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Self-Driving Cars



(Very Roughly) Approximating Human Driving

Roads, cars, pedestrians, signals

DRAPER
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Think

IPlan routes, lanes of travel,
precision maneuvers around traffic
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rAct
Control the steering, throttle
and brake to follow plans
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DARPA Self-Driving Grand Challenges

• DARPA Pushed Self-Driving
Technology for Military Operations

• 2004 & 2005 Off-Road Races
— 130 miles through the desert

— 2004: no finishers

— 2005: Stanford, CMU

• 2007 Urban Challenge
60 mile mission < 6 hours

Drive on city streets,
obey traffic rules

Robot & human traffic interaction

— CMU, Stanford, VT, MIT were
top 4 finishers (6 total)

DR PER 5
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Team MIT DARPA Urban Challenge Racer - Talos
Velodyne 3D LIDAR

Roof 2D LIDAR (5)

Car Tracking RADAR (15)

Perimeter 2D LIDAR (7)

13 LIDAR, 15 RADAR, 6 Cameras,
and a 5001b Computer

DR PER
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[traffic jam.mp4]

Cornell collision.mp4]
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Urban Challenge Was Possible Because DARPA Ignored ...
Brake, Turning, and
Traffic Signals

• All intersections 4-way
stops and mapped
No visual sign reading
required
Very low speeds,
awkward behavior OK

Roadway, Lane
Detection & Weather

• Precision map of road
& lane locations
provided

• Southern CA weather

DRAPER

i

Pedestrians and Complex Traffic

• No pedestrians on course
• Controlled, low density traffic

Long Range Car
Tracking (km Scale)

• Low speed short range
(30 m) intersections

• Controlled traffic

7
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2008 2012 2014 2018

Virginia Tech

MIT/Draper

DARPA Urban
Challenge (2007)
Demonstrated fully
autonomous driving
under strictly controlled
conditions

Lexus

Google Self-Driving
Car R&D
Leaders from the winning
DARPA teams are hired
into Google, begin SDC
program with lessons
learned

DRAPER

Ford

Google
Moves into fleet testing
& custom sensor and
vehicle design

Tesla
First generation Autopilot Hardware
in Model S and X — limited highway
driving assistant, lacks strict
controls on use

Uber
Begins small fleet
operations in Pittsburgh

OEM's & Suppliers
Start to consider automated
driving as viable for future
vehicles, begin internal R&D.
Public road testing by Delphi.

Waymo
Testing — 600 vehicle
fleet in 6 States, Limited
L5 autonomy taxi
service starts

Second generation Autopilot
Hardware in Model S,3,X — most
highway driving, limited local
roads, slight limits on use

Fatal accident in Arizona and
concerns about performance
stall efforts

GM, Nissan, Volvo Deploy
Automated Highway Driving

All limit usage and monitor driver to
avoid over-trust by consumers



Costs of Sensing and Computing
Assisting a Human Driver on the Highway

[BoschStereo]

[FujitsuRadar]

$40x5

Stereo / Mono HD
EO, Multispectral
Cameras w/ lane &
object
tracki ng/classification

[ContilMU]

$5
IMU/GPS
(5m accurate)

3D Radar with target tracking

Air-cooled low-power $200

(5W) computer w/ IA,
Giga-Flop Processing St ,

GM I SSA JN 

DRAPER

TE5LR

Autopilot uses
customized
automotive
cameras and
radars with mid-
range GPU
computing

Self-Driving, Replacing a Human

[VeloLidar] $5,000 x 4

LIDAR (Short Range)

$40,000
[SBGGPSINS]

IMU/GPS (10cm accurate)

[lbeoScala] $30,000

LIDAR (Long Range)

[FI IRFnram]
HD+ EO/IR Cameras,

Liquid-cooled high
power (200W) Terra-
\ Flop Processing

W Uber APi-' cruise
WAYMO AGO
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Computing for Driver Assistance vs. Self-Driving Research

11111
Pedestrian

Track

Car Track

& Extents

Giga Flop

Scale Processing

(passive cooling)

111
--'4111111111111116.

CC-)
Radar Track

(No Classification)

1 KB/sec

Fused

Object Tracks

1 KB/sec

Little to no influence on the classification and tracking

algorithms in each ADAS sensor
Very low input data bandwidth and processing

requirements for fusion

DRAPER

HD Lidar ScansRADAR (x5) l&Q HD Images (x6) (64 beams)

Tera Flop

Scale Processing

(liquid cooling)

Fused

Object Tracks

1 KB/sec

Very high input data bandwidth and processing

performance requirements

Optimized fusion across all sensor inputs within one core

set of algorithms
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Many (familiar) Challenges Remain

Brake, Turning, and
Traffic Signals

• Recognizing car signals
limited to nearest
neighbors

• Traffic lights must be
3D mapped

Roadway, Lane
Detection & Weather

• Most (including Waymo)
still rely on HD maps of
all roads/lanes before
driving

• Growing, but still very
limited exposure to
inclement weather

DRAPER
Copyright 2016 by Charles Stark Draper Laboratory, Inc. All Rights Reserved

Pedestrians and Complex Traffic
• Recognizing pedestrians is 80%

(in good visibility)
• Prediction of intent for pedestrians

and cars is still rudimentary

Long Range Car &
Pedestrian Tracking
(km scale)
• Reliable car tracking is

limited to 200 m ranges
• Pedestrian tracking 100 m

in best visibility

Self-driving efforts today are carefully selecting and
mapping their environments to maximize reliability 11



Advanced Computing Requirements
for

Automated Driving



Ten-year gap predicted between Level 4 and Level 5 consumer deployment

1990

Automated Driver
Assistance

Systems (ADAS)

Vehicle
Automation

Vehicle
Connectivity

New Mobility
Services

1995 2000 2005 2010

Development, testing of ADAS features
Early deployment ADAS features (ABS, ESC)

2015 2020 2025 2030

Development of assist features
(lane keep assist, pedestrian
avoidance)

Deployment of ADAS on luxury
vehicle models

2035

Deployment of ADAS on all vehicle models

Level 4 - Hig.. :Is-,‘,Ing Automation

Level 3 - Conditional Driving Automation

Level 2 - Partial Driving Automation

Level 1- Driver Assistance

Development, testing and early
deployments of partial automation

Development and testing of full
automation

First pilot deployments of
automated shuttles

Crash Avoidance Metrics Partnership (CAMP)

Limited deployments of
robotaxis and
automated shuttles
(dedicated lanes or
geofenced areas)

Expanded
deployment of
rohotaxis and
automated
shuttles in mixed
traffic

Preparation and
publication of a V2V

mandate on light duty

vehicles in the U.S.

USDOT connected vehicle research

Phase-in period for

V2V on all new light

duty vehicles (U.S.)

U.S. Connected Vehicle

Pilots - development of

V21

V21 gradual
deployment - 20%

intersections by 2025

Level 5 - Full Driving Automation

2040 2045

Worldwide adoption of robotaxis
and automated shuttles in mixed
traffic

Global deployment of personal
automated vehicles

Road to market
saturation of
automated vehicles

Large scale V21 deployment - 80% U.S.
intersections by 2040

Maturation of
V2X system

First concepts and pilots of new mobility services (NMS)

NMS adopted in urban areas
and some suburban areas

New vehicle sharing models
appear

NMS grow significantly in

urban areas and spreads in

suburban areas

Vehicle sharing models are a

convenient alternative to

ownership

NMS are well

established in

urban and

suburban areas

NMS gain interest in rural areas

Vehicle sharing models are largely adopted in urban areas

Vehicles for mobility on demand represent more than a quarter of

annual vehicle sales

1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045

Center for Automotive Research, Ann Arbor, MI
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Advanced computing compromises more than just perception and logic

Byton

TECHNOLOGY

Horsepower

Performance

Data-power

Con nectivity



> 1 Ox less
power

Projected computing performance and power

HPC must meet CAV — 1 petaflops
size, weight, and power

constraints — I 00 W or less
— 1 0 TOPS/watt

> 1 00x

> 1 Ox power
compute performance

— I 00 teraflops
— 1 000 W
—O. 1 TOPS/watt

Full level 5
automated driving

TOPS == Trillion (tera) Operations

CAV == Connected &Automated Vehicle

Early prototype self-driving
https-//www wired com/story/self-driving-cars-power-consumption-nvidia-chip/
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Projected computing performance and power

HPC must meet CAV - 1 petaflops
size, weight. a rid nn‘Azint•

Power requirements

• Assume battery electric storage increases at most linearly

• Reduce energy consumption from -10% of battery to -1%

• Power includes communication, cooling, and redundancy

• Bounding target -- the human brain is a 30 W system

\ u- _
-1000W
-0.1 TOPS/watt

labcgablititios

zi 5
.t_f driving

Early prototype self-driving
https-//www wired com/story/self-driving-cars-power-consumption-nvidia-chip/

CAV == Connected & Automated Vehicle



Projected computing performance and power

HPC must meet CAV
nri 

I petaflops
size, weight a 

,

Computing requirements

labcgatolitit ke

• Estimating computing operations per second to grow by at least an
order of magnitude in moving from Level 4 to Level 5 driving

• Advanced sensing results in > 10X increase in data, requiring
similar increase in computing capability

• Google TPU and Apple A11 are estimated - 1 TOPS/W at die level;
similar recent claims by Nvidia and Tesla

- 1 000 W
-O. 1 TOPS/watt

I 1%

J riving

Early prototype self-driving
https-//www wired com/story/self-driving-cars-power-consumption-nvidia-chip/

CAV == Connected & Automated Vehicle



Energy efficiency of computing and the need of CAV's a challenging problem Soda
Rand
labontaries
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Computing Technology



Why now for computing industry? convergence of four critical trends

Tech nology:
• End of Dennard scaling: power becomes the key constraint

• Slowdown in Moore's Law evidenced by flattening of transistor cost takedown

Architectural:
• Limitation and inefficiencies in exploiting instructional level parallelism and in the

prevailing von-Neumann architecture

Applications:
• Shift from desktop of mobile and loT

• Ultra-scale cloud computing and artificial intelligence/machine learning workloads

Industry collaborations:
• End of International Technology Roadmap for Semiconductors (ITRS) roadmap

• Decline in SRC participation and the end of SEMATECH (absorbed in SUNY)



Evidence of Moore's Law slowdown scaling is in a crisis

CPU single core performance

100000
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o
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Vl

100

E

1 E-,-1.17

1.E+06
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1.E400

CISC
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R
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Dennard
Scaling

Multicore
2X / 3.5

yrs
(23%Iyr)

Am-
dahl's
Law

2X
6 yrs
(12%lyn

End of
the
Line?
2X /
20 yrs
(3%lyr)
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Digital accelerators will get us to ~ 1 TOPS/watt
(E) labcgatolitit ke

• Tensor Processing Unit (TPU):
machine learning accelerator in use by
Google since 2015

• Core: matrix multiply unit

• Die level performance of 2.3 TeraOps/W

• Apple A11: iPhone 8 and X main system on a
chip (SoC) processor

• Estimated > 1 TeraOp/W, or < 1 pJ/op

22



In the news...

Tesla's new self-driving computer contains
the "best chip in the world," according to
Elon Musk. Credit: Tesla, April 2019

Nvidia agrees with Tesla's take on
self-driving cars, but corrects
specifics - Digital Trends, April 2019

"The Xavier processor features a
programmable CPU, GPU, and deep
learning accelerators, delivering
30 TOPs. We built a computer called
DRIVE AGX Pegasus based on a two-
chip solution, pairing Xavier with a
powerful GPU to deliver 160 TOPS,
and then put two sets of them on the
computer, to deliver a total of
320 TOPS"



New approach is needed to meet low-energy computing demand Sob
Mud
lamas

40,000 petabytes a day*

Front camera

20MB / sec

Front radar

sensors

100kB / sec

Crash sensors
100kB / sec

Rear radar sensors

100kB / sec

10m connected cars by 2020

Front ultrasonic sensors
10kB / sec

Infrared camera
20MB / sec

Side ultrasonic
sensors

100kB / sec

Front, rear and

top-view cameras

40MB / sec

Rear ultrasonic

cameras
100kB / sec

memory
digital signal processing

bus

processor

lout

1

in 

logic

fundamental flaw: processing separate from
memory creates efficiency bottleneck

Frorn

Increased

Drag

10%
Frorn

Added

Weight

15%

Maps

3%

Structure

3%

Harness

0%

Energy Cost

Carnera

4%

Sonar

2%

Computer

43%

Radar

5%

Large

LiDAR

0%

Srnall

LiDAR

5%

GPS_INS

2%

DSRC

8%

Gawron et. al. Environ. Sci. Technol. 52, 3249-3256 (2018)

analog processing

logic and memory combined
to circumvent digital bottleneck 24



Many unproven candidates yet to be investigated at scale
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intronics

Carbon
nanotubes

and
raphene

P ETs

CMOS

General
purpose

New models of
computation

Neunomorphic

Adabiatic
reversible

ataflow

NTV

log

Quantum

Superconducting

1=1
3D stacking, ib
• ckaging Reconfigurable

computing
Dark

silicon

New architectures and packaginn

More Efficient Architectures and Packaging
The next 10 years after exascale 25



Taking Action



National priorities, July 2018

EXECUTIVE OFFICE OF THE PRESIDENT

WASHINGTON, D.C.

July 31, 2018

M-18-22

MEMORANDUM FOR THE HEADS OF EXEC TIVE DEPARTMENTS AND AGENCIES

FROM: MICK MULVANEY view
DIRECTOR, OFFICE OF MANAG MENT AND BUDGET

MICHAEL KRATSIOS
DEPUTY ASSISTANT TO THE PRESIDENT
OFFICE OF SCIENCE AND TECHNOLOGY POLICY

SUBJECT: FY 2020 Administration Research and Development Budget Priorities

"Agencies should prioritize investment
in research and infrastructure to
maintain U.S. leadership in strategic
computing, from edge devices  to
high-performance computing, that
accelerates delivery of low power,
high performance devices; supports a
national high-performance computing
ecosystem; and explores novel

pathways to advance computing in a

post-Moore's Law era".
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Semiconductor Industry Association policy recommendations, April 2019

V1
1E

11
11

11
! 

WINNING
THE FUTURE.
A Blueprint for Sustained
U.S. Leadership in
Semiconductor Technology

April 2019

S A
SEHICORINICTelfr

Du.Frizy
ASSCKLE.TION

"Semiconductors — the tiny chips that enable modern
technologies — are critical to America's economy, job
creation, technology leadership, and national security. For
50 years, America has led the world in semiconductor
innovation, driving transformative advances in nearly every
modern technology, from computers to mobile phones to
the Internet itself. Today, semiconductors underpin the most
exciting "must-win" technologies of the future, including
artificial intelligence to power self-driving cars and other
autonomous systems, quantum computing to analyze huge
volumes of data and enhance digital encryption, and
advanced wireless networks to seamlessly connect people
at unprecedented speeds and security.

To secure America's leadership in these future technologies
for the next 50 years, the United States must continue
to lead the world in semiconductor research, design, and
manufacturing." 29



BES/ASCR/HEP Basic Research Needs for Microelectronics Workshop, October 2018

Basic Research Needs for

Microelectronics

Discovery science to revolutionize mlcroelectronlcs

beyond today's roadmaps

Call To Action

• Significant challenges as CMOS extends below 5nm

• The end to Moore's Law will irnpact U.S. industry and competitiveness

• The importance of this issue and its technical cornplication will require
innovative approaches to keep the U.S. in a leadership position

• Solving a problem of this scale will require "whole of government"
approach and a robust public/private partnership to apply the best
research from industry, academia and government research facilities to
allow the U.S. to successfully make this technology transition

• DOE, and particularly the Office of Science, will play a significant
role in this effort

• DOE-SG was charged with organizing a Basic Research Needs
Workshop to define the highest priority research directions

U.S. !DEPARTMENT OF Office of
ENERGY Science

30



Principles of co-design underpin five priority research directions

6

(cc:11v)]
OdOp

Algorithms and programming paradigms

System architecture design and modeling

Interconnects and component integration

Devices and circuits

hysics of logic, memory, and transport

Fundamental materials science and chemistry

BES/ASCR/HEP Basic Research Needs for Microelectronics Workshop, October 2018
31



Ab lnitio Models

Multiscale co-design approach - a collaborative approach to meet the urgent need

• Develop an "end-to-end" co-design framework
• Applications Algorithms System SA/ 4—System HW

• Novel interconnect Networks
• Disaggregated memory

• Heterogeneous integration

• Single-electron Charge Logic Nry
• STTcircuit Accelerators

• Photoniclnterconnect

5*.1CM 12“.
it

Materials

Applications

Algorithms

• Photonics & Plasmonic
devices

• Single Bectron devices
• Magnetic/spin-torque RAM

Universal
Charge
Device
Simulator

Stacked PIMS B, C,

PIMS 3D storage

layers AI -A100

configuration and
"roomrthlorage

PIMS replicatioo unit
PIMS interconnect

PIMS logic
I ant thread C.

Heat sink

Center for
Nanoscale
Materials

BES/ASCR/HEP Basic Research Needs for Microelectronics Workshop, October 2018
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Validating the need with industry

Will fully automated vehicles be viable with
conventional computing approaches, or will

they require a step-change in computing?

What are the energy requirements to support
on-board sensing and computing for fully

automated vehicles?

What advanced computing approaches could
reduce the energy requirements for fully

automated vehicles while meeting their

computational requirements?
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Summary

• Technology is available to get to Level 4 driving, but there appears to be
a significant gap to achieve full Level 5

• We estimate that 10 TOPS/watt (minimum) should be a target computing
performance goal for Level 5 driving

• There appears to be a credible path to - 1 TOPS/watt

• Beyond 1 TOPS/watt requires new computing architectures and
microelectronic devices

• There is a role for EERE offices to advance fundamental developments
in materials, device physics, and algorithm from TRL 1 up through TRL 4
• manufacturing
• devices and prototypes 34



Backups

Examples of microelectronics devices

Automated driving safety



Evolution of Computing Machinery
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Why should we continue these gains?

• Google Deep Learning Study
— 16000 core, 1000 machine GPU cluster
— Trained on 10 million 200 x 200 pixel images
— Training required 3 days
— Training dataset size: no larger than what can be
trained in 1 week

• What would they like to do?
— —2 billion photos uploaded to internet per day (2014)
— Can we train a deep net on one day of image data?
— Assume 1000 x 1000 nominal image size, linear scaling
(both assumptions are unrealistically optimistic)

— Requires 5 ZettalPS to train in 3 days
(ZettalPS = 1021 IPS; —5 billion modern GPU cores)

— World doesn't produce enough power for this!
— Data is increasing exponentially with time

• Need >1016- 1018instruction-per-second on one IC
— Less than 10 fJ per instruction energy budget

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Feature 6

Lill!! MUNI

A

Input to another layer above

(image with 8 channels)

Number of output

tt

NN

channcls = 8

'S Size = 5

\ umber

of maps = 8

Verf"47-40% \ umber "inputchannels = 3

lrnage Size = 200

Q. Le, IEEE ICASSP 2013 37



Artificial neural networks and deep learning (example)

(E) wasZoidas

rComputers are fast and efficient a
implementing task-specific
instructions

dx
= x2

dt

x=1;
dt = 0.01;
for i = 1:1000 {

dxdt = x.^2;
xnew = dt*dxdt;
x = xnew;

end

[Y1  [ W1,1 
• • •

W1,n

Ym [Wm,1 
• • •

Wm, n

Artificial neural networks are power intensive
Andrew Ng, Coursera

Nawrocki et al. IEEE Elec. Dev. 2016 n, m > 1000

Computers struggle when there are
no clear instructions for the task

Which one of these images is a cat?

Image recognition
Autonomous driving

Natural language processing

Artificial neural networks: use training examples and error backpropagation to find the
matrix weights that correctly maps the input x onto the desired output y

e
- number in D
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Excess power limits IC performance (example)

(E) 11.1.

http://www.phys.ncku.edu.tw/—htsu/humor/fry_egg.html
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Digital vs analog implementations of neural networks (example)

(E) 11.1.

Yi wi,i[
: .

Ym wm,i

• • •

• • •

Von Neumann Digital

Separate logic and memory structurs

SRAM to store the weights Arithmetic logic unit
for multiplication

X

Uses established CMOS technology
D ata bus results in latency and power

W1,nxi

Wm,nxn

r In-memory Parallel Analog

Use non-volatile memory

Crossbar for matrix Conductance of each
multiplication element can be changed in

a predictable manner

1 1 12

1 1 = v1VV11 + v2VV21 + v3VV31

13

Simultaneous logic and memory
3 orders of magnitude less power

M. Marinella, IEEE Circuits and Systems, 8, 86-101, 2018 40
Zidan, Strachan, & Lu, Nat. Elec. 1, 22, 2018



Overcome CMOS bottleneck in-memory computation (example)

To beat ASICs, GPUs:

• scalable: analog signals must reach edge of 1,000 x 1,000 matrix
(R>100 MD)

• "blind writes" with linear and symmetric programmability

• accurate: matrix operations must have CMOS equivalent accuracy
• low variation, degradation: must cycle > billion times without

changes

(Enagonint.

I=EViG,

Ziff
, °NIl
GF TT

12 )43
sigmoid(I)   t.r.i2  

vector-matrix multiply (inference)

AG,B.x)cbi

81-0.0

Rp,i,.«RoP'9"

outer product (learning) 41



A novel material approach to neuromorphic computing ffibminismil•dsig•
Two-terminal memristive approach
• -

•
non linear, asymmetric => limited accuracy A

io  iirirri 

co
nd
uc
ta
nc
e 

z
uu 4

2

0 1,000 2,500

weight update

performance gap

— Derheed
— id 11 Nurneric

4 110 115 26 215 310 315 4
Training lEp h

Jacobs-Gedrim et al, 2018

circuit parasitics => limit array sizes & efficient
Me rnristor

Li et. al Nature Electronics, 2018

• impedance -10k requires CMOS
transistor, large wires (>10µm!!!)

• Unable to support >100x100
arrays needed to beat ASICs

• Large programming currents inhibit
training parallelism, devices are
programmed element-by-element /

• ♦

Novel approach: ion-insertion memory

VG

♦  electron -

1

gate reservoir

Air

ion +

O 0 0 0 0
0 0 0
0 0 0 0
0 0

solid electrolyte v

° 0 o o
source o 0 0 0 0

drain0 o o 0

channel host

ion insertion 4 modulate resistance

linear, symmetric
10

9

8

j 7

6

5

•
•

low current/voltage

• <10 nA read/write current

• equivalent CMOS accuracy

• fully-parallel training

0 20 40 60 80 100
read-write operation

• Fuller et. al. Advanced Materials, 2018
• •

♦

/
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lon-insertion devices can reach < 1 fJ / MAC**

nature

materials LETTERS
PUBLISHED ONLINE: 20 FEBRUARV 20171 D01'101038/ NMAT385E,

A non-volatile organic electrochemical device as a
low-voltage artificial synapse for neuromorphic
computing
Yoeri van de Burgt1' Ewout Lubberman1.2,, Elliot J. Fuller3, Scott T. Keene', Grégorio C. Farial'4,

Sapan Agarwal3, Matthew J. MarinellaB, A. Alec Talin3* and Alberto Sailed*
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** see slide # 18 for perspective on energy performance (1 fJ = 10-15 J)

Sada

laboataliftwiel las

binary selector enables parallel programming

nu-disturb re cl

Performance demonstrated
• < 1 fJ / MAC
• > 10 year retention
• Vprogram<10kT/q

• 1 GHz switching rate
• 1012 endurance
• 100 mn impedance

(not achievable with pure electronic memory,
i.e. FLASH) 43



Deep learning networks can efficiently adapt to existing neuromorphic platforms Eplegat.

Wefine Model
(Keras.11

-1 ----I WH ETSTO N E
Standard
Training

Sharpen
Layer 1

Sharpen
Layer N

Output ModeL
(Keras)

re valuate
Prformance

rrkiimit

_ . ate
;Performance

102

7,--) 10'

(1)

O

10° -

10 1 -

ARTICLES
https://doLorg/10.1038/542256-018-0015-y

nature
machine intelligence

Training deep neural networks for binary

communication with the Whetstone method
Wilharnseyerae*, CraigM.Vineyard , Ryan Dellana , StephenJ.Verzi and James B.Aimone *

The computational cost of deep neural networks presents challenges to broadly deploying these algorithms. Low-power and
embedded neuromorphic processors offer potentially dramatic performance-per-watt improvements over traditional proces-
sors. However, programming these brain-inspired platforms generally requires platform-specific expertise. It is therefore dif-
ficult to achieve state-of-the-art performance on these platforms, limiting their applicability. Here we present Whetstone, a
method to bridge this gap by converting deep neural networks to have discrete, binary communication. During the training
process, the activation function at each layer is progressively sharpened towards a threshold activation, with limited loss in
performance. Whetstone sharpened networks do not require a rate code or other spike-based coding scheme, thus producing
networks comparable in timing and size to conventional artificial neural networks. We demonstrate Whetstone on a number of
architectures and tasks such as image classification, autoencoders and semantic segmentation. Whetstone is currently imple-
mented within the Keras wrapper for TensorFlow and is widely extendable.
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Automakers Are Betting Big on Consumer Demand

0

"... although consumers agree safety-related
technology is the most important feature in
cars, people don't want to pay more for it." -
Business Insider, 2017

i Driver Assistance" features for emergency braking 
1

(frontal only), and traffic jam cruise control are very
popular with consumers, but can only add - $1K to

L the price

DR PER

ig... we find that the average household is willing
to pay a significant amount for automation: about
$3500 for partial automation and $4900 for full
automation." - Daziano, 2017

Consumers are excited about "hands off commutes
to work, but only if the self-driving is "safe", and only

for a limited price increase vs. normal cars

45
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Safety of Self-Driving Today is Measured in Miles ...
But should it be?

A

1M
JUNE 2015

7M
JUNE 2018

6M
APRIL 2018

5M
FEB 2018

LIM
NOV 2017

3M
MAY 2017

2M
OCT 2016

2009 2010 2011 2013 2014 2010 2017 2012 2019

Google/Waymo has — by a factor 10+ — the most
"experienced" self-driving system with over $1 Billion* spent

8,000,000+
WAYMr MILES AND COUNTING

https://waymo.com/ontheroad/

Cruise reported 141K miles
in CA for 2016-2017

https://jalopnik.com/gm-cruise-prepping-
launch-of-driverless-car-pilot-in-sa-
1826571157

*https://spectrum.ieee.org/cars-that-think/transportation/self-
driving/google-has-spent-over-11-billion-on-selfdriving-tech

DR PER

Only a Highway Self-Driving System (so far)...

1,600,000,000  

1,400,000,000 -

1,200,000,000 -

1/1

—
cu 1,000,000,000

800,000,000 -
=

o
600,000,000 -

400,000,000 -

200,000,000 -

0

Tesla Autopilot Miles @lexfridman

Total Autopilot Miles:

1,484,223,383
Date: 2018-09-30

Aual,4ilotM7i1es o38n H:7rdware91:9 

Date: 2018-09-30

5'`'6","'14Y'6"a,riw6e4':
Date: 2018-09-30

2015 2016 2017 2018 2019

All groups tout their systems as "safe", and (someday)
• • I

Win reauce injuries ana aeams on the road
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. But Humans Drive Much More!._.u)
c a)o u).= mco Oort Cloudcoc 0_ L_
E o =

(la
TD 4

a) 
(i) 

_c a5 = E 
(1) c

I— I a)
0

c1L3 (Lc/3) m 1701 c_ 

m 
1 ! 6c, cc3 0_

.
1

•

10

00 1 Injury Every 1 Million Miles Driven

A
C
 +
7
9
 3
8
8
8
 

•

100 1 0 0 0 10 , 00 0

3.17 TRILLION Miles Driven = 34,150 AU
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Humans Drove for 99
Billion Hours in 2016

Heliosphere Interstellar Space

2016 United States Department of Transportation Data
All miles driven by 288 Million Humans!

https://photojournaljpl.nasa.gov/catalog/P1A17046 Copyright 2016 by Charles Stark Draper Laboratory, Inc. All Rights Reserved



How Should We Measure Safety?

12
(Estimated)

Injured

My nephew has
"accidents" 1 or more
times an hour, they are
mitigated by diapers
and cuteness

3,144,000
Injured

-Jeri"
Injured*

37,461
Killed

What is the safety
goal for self-
driving cars?

10X Better Than
Human?

100X Better Than
Human?

And who sets that
Requirement?

*2006-2015

18M Hrs

1 10 100 1000 10,000 100,000 1 Million 10 Million 100 Million 1 Billion

Mean Time Between Failure, MTBF (Hours)

Frequent Reasonably Probatle Remote
Copyright 201(

Extremely Remote
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