7602 eopicorfriy

Unclassified Unlimited Release

D. Sunderland, N. Ellingwood, D. Ibanez, S. Bova,
J. Miles, D. Hollman, V. Dang

Christian R. Trott, - Center for Computing Research
Sandia National Laboratories/NM

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

= Kokkos EcoSystem e

Science and Engineering Applications |

Trilinos

Kokkos EcoSystem

Kokkos Kernels

K

okkos Core

[Kokkos Remote Spaces

” Kokkos Development Team e

-
= kokkos
ﬁgAlamos Argonne Vs ﬁg?igir?al %OAK RIDGE \‘0‘0 CSCS

NATIONAL LABORATORY NATIONAL LABORATORY laboratories National Laboratory AN

EST.1943

= Dedicated team with a number of staff working most of their time on Kokkos
= Main development team at Sandia in CCR — Sandia Apps are customers

Kokkos Core: C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang, Mikael Simberg
soon: H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin
former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova

Kokkos Kernels: S. Rajamanickam, N. Ellingwood, K. Kim, C.R. Trott, V. Dang, L. Berger, J. Wilke, W. McLendon
Kokkos Tools: S. Hammond, C.R. Trott, D. Ibanez, S. Moore
Kokkos Support: C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff,

former: H.C. Edwards, D. Labreche, Fernanda Foertter

” Some Kokkos Stats Since 2015 TR

= 17 Releases Since 2016

= Only 4 since December 2017
50 Contributors

= 17 with more than 10 commits

= 11 with more than 10k lines touched

1345 Issues of which 1134 were resolved
= 305 bug reports
= 381 enhancement requests
= 129 Feature Requests

766 pull requests

15k messages on kokkosteam.slack.com (Started in 2017)

~ Kokkos Core Capabilities e

Comeept ___[Bemple

Parallel Loops parallel_for(N, KOKKOS_LAMBDA (inti){...BODY...});
Parallel Reduction parallel_reduce(RangePolicy<ExecSpace>(0,N), KOKKOS_LAMBDA (int i, double& upd) {
...BODY...
upd += ...
}, Sum<>(result));
Tightly Nested parallel_for(MDRangePolicy<Rank<3> > ({0,0,0},{N1,N2,N3},{T1,T2,T3},
Loops KOKKOS_LAMBDA (inti, intj, int k) {...BODY...});

Non-Tightly Nested parallel_for(TeamPolicy<Schedule<Dynamic>>(N, TS), KOKKOS_LAMBDA (Team team) {
Loops ... COMMON CODE 1 ...

parallel_for(TeamThreadRange(team, M(N)), [&] (intj) { ... INNER BODY... });

... COMMON CODE 2 ...

N

Task Dag task_spawn(TaskTeam(scheduler, priority), KOKKOS_LAMBDA (Team team){ ... BODY });
Data Allocation View<double**, Layout, MemSpace> a(“A”,N,M);
Data Transfer deep_copy(a,b);
Atomics atomic_add(&a(i],5.0); View<double*,MemoryTraits<AtomicAccess>> a(); a(i)+=5.0;
Exec Spaces Serial, Threads, OpenMP, Cuda, HPX (experimental), ROCm (experimental)
— =

” TeamVectorRange i

= Fix situations with mix of 2-level and 3-level hierarchical parallelism
= Now in develop!

parallel_for("Biakernel". TeamPolicy<>(N,AUTO,8) KOKKOS_LAMBDA (const team_t& team) {
parallel_for(TeamvectorRange (team,™m), [&] (const int j) {
// Fill Bufrer

B;

ol

parallel_for(TeamThreadrRange(team,M), [&](const int j) {
e
parallel_for(ThreadvectorRange(team,K), [&] (const int k) {

% u s

i
e

D

¥);

= HPX Backend .

= HPX (LSU/CSCS implementation) is a task based programming model in C++
= Completely Ascynchronous
= Tries to align with C++ standard interface wise

= Goal: production use by end of FY19
= CSCS will maintain this

= Benefits for general Kokkos users:

= First asynchronous Host backend
= Find synchronization issues in your code

= Much easier to align with future directions of Kokkos

= Configuration / Runtime Management g

= Environment Variables: KOKKOS NUM_THREADS=int, KOKKOS_ NUMA=int,
KOKKOS_DEVICE ID=int, KOKKOS NUM_DEVICES=int, KOKKOS_ SKIP DEVICE=int,
KOKKOS_DISABLE_WARNINGS=bool

= hpcbind: command line tool to partition node, set environment variables,
visible gpus, and control stdout and mpi output files (see hpcbind --help)

= Example: launch 16 jobs over 4 nodes with 4 jobs per and save output
mpiexec -N 16 -npernode 4 hpcbind --whole-system
--distribute=4 --output-prefix=out -- executable [args]

= C++14/17/2a support

= Backend support is compiler dependent (for example Cuda does not
support C++17/2a)

~ Reducers =

= Common Reduction types are now provided by Kokkos:

Sum, Prod, Min, Max, Land, Lor, Band, Bor, VallocScalar, MinlLoc,
MaxLoc, MinMaxScalar, MinMax, MinMaxLocScalar, MinMaxLoc

= Example:
View<double*> v(“view”, N);

double sum = ©;

parallel reduce(n, [=](int i, double &value) {
value += v[i];

}, Sum<double>(sum));

~ Asynchronicity Semantics W

ParallelReduce/Scan 2 Dot Products
double result;

// parallel_for is always Synchronous N=100k
parallel_for("AsynchronousFor",N,F); 50
// parallel_reduce with Scalar as result is Synchronous

parallel_reduce("SynchronousSum"”,N,Fr,result); 2
// parallel_reduce with Reducer constructed from scalar is synchronous 40
parallel_reduce("Synchronousmax",N,Fr,Max<double>(result)); 35
// parallel_reduce with any type of view as result is asynchronous %)
— : oy . S5 30
Kokkos: :view<double,CudaHostPinnedSpace> result_v('R"); =
parallel_reduce("AsynchronousSum",N,Fr,result_v); o 29
// Even with unmanaged view, and wrapped into Reducer £ 20
Kokkos: :view<double,HostSpace> result_hv(&result); =
parallel_reduce("Asynchronousmax" ,N,Fr,Max<double>(result_hv)); 15
// Scans without total result argument are asynchronous 10
parallel_scan("AsynchronousScan",N,Fs); 5
// Scans with total result argument same rules as parallel_reduce 3

parallel_scan("SynchronousScanTotal",N,Fs,result);
m Scalar mView

” CUDA Stream Interop B

= |nitial step to full coarse grained tasking
= Discuss in more detail in future directions
= For now: make Kokkos dispatch use user CUDA streams
= Allows for overlapping kernels: best for large work per iteration, low count

// Create two Cuda instances from streams
cudaStream_t streaml,stream?;
cudaStreamCreate(&streaml) ;
cudaStreamCreate(&stream?2) ;

Kokkos::Cuda cudal(streaml), cuda2(stream?2);

// Run two kernels which can overlap
parallel_for("F1",RangePolicy<Kokkos: :Cuda>(cudal,N),Fl);
parallel_for("F2",RangePolicy<Kokkos: :Cuda>(cuda2,N),F2);
fence();

” MDRangePolicy W

= Multi-index for parallel kernels of tightly nested loops

= Only supported for parallel for/parallel reduce
Ex: parallel for(MDRangePolicy<Rank<3>,..>(..), [=](i, j, k) {..});

= (Can parallelize over all the dimensions of the loop
= Allows tiled iteration patterns for improved cache/warp memory access

.. UniqueToken =
= Generates a unique ordinal based on the concurrency of the ExecutionSpace

= Can be used to index into resources that are restricted by the amount of
concurrency available

= Ordinals can be local to a single kernel instance or global across all kernels
= Threads first acquire a token and then release it afterwards
= For the best performance
= Tokens should be acquired/released in as narrow of scope as possible, and

= Tokens should be released before calling a team_barrier or similar
construct

TView Improvement o=

= LayoutTiled: Data is contiguous over tiles, i.e, multi-dimensional bricks
Tiled dimensions must be powers of two
= Anonymous Memory Space: Allows views to assume that they can always
access the memory
= The user is responsible for ensuring that the view only accesses data when
on a devices that can dereference the underlying pointer

= Can reduce the number of template parameter needed for a kernel

= Can reduce the number of symbols created during compile time

” Kokkos Containers e

= DualView: Allocate and manage a view on both the host and device. Added
non-templated sync functions sync_host() and sync_device().

= OffsetView: Allows views indices to start at non-zero values
= ErrorReporter: Count number of errors and report the first n messages

= StaticCrsGraph: Compressed row storage data structure
The storage structure is static after construction

= UnorderedMap: Performance portable hash_map/hash_set

L Containers: ScatterView e

= Encapsulates common design pattern in reduction algorithms using either data
duplication and/or atomics
= Data duplication is often faster on the host, but too memory expensive on
GPUs.
= Atomics are faster on GPUs, but extremely slow on the host

ScatterView<Datatype
[, Layout, ExecSpace, ReduceOp, DupMode, ContribMode]
>
ReduceOp: ScatterSum, ScatterProd, ScatterMax, ScatterMin
DupMode: ScatterNonDuplicated, ScatterDuplicated
ContribMode: ScatterNonAtomic, ScatterAtomic

= Containers: ScatterView (cont’d) B

ScatterView<double, LayoutRight, Cuda, ScatterSum, ..> sv(..);
View<double, LayoutRight, Cuda> v(..);

parallel for(n, [=](int i){
auto scatter _access = sv.access();
int k = foo(i);
double x = bar(x);
scatter_access(k) += x;

})s

contribute(v, sv);

= Kokkos Remote Spaces: PGAS Support @

= PGAS Models may become more viable for HPC with both changes in network
architectures and the emergence of “super-node” architectures

* Example DGX2 VIO V100 Vi00 V100 Vieo Vioo vioo V100

= First “super-node”
= 300GB/s per GPU link

» |dea: Add new memory spaces which return data handles with shmem semantics
to Kokkos View

» View<double**[3], LayoutLeft, NVShmemSpace> a(“A”,N,M);

—_— . template<>
- Operator a(i,3,k) returns: struct NVShmemElement<double> {

NVShmemElement (int pe_, double* ptr_):pe(pe_),ptr(ptr_) {}

int pe; double* ptr;

void operator = (double val) { shmem_double p(ptr,val,pe); }
};

L PGAS Performance Evaluation: miniFE @E.

= Test Problem: CG-Solve CGSolve Performance
= Using the miniFE problem N*3 6000
= Compare to optimized CUDA 5000
= MPI version is using overlapping .
= DGX2 4 GPU workstation 2. 4000
= Dominated by SpMV (Sparse Matrix -g, 3000
Vector Multiply) 3
= Make Vector distributed, and store = 2000
global indicies in Matrix =
. 1000
= 3 Variants
= Full use of SHMEM 0
= Inline functions by ptr mapping
" Store 16 ppinter§ in the View m VP m SHMEM
= Explicit by-rank indexing
= Make vector 2D 8B SHMEM-Inline ® SHMEM-Index

= Encode rank in column index

Warning: | don’t think this is a viable thing in the next couple years for most of our apps!!

