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Self-Driving Cars



(Very Roughly) Approximating Human Driving

| Act
Control the steering, throttle
and brake to follow plans

Perceive

Roads, cars, pedestrians, signals Think
Plan routes, lanes of travel,

DRAPER precision maneuvers around traffic
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DARPA Self-Driving Grand Challenges

DARPA Pushed Self-Driving

» : T sk ) o =TT il S
Technology for Military Operations o Pt <0-F 1y AL gsﬂb Oy
2004 & 2005 Off-Road Races B ! i i NG AR

— 130 miles through the desert
— 2004: no finishers
— 2005: Stanford, CMU

2007 Urban Challenge
— 60 mile mission < 6 hours

— Drive on city streets,
obey traffic rules

— Robot & human traffic interaction

— CMU, Stanford, VT, MIT were
top 4 finishers (6 total)
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Team MIT DARPA Urban Challenge Racer - Talos
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Urban Challenge Was Possible Because DARPA Ignored ...

Brake, Turning, and
Traffic Signals

« All intersections 4-way
stops and mapped BN ¢
« No visual sign reading 0l 5
required e :
+  Very low speeds, Pedestrians and Complex Traffic
awkward behavior OK « No pedestrians on course
« Controlled, low density traffic

Roadway, Lane
Detection & Weather

* Precision map of road
& lane locations
provided

* Southern CA weather

Long Range Car
Tracking (km Scale)

* Low speed short range
(30 m) intersections
» Controlled traffic

<L

DRAPER .
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Waymo
Testing ~ 600 vehicle
fleet in 6 States, Limited
LS autonomy taxi
service starts

Tesla
First generation Autopilot Hardware Second generation Autopilot
in Model S and X — limited highway Hardware in Model S,3,X — most

driving assistant, lacks strict highway driving, limited local
controls on use roads, slight limits on use

, Moves into fleet testing B, ‘
MIT/Draper  Google Self-Driving & custom sensor and Uber atal aceident in Arizona and

DARPA Urban vehicle design , concerns about performance
Car R&D Begins small fleet et

Challenge (2007) Leaders from the winning operations in Pittsburgh st efiorts |

Demonstrated fully DARPA teams are hired , . .

autonomous driving into Google, begin SDC OEM'’s & Suppliers GM, Nissan, Volvo Deploy

unde_r .strictly controlled program with lessons St_anj to con_sider automated Automated Highway Driving

conditions learned driving as viable for future All limit usage and monitor driver to
DRAPER vehicles, begin internal R&D. avoid over-trust by consumers

Public road testing by Delphi.



Costs of Sensing and Computing

— Assisting a Human Driver on the Highway Self-Driving, Replacing a Human
[ FETT— Stereo / Mono HD “: { ‘i
i EO, Multispectral | i |
i Cameras W/ lane & | i |
i 200 object i i i
i $ tracking/classification i i LIDAR (Short Range) LIDAR (Long Range) i
i [ContilMU] P T i i
{  [FuiitsuRadar] - i Autopilot uses i i
i .$40X5 | customized i i
; $5 | automotive i i
i p IMU/GPS | cameras.and . i [SBGGPSINS] $40,000 [FLIREOCam] :
i * (5m accurate) i radars with mid- | IMU/GPS (10cm accurate) HD+ EO/IR Cameras, i
3D Radar with target tracking | rangs GPU ! o !
| $20 | computing  Liquid-cooled high § |
Air-cooled low-power RN | * Bl |
(5W) compueterw/ \ | 000 power (200W) Terra- §& e,
---‘Glga -Flop Processing i .sg“ e \ FIOp Processmg """"""ff ““““““ i
Uber CrulsC
N AGO
DRAPER 5
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Computing for Driver Assistance vs. Self-Driving Research

T

Pedestrian
Track _—
—<P
Radar Track
(No Classification)
\_ 7
Car Track
& Extents 11 KB/Sec
ke o
1 KB/sec

GigaFlop

Scale.Process:mg Object Tracks
(passive cooling) 1 KB/sec

Little to no influence on the classification and tracking
algorithms in each ADAS sensor

Very low input data bandwidth and processing
requirements for fusion

DRAPER

HD Lidar Scans
RADAR (x5) I1&Q HD Images (x6) (64 beams)

nnnnn
ecrax1 [

Tera Flop / Fused
Scale Processing Object Tracks
(liquid cooling) 1 KB/sec

Very high input data bandwidth and processing
performance requirements

Optimized fusion across all sensor inputs within one core
set of algorithms
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Many (familiar) Challenges Remain

Brake, Turning, and
Traffic Signals

* Recognizing car signals
limited to nearest
neighbors

» Traffic lights must be
3D mapped

Pedestrians and Complex Traffic
* Recognizing pedestrians is 80%
(in good visibility)
* Prediction of intent for pedestrians
and cars is still rudimentary

Roadway, Lane

Detection & Weather

* Most (including Waymo)
still rely on HD maps of
all roads/lanes before
driving

« Growing, but still very
limited exposure to

Long Range Car &

Pedestrian Tracking

(km scale)

* Reliable car tracking is
limited to 200 m ranges

* Pedestrian tracking 100 m
in best visibility

inclement weather

" Self-driving efforts today are carefully selecting and

DRAPER
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mapping their environments to maximize reliability




Advanced Computing Requirements
for
Automated Driving



Ten-year gap predicted between Level 4 and Level 5 consumer deployment

1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045
| \ \ \
. | ‘ Development of assist features
Automated Driver (lane keep assist, pedestrian
Assistance Development, testing of ADAS features avoidance) Deployment of ADAS on all vehicle models
Systems (ADAS) Early deployment ADAS features (ABS, ESC) Deployment of ADAS on |
vehicle models
Level 5 - Full Driving Automation I l

Level 4 - Hig,, ~“iving Automation

Level 3 - Conditional Driving Automation
.
Vehicle l

tomaten |

i Expanded Idwide adoption of robotaxi
Development, testing and early P dend ot Worldwide adoption of robotaxis Road to market
deployments of partial automation :(')";:;‘i i':?::vme"ts - Eessiingshs and automated shuttles in mixed | saturation of
Development and testing of full automated traffic automated vehicles
Eamaton auto_mated shuttles shuttles inmixed
(dedicated lanes or traffic Global deployment of personal

First pilot deployments of eofenced areas !
automated sﬁuttles g ) automated vehicles Y

Preparation afnd Phase-in period for
P V2V on all new light

Crash Avoidance Metrics Partnership (CAMP) mandate on light duty duty vehicles (U.S.)
vehicles in the U.S.

Vehicle
Connectivit .
y V2l gradual Maturation of
U.S. Connected Vehicle | deployment - 20% Large scale V21 deployment - 80% U.S. V2X system
USDOT connected vehicle research Pilots - development of | intersections by 2025 intersections by 2040
v2i
NMS grow significantly in NMS ars wall NMS gain interest in rural areas
NMS adopted in urban areas urban areas and spreads in citablishedia Vehicle sharing models are largely adopted in urban areas
New MObllltY and some suburban areas suburban areas b and
: First concepts and pilots of new mobility services (NMS) Vehicle sharing models are a
o o suburban areas : o
Services New vehicle sharing models PR Vehicles for mobility on demand represent more than a quarter of

annual vehicle sales

appear ownership

1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045
13
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Advanced computing compromises more than just perception and logic

e —

AVEHICLEIS = - | =

TECHNOLOGY &

- '

Horsepower = Data-power

Byton Performance > Con neCUVIty
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Projected computing performance and power @’.:".n

HPC must meet CAV
size, weight, and power
constraints

~| petaflops
~|100W or less
~|0 TOPS/watt

O >100x
. compute performance automated driving
>10x less

power
~100 teraflops TOPS ==Trillion (tera) Operations
~1000 W
~0.1 TOPS/watt

Early prototype self-driving 15

https://www.wired.com/story/self-driving-cars-power-consumption-nvidia-chip/

CAV == Connected & Automated Vehicle




Projected computing performance and power @%

y :I;""‘ ¢ é’:"‘ ; 7 ,)9
g HPC must meet CAV ~1 petaflops
g size, weight. and n P ,NL
s ~<<_ A

Power requirements

Assume battery electric storage increases at most linearly

Reduce energy consumption from ~10% of battery to ~1% )

Power includes communication, cooling, and redundancy /5

Bounding target -- the human brain is a 30 W system driving

EIWWM /f//

——

~1000 W

— e ~0.1 TOPS/watt
Early prototype self-driving CAV == Connected & Automated Vehicle

https://www.wired.com/story/self-driving-cars-power-consumption-nvidia-chip/




Projected computing performance and power @

HPC must meet CAV

size, weisht and n ~1 P?EifloPS m““"””
e —laec :

Computing requirements

mmlllw

* Estimating computing operations per second to grow by at least an
order of magnitude in moving from Level 4 to Level 5 driving

* Advanced sensing results in > 10X increase in data, requiring ;)

similar increase in computing capability J/
4

_ Google TPU and Apple A11 are estimated ~ 1 TOPS/W at die level; __driving

i similar recent claims by Nvidia and Tesla >

Early prototype self-driving CAV == Connected & Automated Vehicle

https://www.wired.com/story/self-driving-cars-power-consumption-nvidia-chip/




Energy efficiency of computing and the need of CAV’s - a challenging problem @E.’..
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Computing Technology



Why now for computing industry? — convergence of four critical trends

Technology:
 End of Dennard scaling: power becomes the key constraint
 Slowdown in Moore’s Law evidenced by flattening of transistor cost takedown

Architectural:

* Limitation and inefficiencies in exploiting instructional level parallelism and in the
prevailing von-Neumann architecture

Applications:
e Shift from desktop of mobile and loT
* Ultra-scale cloud computing and artificial intelligence/machine learning workloads

Industry collaborations:
* End of International Technology Roadmap for Semiconductors (ITRS) roadmap
* Decline in SRC participation and the end of SEMATECH (absorbed in SUNY)



Evidence of Moore’s Law slowdown - scaling is in a crisis

CPU single core performance

End of
the

20 yrs
(3%lyr)

100000
10000
[=]
@
>
X 1000
N
g
o
g 10
m
3
$ RISC
| - 2X/15
yrs
(52%lyr)
1
480 1985 1990 1995 2000 2005 2010 2015
Intel CPU density roll-off
1E+07
=+=Transistor Density  <®=Moore's Law (1975 Version)
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1.E400
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1000

g

Megabits per DRAM

DRAM density roll-off

1.5x/year 1.4x/year  1l.1ix/year
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Namometers
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60 1

40 1

20 1

Transistor power takes off

==Technology (hm) “*~Power/nm"2

0

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Relative Power per nm~2



Digital accelerators will get us to ~ 1 TOPS/watt @E&.

e Tensor Processing Unit (TPU):
machine learning accelerator in use by
Google since 2015

e Core: matrix multiply unit

* Die level performance of 2.3 TeraOps/W

Apple A11: iPhone 8 and X main system on a
chip (SoC) processor
Estimated > 1 TeraOp/W, or < 1 pJ/op

sbbaane Shbddadidning

@5:.;.'...'.................7.. E.O\

o @ Yoere
2

233250900 0-)0
000'.... SRGsbes
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In the news...

Nvidia agrees with Tesla’s take on
self-driving cars, but corrects
specifics — Digital Trends, April 2019

“The Xavier processor features a
programmable CPU, GPU, and deep
learning accelerators, delivering

30 TOPs. We built a computer called
DRIVE AGX Pegasus based on a two-
chip solution, pairing Xavier with a
powerful GPU to deliver 160 TOPS,

Tesla’s new self-driving computer contains and then put two sets of them on the
the “best chip in the world,” according to computer, to deliver a total of
Elon Musk. Credit: Tesla, April 2019 320 TOPS”




New approach is needed to meet low-energy computing demand

40,000 petabytes a day*

10m connected cars by 2020

Front camera

Front ultrasonic sensors
20MB / sec

10kB / sec

Infrared camera

Front radar ' 20MB / sec
sensors ) . ]
100kB / sec Side ultrasonic
Sensors

100kB / sec

} Front, rear and
top-view cameras

4LOMB / sec
Crash sensors /

100kB / sec

Rear ultrasonic
cameras

Rear radar sensors 100kB / sec

100kB / sec

memory

<

processor

fundamental flaw: processing separate from
memory creates efficiency bottleneck

Energy Cost
From Camera Sonar Radar L_arge
Increased A% 2% LiDAR
Drag 0%
From 1o §mall
Added LiDAR
Weight >%
15% GPS_INS
2%
Maps
DSRC
8%
Structure
3%
Harness
0%

Gawron et. al. Environ. Sci. Technol. 52, 3249-3256 (2018)

analog processing

YV VY

YVVYY

logic and memory combined
to circumvent digital bottleneck
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Many unproven candidates yet to be investigated at scale

b Carbon
nanotubes
and
raphene

New models of
computation

/ Adabiatic
reversible

Dataflow

New devices and materials <

Reconfigurable
computing
Dark
silicon

©
BE
S
o]
. ®
o
=
. ®
)
-
W)
2ha)
o
. ®
o
o>
>
D =
N

New architectures and packaging

More Efficient Architectures and Packaging
The next 10 years after exascale
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Taking Action



National priorities, July 2018

EXECUTIVE OFFICE OF THE PRESIDENT v

|
WASHINGTON, D.C. '«“M}‘

July 31, 2018

M-18-22

MEMORANDUM FOR THE HEADS OF EXECUTIVE DEPARTMENTS AND AGENCIES

FROM: MICK MULVANEY
DIRECTOR, OFFICE OF MANAGEMENT AND BUDGET

MICHAEL KRATSIOS At —>—

DEPUTY ASSISTANT TO THE PRESIDENT
OFFICE OF SCIENCE AND TECHNOLOGY POLICY

SUBJECT:  FY 2020 Administration Research and Development Budget Priorities

“Agencies should prioritize investment
in research and infrastructure to
maintain U.S. leadership in strategic
computing, from edge devices to
high-performance computing, that
accelerates delivery of low power,
high performance devices; supports a
national high-performance computing
ecosystem; and explores novel
pathways to advance computing in a
post-Moore's Law era”.

28



Semiconductor Industry Association policy recommendations, April 2019

A Blueprint for Sustained
U.S. Leadership in
Semiconductor Technology

April 2019

SEMICONDUCTOR
BN 5

“Semiconductors — the tiny chips that enable modern
technologies — are critical to America’s economy, job
creation, technology leadership, and national security. For
50 years, America has led the world in semiconductor
innovation, driving transformative advances in nearly every
modern technology, from computers to mobile phones to
the Internet itself. Today, semiconductors underpin the most
exciting “must-win” technologies of the future, including
artificial intelligence to power self-driving cars and other
autonomous systems, quantum computing to analyze huge
volumes of data and enhance digital encryption, and
advanced wireless networks to seamlessly connect people
at unprecedented speeds and security.

To secure America’s leadership in these future technologies
for the next 50 years, the United States must continue

to lead the world in semiconductor research, design, and
manufacturing.”



BES/ASCR/HEP Basic Research Needs for Microelectronics Workshop, October 2018

Basic Research Needs for

Microelectronics

Discovery science to revolutionize microelectronics
beyond today’s roadmaps

Call To Action

Significant challenges as CMOS extends below 5nm
The end to Moore’s Law will impact U.S. industry and competitiveness

The importance of this issue and its technical complication will require
innovative approaches to keep the U.S. in a leadership position

Solving a problem of this scale will require “whole of government”
approach and a robust public/private partnership to apply the best
research from industry, academia and government research facilities to
allow the U.S. to successfully make this technology transition

DOE, and particularly the Office of Science, will play a significant
role in this effort

DOE-SC was charged with organizing a Basic Research Needs
Workshop to define the highest priority research directions

U.5. DEPARTMENT OF (:}fﬁce Qf 30
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Principles of co-desigh underpin five priority research directions

Algorithms and programming paradigms
System architecture design and modeling
Interconnects and component integration

Devices and circuits

Physics of logic, memory, and transport

Muitiscale Co-Design Framework

Fundamental materials science and chemistry

BES/ASCR/HEP Basic Research Needs for Microelectronics Workshop, October 2018



Multiscale co-design approach - a collaborative approach to meet the urgent need

. Deve.lop.an “end-to—er.md” co-design framework Applications
» Applications < Algorithms «— System SW «— System HW

Stacked PIMS B, C,
D,E,F,G,H,IJ

PIMS 3D storage
layers Al A1oo
nfigurati

* Novel Interconnect Networks
» Disaggregated memory

* Heterogeneous Integration

. STT circuit Accelera

+ Single-electron Charge Logic
*  Photonic Interconnect

Centerfor
Nanoscale
Materials

Universal

/ I ﬁ k l 2 Charge
v g%:flgtor
Materials “tie i e

Ab Initio Models

BES/ASCR/HEP Basic Research Needs for Microelectronics Workshop, October 2018
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Validating the need with industry

Will fully automated vehicles be viable with
conventional computing approaches, or will
they require a step-change in computing?

What are the energy requirements to support
on-board sensing and computing for fully
automated vehicles?

What advanced computing approaches could
reduce the energy requirements for fully
automated vehicles while meeting their
computational requirements?

U.S. DEPARTMENT OF ENERGY  OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

WORKSHOP ON ADVANCED COMPUTING FOR
CONNECTED & AUTOMATED VEHICLES

Dete: May 7, 2005

Eu-mnﬂlr—udd - I m'qul.—— T
Larrarory ir: Bariskey, Cailineis

Thin. -y B TSI W
.—hwudlrlimﬂ_h__u Crmn, e
oL ey e e Tk T ereiien ‘nw
q:-hlr.llmm BT TR e

TN BETTRTTRE W AT S m-l.nlr.ﬂl-
witicsl misnirrs. mhadng:

= Wi i aeesing med Comguing ok becnres el fuly
AT R RRTE NS Fe FLEN @iy ol TEs
TSRO, TR
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Summary

* Technology is available to get to Level 4 driving, but there appears to be
a significant gap to achieve full Level 5

* We estimate that 10 TOPS/watt (minimum) should be a target computing
performance goal for Level 5 driving

 There appears to be a credible path to ~ 1 TOPS/watt

 Beyond 1 TOPS/watt requires new computing architectures and
microelectronic devices

 There is a role for EERE offices to advance fundamental developments
in materials, device physics, and algorithm from TRL 1 up through TRL 4
* manufacturing

* devices and prototypes -



Backups

Examples of microelectronics devices

Automated driving safety
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Evolution of Computing Machinery

Energy per Mathematical Computation

100 J —

100 pJ—
10 pJ™—
1 udJ—
100 nJ—

>

10 nd—T—

1 nd—
100 pJ—
10 pJ—

Google TPU -o

Dennard
Scaling Era

1 pJ—

100 fJ——

10 fJ

_|_I ete rog e n eo u S Special Purpose

Today’s Best Systems

ntegrated Memon

e

D
/0
6}}0 “

Accelerato

Integration Era rmmm s

P €Ssimistijc

1fJ—
100 aJ—
10 aJ_

1aJ

ey

L 4

New paradigms:

Neuromorphic, analogysy
quantum, reversible

con?puting |

%

%

1946 11980

1990 2000 2010 NOW 2025

|
2035
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Why should we continue these gains?

* Google Deep Learning Study
— 16000 core, 1000 machine GPU cluster
— Trained on 10 million 200 x 200 pixel images
— Training required 3 days
— Training dataset size: no larger than what can be
trained in 1 week
 What would they like to do?
— ~2 billion photos uploaded to internet per day (2014)
— Can we train a deep net on one day of image data?
— Assume 1000 x 1000 nominal image size, linear scaling
(both assumptions are unrealistically optimistic)
— Requires 5 ZettalPS to train in 3 days
(ZettalPS = 1021 IPS; ~5 billion modern GPU cores)
— World doesn’t produce enough power for this!
— Data is increasing exponentially with time
* Need >1016- 1018instruction-per-second on one IC
— Less than 10 fJ per instruction energy budget

Feature 2

Feature 3

Feature 4 § s

Feature 5

Feature 6 §

Input to another layer above
(image with 8 channels)

Image Size = 200

Q. Le, IEEE ICASSP 2013 37



Artificial neural networks and deep learning (example)

Computers.are fast and gfficient at Computers struggle when there are
implementing task-specific no clear instructions for the task
instructions
Which one of these images is a cat?
dx o
ac ~*
x=1;
dt = 0.01;
fori=1:1000 {
dxdt = x."2;
xnew = dt*dxdt; - ¢
X = Xnew; } Image recognition

end Autonomous driving
Natural language processing

Artificial neural networks: use training examples and error backpropagation to find the
matrix weights that correctly maps the input x onto the desired output y

Bl B B Bididhow Dagoe 2 Biibibon laee B8

V1 W11 W1 n ‘ l ‘ :
Ym Wmi = Wmn 3 -
Artificial neural networks are power intensive

Andrew Ng, Coursera / 3 o
Nawrocki et al. IEEE Elec. Dev. 2016 n, m> 1000 synapse N neuron 38

(weight: number in DRAM)




Excess power limits IC performance

(example)

% \  evgotokT

101
108- :
e
o°°°
108- °
° ]
[
104 - »®
g0 0000 ¢
Transistors per chip e .q
L ]
102- °
o ©
o ©
1- ° o Waldrop, Nature 530, 145,2016
[ ]
Clock speeds (MHz)
1024 T T T |
1960 1974 1988 2002 2016
Year
A o~
Y
Ml[\)/y Bridge (9
100 Pentium 4
POWER 5 \ re 2 Duo
POWER 4 \¢ tanium 2
AMD K7 N 'OWER 6
QWER 7
POWER3 .\— “entium M
Itanium 2-DC
10 .Penﬁu%elr'\tium m
= e |L_AMD ke
5 | Mg~
2 ® Pentium
3 4004 ® 80386
2 1
g 7/
Q Vg
)
= 7
S o1 7/
7
7 Merolla, P. A. et al. Science

0.01 */Brain 345, 668-673 (2014)

10" 10° 10®° 10* 10° 10° 10" 10° 10°
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39



Digital vs analog implementations of neural networks

(example)

V1 W11

Ym W1

Von Neumann Digital
Separate logic and memory structures

SRAM to store the weights Arithmetic logic unit
for multiplication

BatalBus >l

4
viv
4
X

Uses established CMOS technology
Data bus results in latency and power

Tt g

Tt Baper 4 Bfelchon Bepow 2 Bibdden leper 8

In-memory Parallel Analog
Use non-volatile memory

Crossbar for matrix

Conductance of each

multiplication element can be changed in

a predictable manner

L

11
» Wy %% Wr3
v, = 22 2
3 w?q wz’1 w??‘
¥ 3 3

I, I;

ly = ViWyy + VoW + VoW

Simultaneous logic and memory
3 orders of magnitude less power

M. Marinella, IEEE Circuits and Systems, 8, 86-101, 2018
Zidan, Strachan, & Lu, Nat. Elec. 1, 22, 2018
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Overcome CMOS bottleneck 2 in-memory computation

(example)

To beat ASICs, GPUs:

* scalable: analog signals must reach edge of 1,000 x 1,000 matrix
(R>100 MQ)

*  “blind writes” with linear and symmetric programmability

* accurate: matrix operations must have CMOS equivalent accuracy

* low variation, degradation: must cycle > billion times without
changes

NEEVA)
o Y 5
YTy

sigmoid(1) z;[ LC.L T—LI
Y[ [ 01 11 -1 [ 1 =1

vector-matrix multiply (inference)

6=1.0 \ =0.0

X°°§3§9@

xaf/w
87870 =

outer product (learning)
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A novel material approach to neuromorphic computing

Two-terminal memristive approach

- wieeE s T, e e e = ~ =
/7 N
non linear, asymmetric => limited accuracy

1@@ 1 | | S I i |
- gol| performance gap |
o
[
8 g o -*
3| S 40
20 — Exp. Derived |
. . . . — Ideal Numeric
0 1,000 2,500 0

0 510152025303540
Training Epoch
Jacobs-Gedrim et al, 2018

weight update

circuit parasitics => limit array sizes & efficient

Memristor G

* impedance ~10k requires CMOS
transistor, large wires (>10um!!!)

*  Unable to support >100x100
arrays needed to beat ASICs

* Large programming currents inhibit
training parallelism, devices are
programmed element-by-element

\

Isp (nA)

Novel approach: ion-insertion memory

Ve

— e o o o o - e E— o e o . -,

~
PR electron - gate reservoir
|
o[ To[ To[ Jo[ o ~
ol |0 |0] [O lon +
N of [of fof [N
: 1
solid electrolytev
o o] (o (O] 10
T o[ [o
ol |0] |o] |0 |O drai
source [5) [3) [3) o) rain

channel host /
ion insertion =2 modulate resistance

linear, symmetric low current/voltage

* <10 nA read/write current
* equivalent CMOS accuracy

*  fully-parallel training

s
1 1 1 1 A
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lon-insertion devices can reach < 1 fJ / MAC**

nature .
materials

LETTERS

PUBLISHED ONLINE: 20 FEBRUARY 2017 | DOI: 10.1038/NMAT4856

A non-volatile organic electrochemical device as a

low-voltage artificial synapse for neuromorphic

computing

Yoeri van de Burgt'¥, Ewout Lubberman'?, Elliot J. Fuller?, Scott T. Keene', Grégorio C. Faria'*,

Sapan Agarwal®, Matthew J. Marinella®, A. Alec Talin** and Alberto Salleo™

10° 107 10°

10° 40° 10° 107

Area (mm)

** gee slide # 18 for perspective on energy performance (1 fJ = 1015 ))

e

Area (mm2)

0

102

binary selector enables parallel programming
I

binary select

—"-
lingar write

low-valtage write :
no-disturt read

Performance demonstrated

e <1fJ/MAC
> 10 year retention
* Vorogram<1OKT/q

* 1 GHz switching rate
e 102 endurance
« 100 M) impedance

(not achievable with pure electronic memory,
l.e. FLASH)
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Deep learning networks can efficiently adapt to existing neuromorphic platforms @’.:".n

Training

’--------~
Whetstone / Keras
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Training deep neural networks for binary
communication with the Whetstone method

WilliamSevera®*, Craig M. Vineyard @, RyanDellana®, StephenJ. Verzi® and JamesB. Aimone®*

process, the activation function at each layer is pi d towards a tt

Tlle :omputatlonal cos! of deep neural ks p! to broadly ing these L PO and
p offer i per Pt over traditional proces-
sors. However, ing these brain-inspired platforms Ily requires platform speclﬁc expertise. It is therefore dif-

ficult to achieve state-of-the-art performance on these platforms, limiting their applicability. Here we present Whetstone, a
method to bridge this gap by converting deep neural networks to have discrete, binary communlcatlon During the training

ion, with limited loss in

architectures and tasks such as image cl;

and
mented within the Keras wrapper for TensorFlow and is widely extendable

performance. Whetstone sharpened networks do not require a rate code or other spike-based coding scheme, thus producing
networks comparable in timing and size to conventional artifi cial neural networks. We demonslrate Whetstone on a number of
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Automakers Are Betting Big on Consumer Demand

“... although consumers agree safety-related
technology is the most important feature in
cars, people don't want to pay more for it.” —
Business Insider, 2017

“Driver Assistance” features for emergency braking

(frontal only), and traffic jam cruise control are very

popular with consumers, but can only add ~ $1K to
the price

DRAPER

“... we find that the average household is willing
to pay a significant amount for automation: about
$3500 for partial automation and $4900 for full
automation.” — Daziano, 2017

Consumers are excited about “hands off” commutes
to work, but only if the self-driving is “safe”, and only
for a limited price increase vs. normal cars

45
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Safety of Self-Driving Today is Measured in Miles ...

But should it be?

sM &

T Google/Waymo has — by a factor 10+ — the most
~@ ‘“experienced” self-driving system with over $1 Billion* spent

JUNE 2018

6M
APRIL 2018 ¥
v

Only a Highway Self-Driving System (so far)...

Cruise reported 141K miles Tesla Autopilot Miles @lextridman MiT
in CA for 2016-2017

1,600,000,000

1,400,000,000 v
1,200,000,000 A
Total Autopilot Miles:

© 1,000,000,000 - 1’484’223’383 TESLA
= Date: 2018-09-30
© 800,000,000 4
o
g 600,000,000 A A T O
< 901,743,789
> 400,000,000 s
8 90009000+ https://jalopqik.com/gm-cryisq-prepping- 200:000:0001
MILES AND COUNTING launch-of-driverless-car-pilot-in-sa- 0 : . ;
1826571157 2015 2016 2017 2018 2019
https://waymo.com/ontheroad/
= (11 ”
All groups tout their systems as “safe”, and (someday)
*https://spectrum.ieee.org/cars-that-think/transportation/self- . s I
driving/google-has-spent-over-11-billion-on-selfdriving-tech Wll | red uce | nj uries a nd deaths on the road
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But Humans Drive Much More!

Oort Cloud |

AC +79 3888

Neptune

Uranus
- Termination Shock

* Venus
* Earth
Mars
% Jupiter
= —== Heliopause
® a-Centauri

o ¥ Saturn
®
|

100 1,000 10000 | 100000 1,000,000

NALE 55 o':?’ N | o N R
® 1 Injury Every 1 Million Miles Drive

. Humans Drove for 99
3.17 TRILLION Miles Driven - = 34,150AU &=\ Billion Hours in 2016

Heliosphere Interstellar Space‘

2016 United Stafe‘s Department of Transportation Data
: All miles driven by 288 Million- Humans!

https://photojournal.jpl.nasa.gov/catalog/PIA17046 Copyright 2016 by Charles Stark Draper Laboratory, Inc. All Rights Reserved



What is the safety

How Should We Measure Safety? G riving care?

e o — 10X Better Than
12 T— g Human?

(EISt!matgd) 100X Better Than
njure Human?

And who sets that
Requirement?

My nephew has
“accidents” 1 or more
times an hour, they are
mitigated by diapers
and cuteness

*2006-2015

SIH v.8
SIH 000°2¢

1000 10,000 100,000 1 Million 10 Million 100 Million 1 Billion

Mean Time Between Failure, MTBF (Hours)

Frequent . Reasonably Probable Remote . Extremely Remote
i ! Copyright 2016 by Charles Stark Draper Laboratory, Inc. All Rights Reserved



