training examples and error backpropagation to find the matrix weights that correctly maps the input x onto the desired output y

$$\begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} w_{1,1} & \cdots & w_{1,n} \\ \vdots & \ddots & \vdots \\ w_{m,1} & \cdots & w_{m,n} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Artificial neural networks are power intensive

Andrew Ng, Coursera
Nawrocki et al. IEEE Elec. Dev. 2016

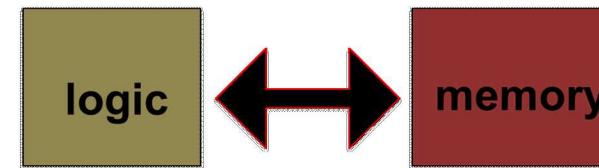
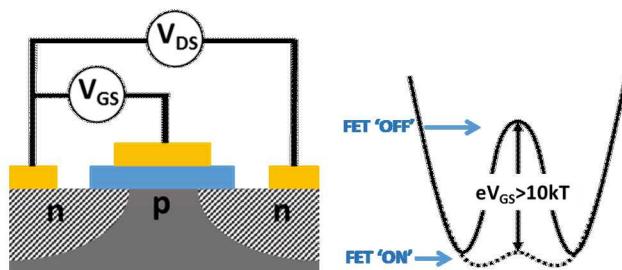
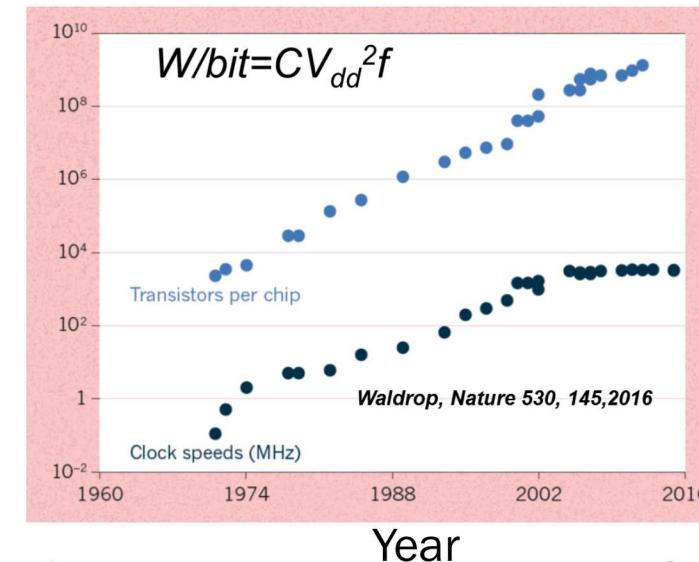
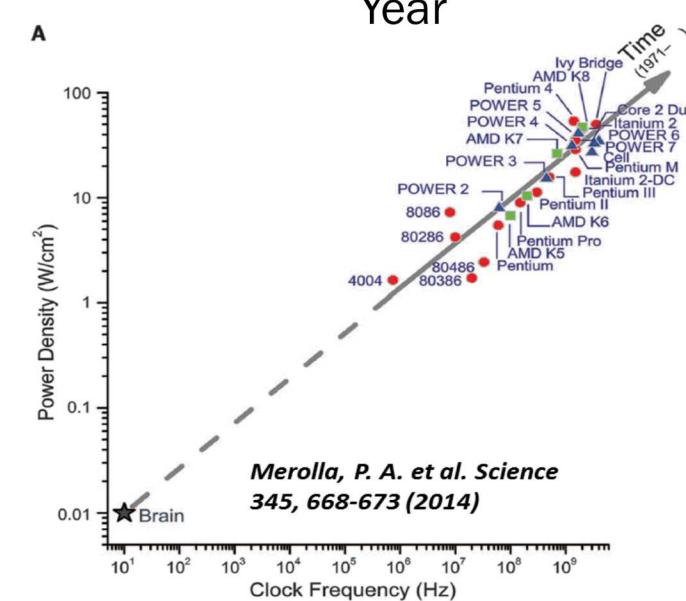
$n, m > 1000$



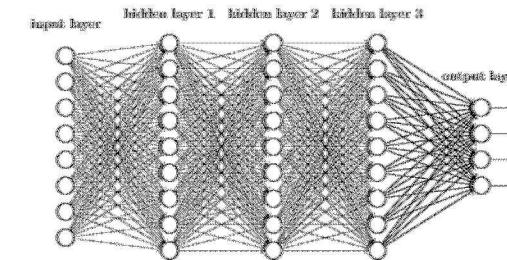
Excess power limits IC performance

(example)

http://www.phys.ncku.edu.tw/~htsu/humor/fry_egg.html



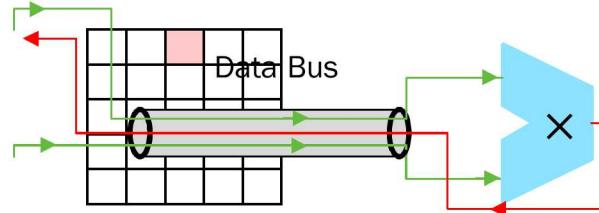
$$\begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} w_{1,1} & \cdots & w_{1,n} \\ \vdots & \ddots & \vdots \\ w_{m,1} & \cdots & w_{m,n} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$



Von Neumann Digital
Separate logic and memory structures

SRAM to store the weights

Arithmetic logic unit
for multiplication

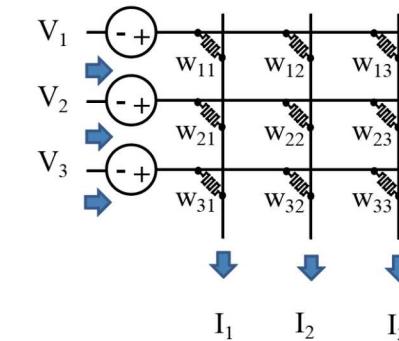


Uses established CMOS technology
Data bus results in latency and power

In-memory Parallel Analog
Use non-volatile memory

Crossbar for matrix
multiplication

Conductance of each
element can be changed in
a predictable manner

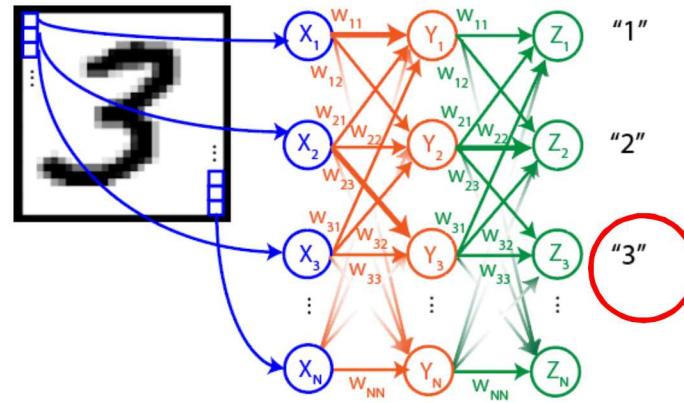


$$I_1 = V_1 W_{11} + V_2 W_{21} + V_3 W_{31}$$

Simultaneous logic and memory
3 orders of magnitude less power

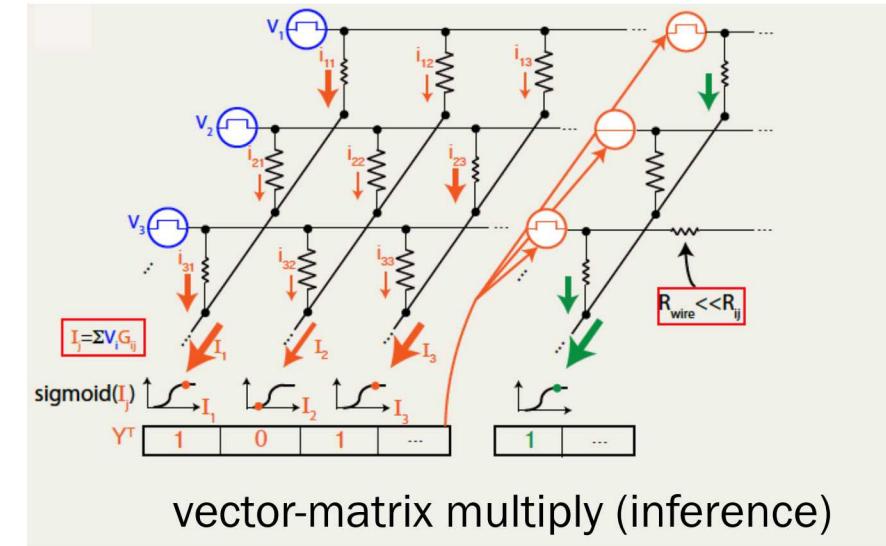
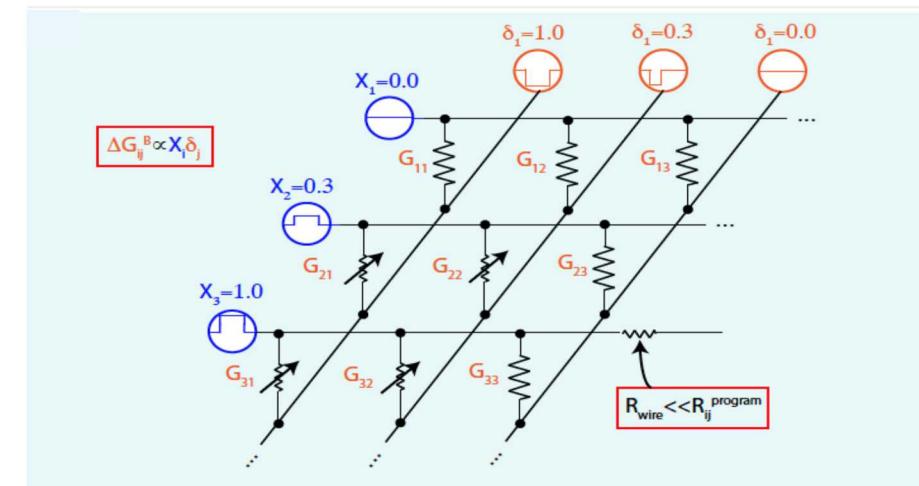
Overcome CMOS bottleneck → in-memory computation

(example)

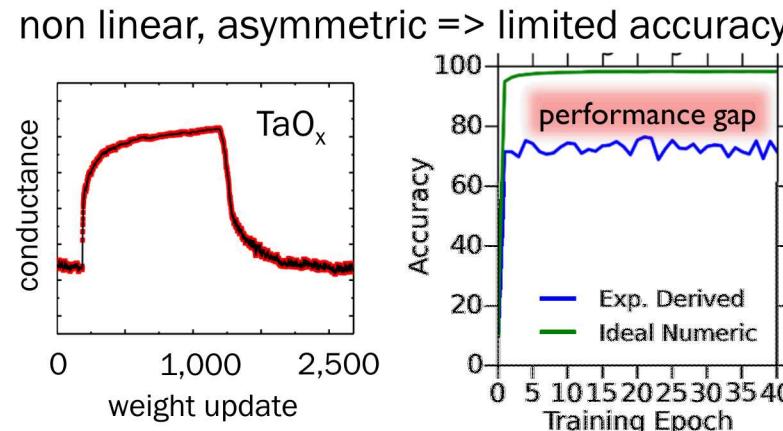


To beat ASICs, GPUs:

- scalable: analog signals must reach edge of $1,000 \times 1,000$ matrix ($R > 100 \text{ M}\Omega$)
- “blind writes” with linear and symmetric programmability
- accurate: matrix operations must have CMOS equivalent accuracy
- low variation, degradation: must cycle $>$ billion times without changes

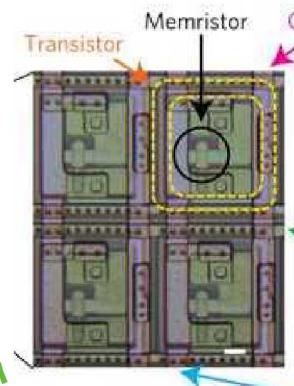


Two-terminal memristive approach



Jacobs-Gedrim et al, 2018

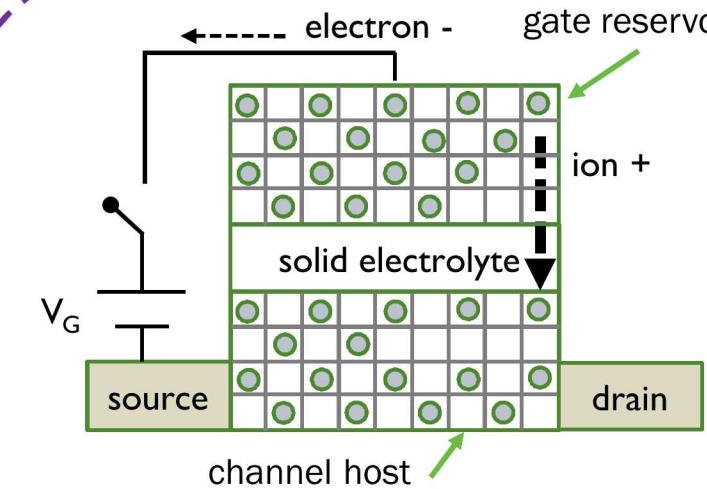
circuit parasitics => limit array sizes & efficient



- impedance ~10k requires CMOS transistor, large wires ($>10\mu\text{m}!!!$)
- Unable to support $>100 \times 100$ arrays needed to beat ASICs
- Large programming currents inhibit training parallelism, devices are programmed element-by-element

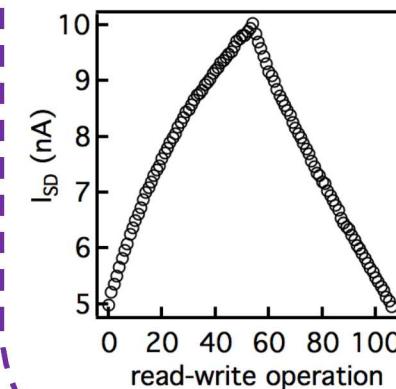
Li et. al Nature Electronics, 2018

Novel approach: ion-insertion memory



ion insertion → modulate resistance

linear, symmetric



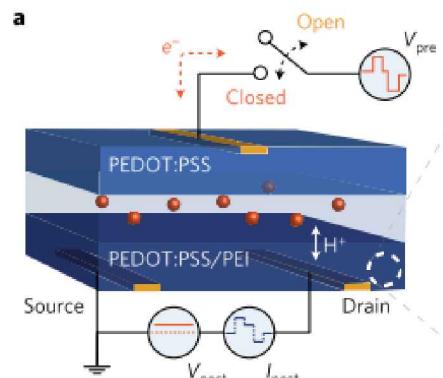
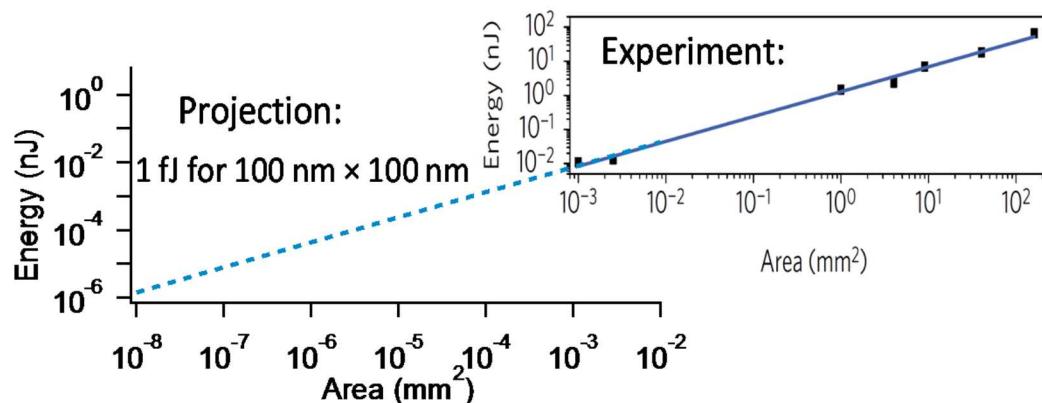
low current/voltage

- <10 nA read/write current
- equivalent CMOS accuracy
- fully-parallel training

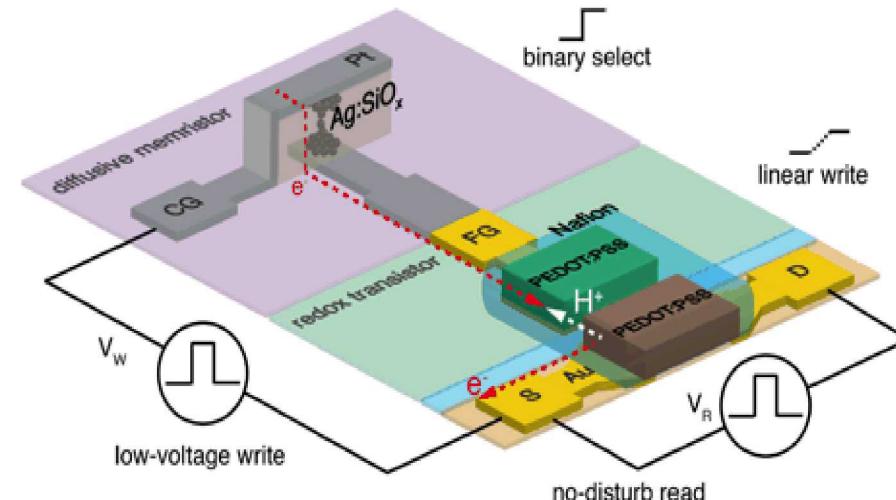
Fuller et. al. Advanced Materials, 2018

A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing

Yoeri van de Burgt^{1,2*}, Ewout Lubberman^{1,2†}, Elliot J. Fuller³, Scott T. Keene¹, Grégorio C. Faria^{1,4}, Sapan Agarwal³, Matthew J. Marinella⁵, A. Alec Talin^{3*} and Alberto Salleo^{1*}



binary selector enables parallel programming

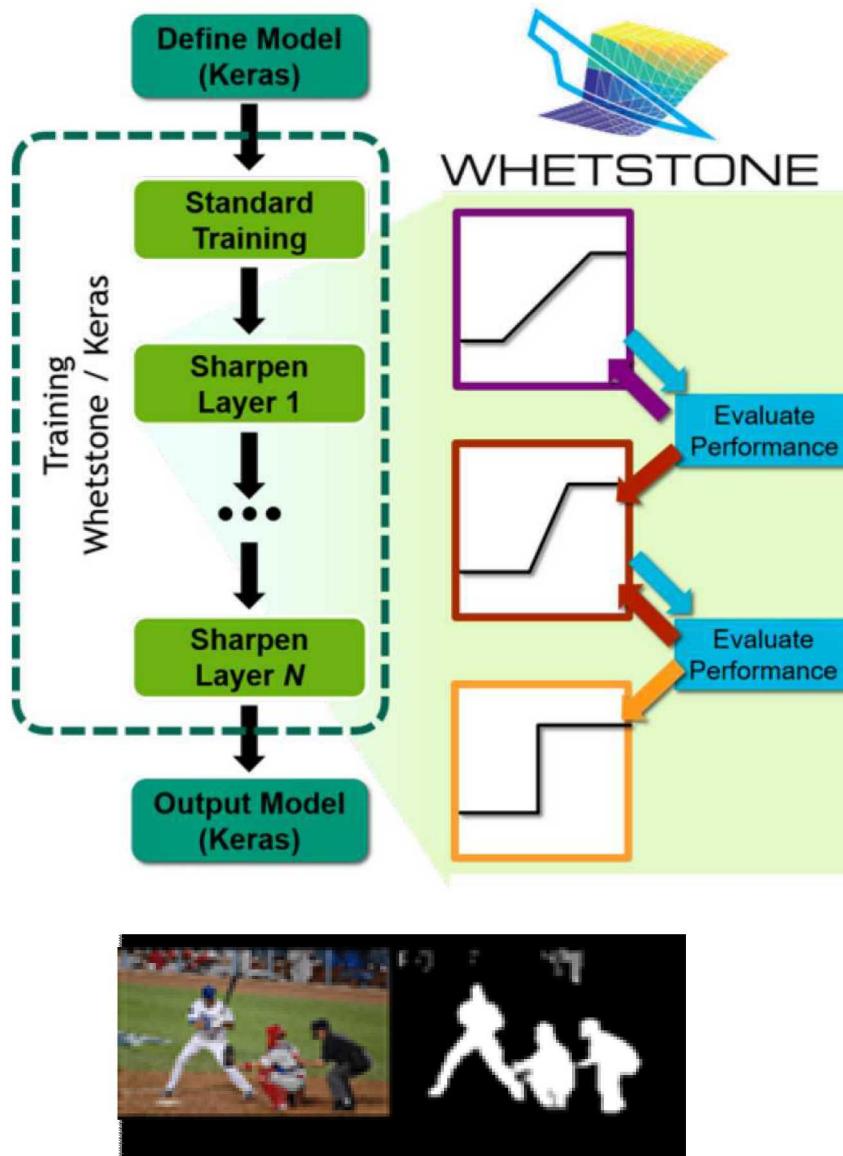


Performance demonstrated

- $< 1 \text{ fJ} / \text{MAC}$
- $> 10 \text{ year retention}$
- $V_{\text{program}} < 10 \text{kT/q}$
- 1 GHz switching rate
- 10^{12} endurance
- $100 \text{ M}\Omega$ impedance

(not achievable with pure electronic memory,
i.e. FLASH)

Deep learning networks can efficiently adapt to existing neuromorphic platforms

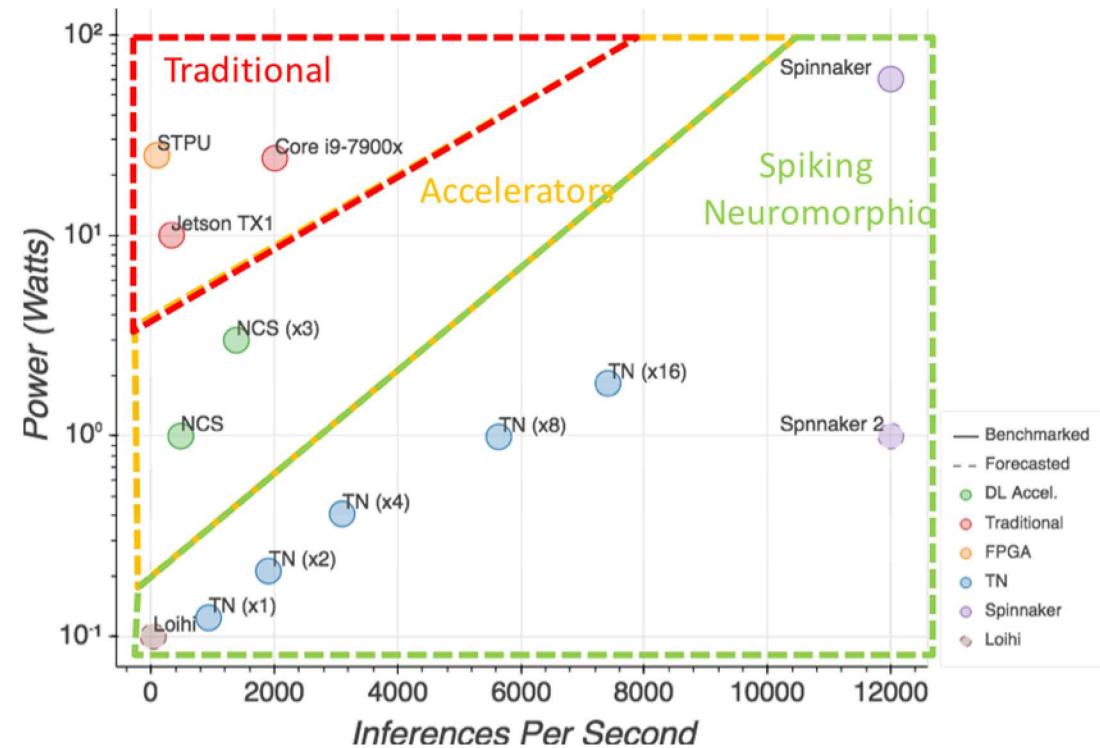


ARTICLES
<https://doi.org/10.1038/s42256-018-0015-y> nature machine intelligence

Training deep neural networks for binary communication with the Whetstone method

William Severa[○]*, Craig M. Vineyard[○], Ryan Dellana[○], Stephen J. Verzi[○] and James B. Aimone[○]*

The computational cost of deep neural networks presents challenges to broadly deploying these algorithms. Low-power and embedded neuromorphic processors offer potentially dramatic performance-per-watt improvements over traditional processors. However, programming these brain-inspired platforms generally requires platform-specific expertise. It is therefore difficult to achieve state-of-the-art performance on these platforms, limiting their applicability. Here we present Whetstone, a method to bridge this gap by converting deep neural networks to have discrete, binary communication. During the training process, the activation function at each layer is progressively sharpened towards a threshold activation, with limited loss in performance. Whetstone sharpened networks do not require a rate code or other spike-based coding scheme, thus producing networks comparable in timing and size to conventional artificial neural networks. We demonstrate Whetstone on a number of architectures and tasks such as image classification, autoencoders and semantic segmentation. Whetstone is currently implemented within the Keras wrapper for TensorFlow and is widely extendable.



Automakers Are Betting Big on Consumer Demand

“... although **consumers agree** safety-related technology is the **most important feature** in cars, people don't want to pay more for it.” – *Business Insider, 2017*

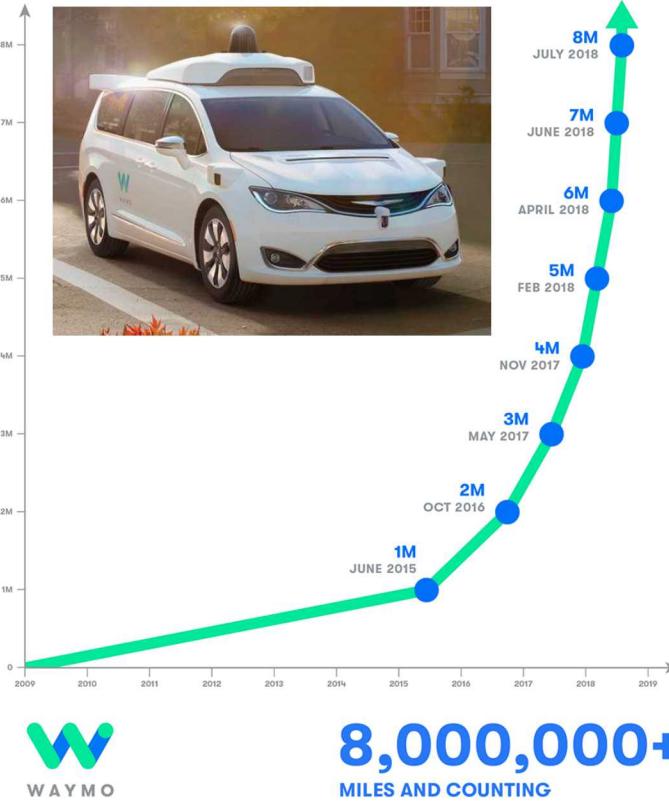
“Driver Assistance” features for emergency braking (frontal only), and traffic jam cruise control are very popular with consumers, but can only add ~ \$1K to the price

“... we find that the **average household** is willing to pay a significant amount for automation: about \$3500 for partial automation and **\$4900 for full automation.**” – *Daziano, 2017*

Consumers are excited about “hands off” commutes to work, but only if the self-driving is “safe”, and only for a limited price increase vs. normal cars

Safety of Self-Driving Today is Measured in Miles ...

But should it be?



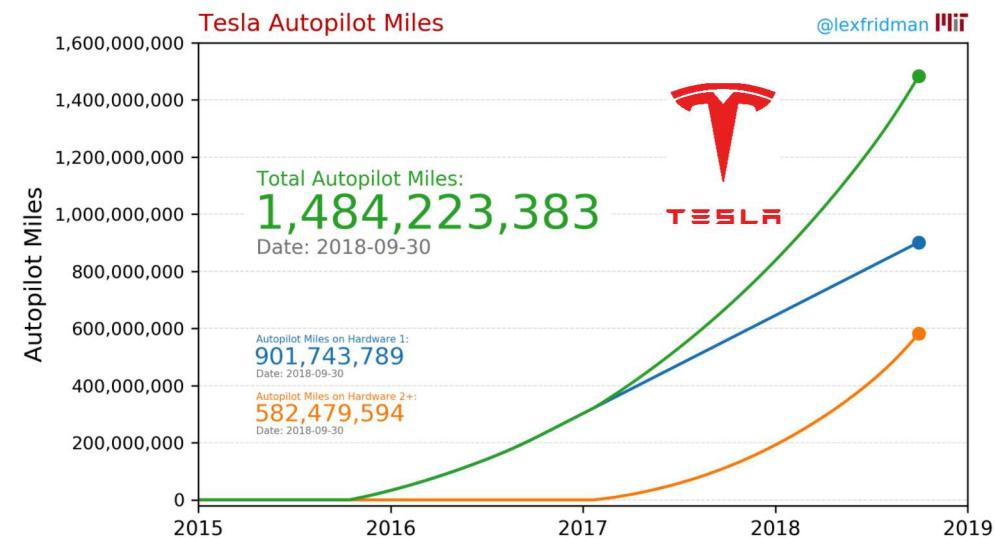
<https://spectrum.ieee.org/cars-that-think/transportation/self-driving/google-has-spent-over-11-billion-on-selfdriving-tech>

Cruise reported **141K miles** in CA for 2016-2017

<https://jalopnik.com/gm-cruise-prepping-launch-of-driverless-car-pilot-in-sa-1826571157>

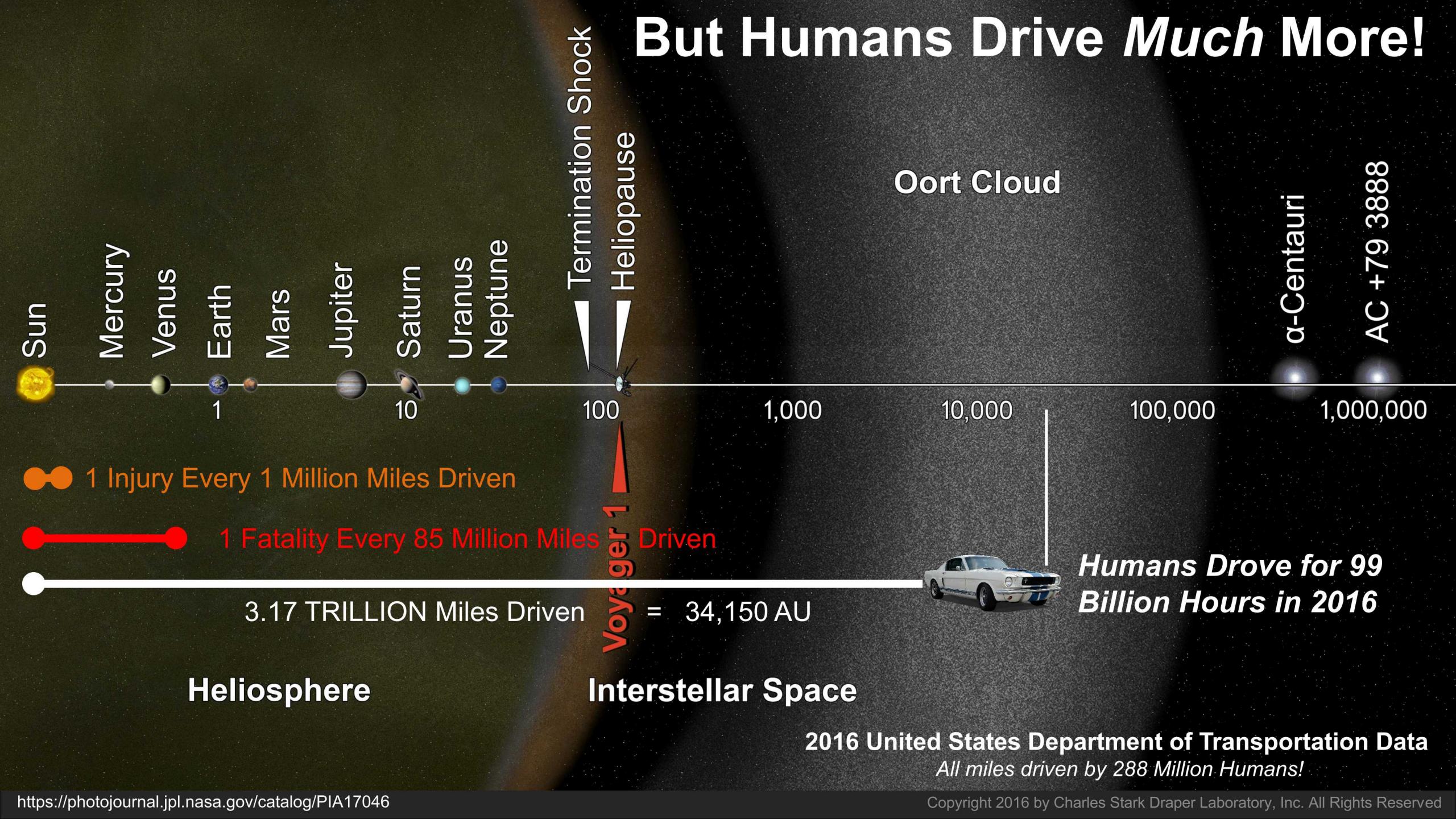
Google/Waymo has – by a factor 10+ – the most “experienced” self-driving system with over \$1 Billion* spent

Only a Highway Self-Driving System (so far)...



All groups tout their systems as “safe”, and (someday) will reduce injuries and deaths on the road

But Humans Drive Much More!



How Should We Measure Safety?

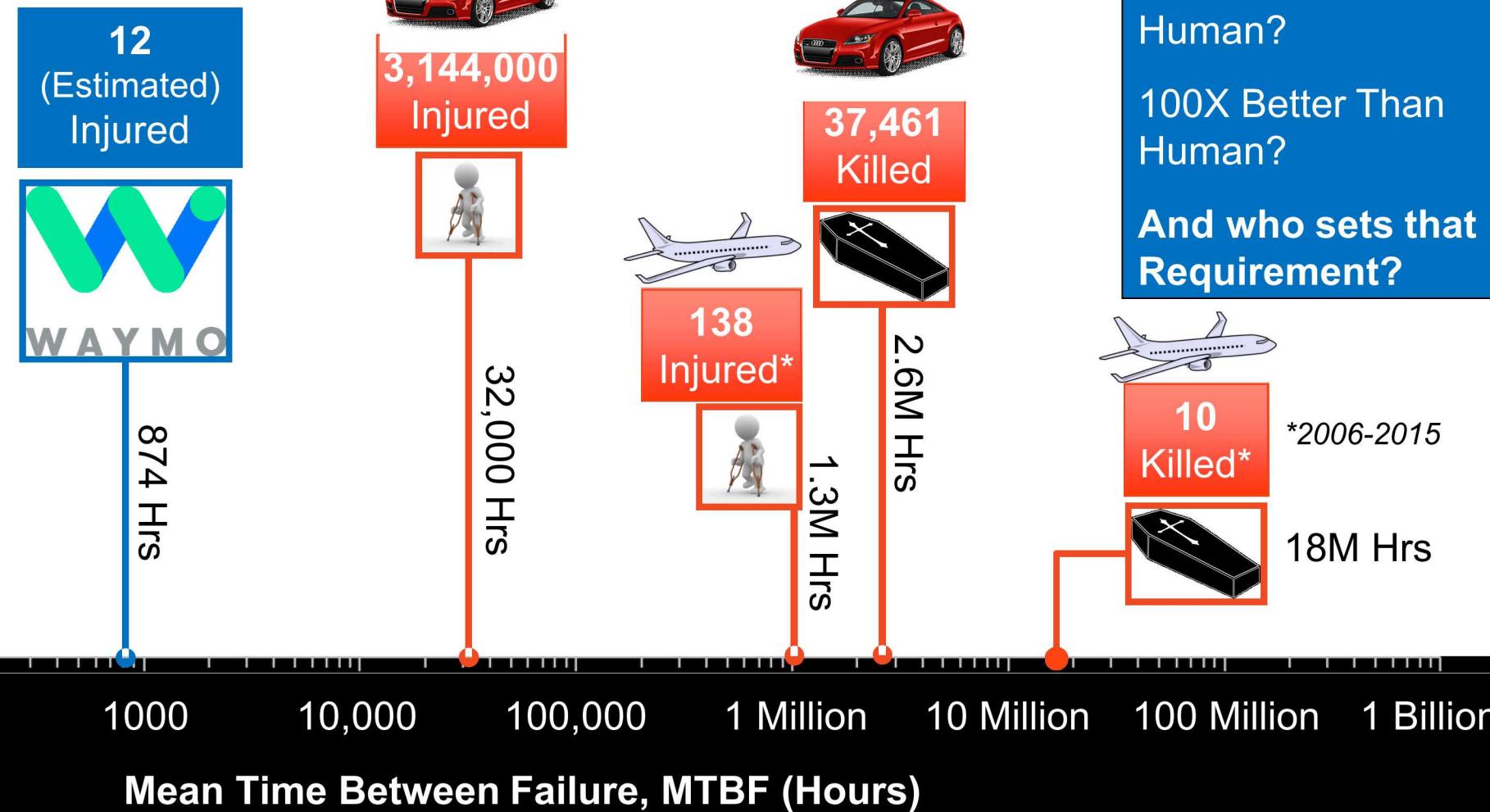
What is the safety goal for self-driving cars?

10X Better Than Human?

100X Better Than Human?

And who sets that Requirement?

My nephew has “accidents” 1 or more times an hour, they are mitigated by diapers and cuteness



Frequent

Reasonably Probable

Remote

Extremely Remote