
Unclassified Unlimited Release

D. Sunderland, N. Ellingwood, D. Ibanez, S. Bova,

J. Miles, D. Hollman, V. Dang

(1)1iWir

Kokkos Status 2019

Christian R. Trott, - Center for Computing Research

Sandia National Laboratories/NM

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energys National Nuclear Security Administration under contract DE-NA-0003525.

SAND2019-3723 PE

SAND2019-4547PE

Kokkos EcoSystem

Kokkos
Tools

Debugging

Profiling

Tuning
A

Science and Engineering Applications

Kokkos EcoSysiem

Kokkos Kernels

Linear Algebra Kernels Graph Kernels

Kokkos Corc
Parallel

Execution r Parallcl Data
Structures

Kokkos
Support

Documentalion

Tulorials

Booicamps

App support

Kokkos Remote Spaces

PGAS 10

MuitACore Maw-Core APU

49

ui

au + GPU

: Kokkos Development Team

: kokkos
r: Sandia OAKt RIDGE 4 cscsLosAlamos Argonne I nil National

NATIONAL LABORATORY \Na

 EST 1943
NATIONAL t ACCRA-OR Laboratories National Laboratory

• Dedicated team with a number of staff working most of their time on Kokkos

• Main development team at Sandia in CCR — Sandia Apps are customers

Kokkos Core:

Kokkos Kernels:

Kokkos Tools:

Kokkos Support:

C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang, Mikael Simberg

soon: H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin

former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova

S. Rajamanickam, N. Ellingwood, K. Kim, C.R. Trott, V. Dang, L. Berger, J. Wilke, W. McLendon

S. Hammond, C.R. Trott, D. Ibanez, S. Moore

C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff,

former: H.C. Edwards, D. Labreche, Fernanda Foertter

:Some Kokkos Stats Since 2015 =
• 17 Releases Since 2016

• Only 4 since December 2017

• 50 Contributors

• 17 with more than 10 commits

• 11 with more than 10k lines touched

• 1345 Issues of which 1134 were resolved

• 305 bug reports

• 381 enhancement requests

• 129 Feature Requests

• 766 pull requests

• 15k messages on kokkosteam.slack.com (Started in 2017)

Kokkos Core Capabilities
ncept

Parallel Loops parallel_for(N, KOKKOS_LAMBDA (int i) { ...BODY... });

Parallel Reduction parallel_reduce(RangePolicy<ExecSpace>(0,N), KOKKOS_LAMBDA (int i, double& upd) {
...BODY...
upd +=
Sum<>(result));

Tightly Nested
Loops

parallel_for(MDRangePolicy<Rank<3> > ({0,0,0},{N1,N2,N3},{T1,T2,T3},
KOKKOS_LAMBDA (int i, int j, int k) {...BODY...});

Non-Tightly Nested
Loops

Task Dag

parallel_for(TeamPolicy<Schedule<Dynamic>>(N, TS), KOKKOS_LAMBDA (Team team) {
... COMMON CODE 1 ...
parallel_for(TeamThreadRange(team, M(N)), [&] (int j) { ... INNER BODY... });
... COMMON CODE 2 ...

});

task_spawn(TaskTeam(scheduler , priority), KOKKOS_LAMBDA (Team team) { ... BODY });

Data Allocation View<double", Layout, MemSpace> a("A",N,M);

Data Transfer deep_copy(a,b);

Atomics

Exec Spaces

atomic_add(&a[i],5.0); View<double*,MemoryTraits<AtomicAccess» a(); a(i)+=5.0;

Serial, Threads, OpenMP, Cuda, HPX (experimental), ROCm (experimental)

.TeamvectorRange =

• Fix situations with mix of 2-level and 3-level hierarchical parallelism

• Now in develop!

parallel_for("Biakernel . TeamPolicy<>(N,Atiro,) KOKKOS_LAMBDA (
parallel_for(TeamvectorRange (team,M), [&] (.onst -int j) {
// Fi l 1 Bufter

});
//...
parallel_for(TeamThreadRange(team,M), [&](const int j) {
//
parallel_for(ThreadvectorRange(team,K), [&] (const int k) {
//...

});
//...

});
});

team_t& team) {

,, HPX Backend =

• HPX (LSU/CSCS implementation) is a task based programming model in C++

• Completely Ascynchronous

• Tries to align with C++ standard interface wise

• Goal: production use by end of FY19

• CSCS will maintain this

• Benefits for general Kokkos users:

• First asynchronous Host backend

Find synchronization issues in your code

• Much easier to align with future directions of Kokkos

:Configuration / Runtime Management =

• Environment Variables: KOKKOS NUM THREADS=int, KOKKOS NUMA=int,
KOKKOS DEVICE ID=int, KOKKOS NUM DEVICES=int, KOKKOS SKIP DEVICE=int,

KOKKOS DISABLE WARNINGS=booL

• hpcbind: command line tool to partition node, set environment variables,
visible gpus, and control stdout and mpi output files (see hpcbind - -help)

• Example: launch 16 jobs over 4 nodes with 4 jobs per and save output
mpiexec -N 16 -npernode 4 hpcbind --whole-system
--distribute=4 --output-prefix=out -- executable [args]

• C++14/17/2a support

• Backend support is compiler dependent (for example Cuda does not
support C++17/2a)

: Reducers =

• Common Reduction types are now provided by Kokkos:
Sum, Prod, Min, Max, Land, Lor, Band, Bor, VallocScalar, MinLoc,

MaxLoc, MinMaxScalar, MinMax, MinMaxLocScalar, MinMaxLoc

• Example:
View<double*> v("view", N);

•••

double sum = 0;

parallel_reduce(n, [=](int i, double &value) {
value += v[i];

}, Sum<double>(sum));

pw Asynchronicity Semanticsha

• ParallelReduce/Scan
double result;
// parallel_for is always synchronous N=1 00k

2 Dot Products

parallel_for("AsynchronousFor",N,F); 50
// parallel_reduce with Scalar as result is synchronous
parallel_reduce("synchronoussum",N,Fr,result);

45

// parallel_reduce with Reducer constructed from scalar is synchronous 40

parallel_reduce("synchronousmax",N,Fr,max<double>(result)); 35
// parallel_reduce with any type of view as result is asynchronous cn
Kokkos::view<double,cudaHostRinnedspace> result_v("R"); c

30

parallel_reduce("Asynchronoussum",N,Fr,result_v); '— 250
// Even with unmanaged view, and wrapped into Reducer E 20
Kokkos::view<double,Hostspace> result_hv(&result); H

parallel_reduce("Asynchronousmax",N,Fr,max<double>(result_hv)); 15

// scans without total result argument are asynchronous 10
parallel_scan("Asynchronousscan",N,Fs); 5
// scans with total result argument same rules as parallel_reduce
parallel_scan("synchronousscanTotal",N,Fs,result); 0

• Scalar • View

: CUDA Stream lnterop =

• Initial step to full coarse grained tasking

• Discuss in more detail in future directions

• For now: make Kokkos dispatch use user CUDA streams

• Allows for overlapping kernels: best for large work per iteration, low count

// create two cuda instances from streams
cudastream_t streaml,stream2;
cudastreamcreate(&streaml);
cudastreamcreate(&stream2);
kokkos::cuda cudal(streaml), cuda2(stream2);

// Run two kernels which can overlap
para11e1_for("F1",RangePolicy<kokkos::cuda>(cudal,N),F1);
para11e1_for(T2",RangePolicy<kokkos::cuda>(cuda2,N),F2);
fence();

: MDRangePolicy =

• Multi-index for parallel kernels of tightly nested loops

• Only supported for parallel_for/parallel_reduce

Ex: parallel_for(MDRangePolicy<Rank<3>,...>(...),

• Can parallelize over all the dimensions of the loop

• Allows tiled iteration patterns for improved cache/warp memory access

[=](i, j, k) f -1);

: UniqueToken =

• Generates a unique ordinal based on the concurrency of the ExecutionSpace

• Can be used to index into resources that are restricted by the amount of
concurrency available

• Ordinals can be local to a single kernel instance or global across all kernels

• Threads first acquire a token and then release it afterwards

• For the best performance

• Tokens should be acquired/released in as narrow of scope as possible, and

• Tokens should be released before calling a team_barrier or similar
construct

:View Improvement =

• LayoutTiled: Data is contiguous over tiles, i.e, multi-dimensional bricks
Tiled dimensions must be powers of two

• Anonymous Memory Space: Allows views to assume that they can always
access the memory

• The user is responsible for ensuring that the view only accesses data when
on a devices that can dereference the underlying pointer

• Can reduce the number of template parameter needed for a kernel

• Can reduce the number of symbols created during compile time

: Kokkos Containers =

• DualView: Allocate and manage a view on both the host and device. Added
non-templated sync functions sync_host 0 and sync_device0 .

• OffsetView: Allows views indices to start at non-zero values

• ErrorReporter: Count number of errors and report the first n messages

• StaticCrsGraph: Compressed row storage data structure
The storage structure is static after construction

• UnorderedMap: Performance portable hash_map/hash_set

: Containers: ScatterView =

• Encapsulates common design pattern in reduction algorithms using either data
duplication and/or atomics

• Data duplication is often faster on the host, but too memory expensive on
GPUs.

• Atomics are faster on GPUs, but extremely slow on the host

ScatterView<Datatype

[, Layout, ExecSpace, Reduce0p, DupMode, ContribMode]

>

ReduceOp: ScatterSum, ScatterProd, ScatterMax, ScatterMin

DupMode: ScatterNonDuplicated, ScatterDuplicated

ContribMode: ScatterNonAtomic, ScatterAtomic

: Containers: ScatterView (cont'd) =

ScatterViewdouble, LayoutRight, Cuda, ScatterSum, ...> sv(...);

Viewdouble, LayoutRight, Cuda> v(...);

parallel_for(n, [=](int i){
auto scatter access = sv.access();

int k = foo(i);

double x = bar(x);

scatter access(k) += x;

});

contribute(v, sv);

7 Kokkos Remote Spaces: PGAS Support a , .
• PGAS Models may become more viable for HPC with both changes in network

architectures and the emergence of "super-node" architectures

• Example DGX2 V100 V100 V100 V100
€

c

V100 V100 V100 V100

• First "super-node"

(-)

• 300GB/s per GPU link
M

U)
>

V100 V100 V100 V10 V100 V100 V100 V100
".1•

• Idea: Add new memory spaces which return data handles with shmem semantics
to Kokkos View

• View<double**[3], LayoutLeft, NVShmemspace> a(,N,M);

• Operator a (i, j, k) returns: template<>
struct NVShmemElement<double> {

NVShmemElement(int pe_, double* ptr_):pe(pe_),ptr(ptr_) {}
int pe; double* ptr;
void operator = (double val) { shmem_double_p(ptr,val,pe); }

};

PGAS Performance Evaluation: miniFE

• Test Problem: CG-Solve CGSolve Performance
• Using the miniFE problem NA3 6000
• Compare to optimized CUDA
• MPI version is using overlapping

5000

• DGX2 4 GPU workstation sx 4000
• Dominated by SpMV (Sparse Matrix fn

• 3000
Vector Multiply)

• Make Vector distributed, and store 2000
global indicies in Matrix

• 3 Variants
• Full use of SHMEM 0

• lnline functions by ptr mapping
• Store 16 pointers in the View

• Explicit by-rank indexing
• Make vector 2D
• Encode rank in column index

1000

10003 2001'3

• MPI oSHMEM

o SHMEM-Inline SHMEM-Index

400^3

Warning: cmtff—IIII WAKthing in the next couple years for most of our apps!!

