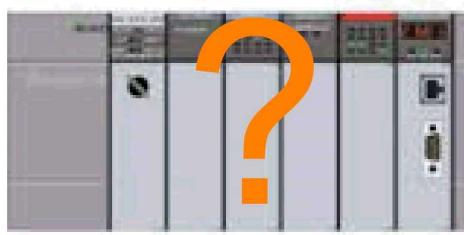


Process Logic Verification & Analysis


Sarah Hostetler, Jonathan Van Houten,
Sam Mulder

Process logic is a PROGRAM which

- Runs “in” the Programmable Logic Controller (PLC)
- Controls the physical process
 - Relays
 - Switches
 - Gauges
- Is NOT low-level PLC firmware
- Is NOT PLC embedded Operating System
- Is NOT the business logic for the whole plant or process

Motivation for new tools

How do we verify the condition of the PLC?

Would you ask a bank robber to verify the condition of the vault? No!

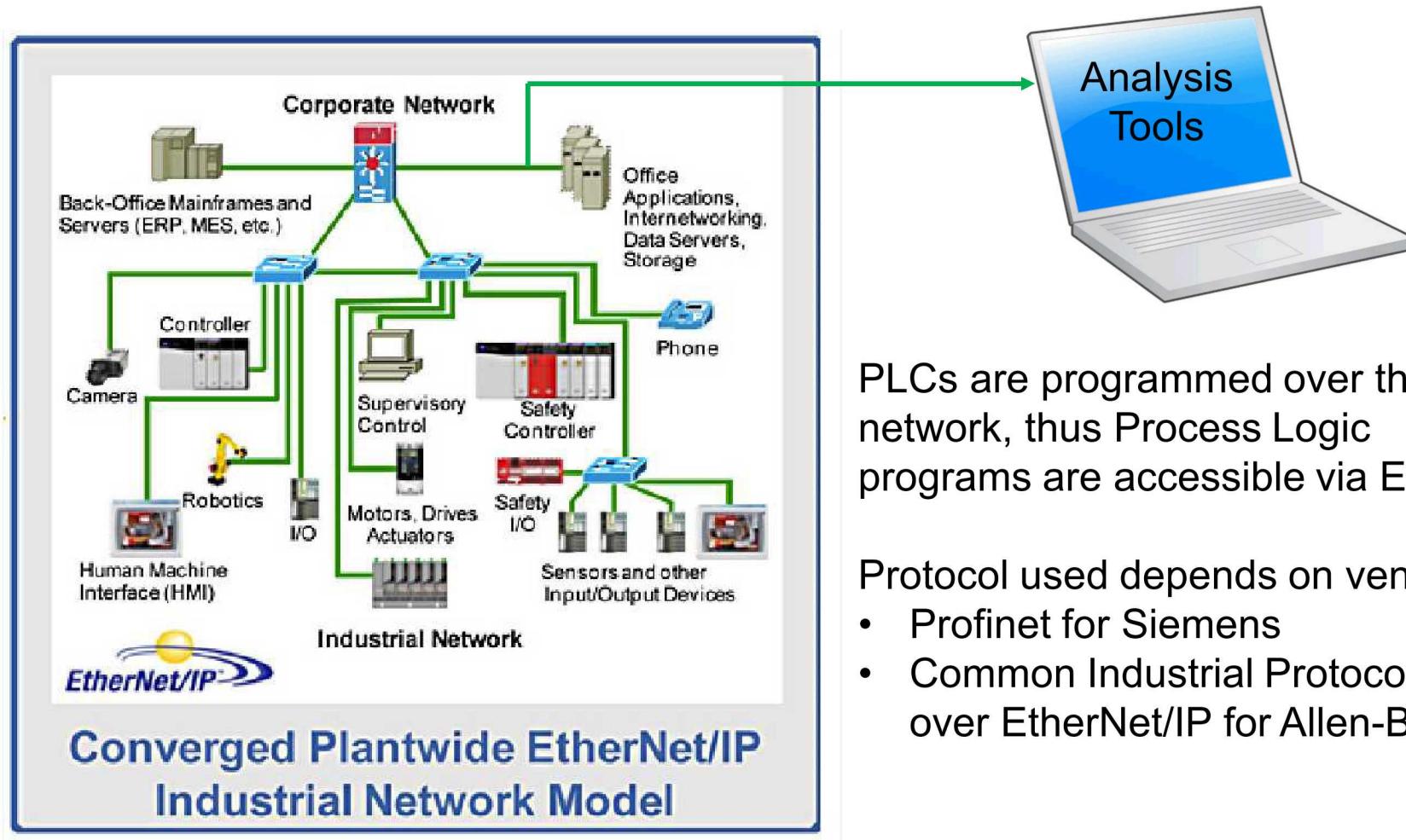
We don't trust tools running on a compromised network to verify the condition of the PLC. We need independent tools.

Independent tools

What are the options?

1. Clean copy of vendor software
2. Commercial tools
3. National Laboratories tools

- Clean copy of vendor software
 - \$\$\$ expensive licensing
 - Big learning curve to know all the vendor tools
 - Vendor software is itself a target
 - Malware may know how to avoid or compromise it
 - No advanced or automated analysis capabilities


Independent tools (continued)

- Commercial tools
 - \$\$ can be expensive and have yearly license
 - Not able to directly drive requirements
 - May not cover vendors of interest or multiple vendors
- National Laboratory developed tools
 - \$ initial expense, but then shareable with no licenses
 - Leverage existing analysis tools and expertise from many tech fields
 - Can drive requirements and vendor selections

Goal for process logic tool

- One PLC extraction & analysis tool for many vendors
 - Requires no licensing from vendors
 - Extracts PLC program over network (no physical access)
 - Runs on any Python-capable Operating System
 - Integrates with existing advanced logic analysis tools
 - Oxide / Inquisit
 - Not a common target for attack
 - Harder to acquire than vendor software
 - Same user interface, different PLCs
 - Easy to use
 - Does not require user to learn different tools for each vendor

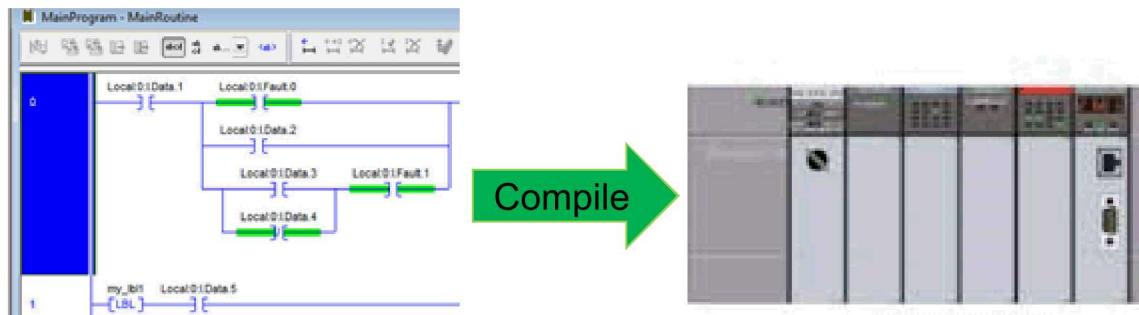
Ethernet access to process logic



PLCs are programmed over the network, thus Process Logic programs are accessible via Ethernet

Protocol used depends on vendor

- Profinet for Siemens
- Common Industrial Protocol (CIP) over EtherNet/IP for Allen-Bradley


Image Source: Rockwell Automation whitepaper

There and back again

Human readable --> Binary code --> Human readable

- The process logic program starts as human readable code
- It is converted into a binary executable and stored in the PLC
- PLC Extraction & Analysis tool (PEAT) extracts this binary
- PEAT puts the binary back into human readable format
- Analysis and comparison to original can now be performed

Vendor Design &
Programming Tool

Process Logic
Program Binary

PLC Extraction
& Analysis Tool

Example AB Relay Ladder Logic (RLL)


```
<Routine Name="MainRoutine" Type="RLL">
<RLLContent>
<Rung Number="0" Type="N">
<Text>
<![CDATA[XIC(Local:0:I.Data.1)XIC(Local:0:I.Data.0)XIO(Local:0:I.Data.2)
OTE(Local:4:0.Data.0);]]>
</Text>
</Rung>
</RLLContent>
```


48E10978830F00000C4280410C42
80400C42804AFC4080602085277A

Decompiled:

```
[0x00278504] 7809e148 RUNG:
[0x0027850c] 4180420c
XIC(Local:0:I+0x00000004.1)
[0x00278510] 4080420c
XIC(Local:0:I+0x00000004.0)
[0x00278514] 4a80420c
XIO(Local:0:I+0x00000004.2)
[0x00278518] 608040fc
OTE(Local:4:0+0x00000000.0)
```


RLL in XML (.L5X) file

RLL bytecode in PLC

RLL output of PLC
Extraction & Analysis
“PEAT” program

Process logic takes several forms

- Siemens S7 – All encoded to MC7 bytecode (binary)
 - Structured Text
 - Ladder Logic
 - Sequential Function Charts
- Allen-Bradley ControlLogix – Both binary and string
 - Binary
 - Relay Ladder Logic
 - Encoded String
 - Sequential Function Charts
 - Structured Text
 - Function Block Diagrams
- Based on IEC 61131-3

Siemens progress

- PLC extraction tool complete
 - Supports Siemens S7-300, S7-400
 - Leverages open source Snap7 library to extract MC7 bytecode over Ethernet
 - Available as plug-in for Inquisit
- PLC module for Inquisit complete
 - Automatically creates collections based on “block type”
 - Immediately determines which blocks are different between two sets of extracted logic
 - Converts extracted binary into readable “Structured Text”

Allen Bradley and others progress

- Allen Bradley PLC extraction tool complete
 - Supports Logix5000 controllers
 - Uses Common Industrial Protocol (CIP) to extract binary
 - Currently using CIP over EtherNet/IP
 - CIP works over DeviceNet and ControlNet so method is portable
- Allen Bradley module for Inquisit in progress
- GE PLC extraction tool planned

Why is this work important to ICS-CERT?

- Reduces cost of analyzing process logic from multiple vendors
- Provides independent verification
 - Out-of-band solution in case vendor SW is compromised
- Interfaces with analysis tools (Oxide/Inquisit) so anomalies can be found efficiently
- Displays metadata not available in some vendor's software

How does this work fit into the ICS-CERT workflow?

- Enables analysis of process logic programs actually running on PLCs in ICS-Network
- Provides comparison to original “golden master” program through human-readable code
- Integrates with analysis tools such as Oxide/Inquisit for quick triage of collected PLC code
- Vendors supported can be selected to meet ICS-CERT assessment needs

Discussion Topics

- Leverage PC world techniques for PLCs
- Research dangerous code constructs in logic binaries
 - Catalog
 - PC examples: “use after free”, “execute in non-code space”
 - Use results from industry collectives - Digital Bond / S4
 - Can we access others?
 - Analyze
 - Identify bugs that lead to vulnerabilities
 - Is a pattern of quick iterations (set/change/set/change) a red flag or is it normal operations most of the time?
 - Are some patterns bad for one industry (water treatment) but okay for another (power plant)?
- Can we automate discovery of malicious indicators?

Next – Feasibility of Automating Malware Indicators Discovery

- Scope the questions
 - What has been done to characterize ladder logic indicators?
 - What ladder logic malware examples can we collect?
- Investigate industry initiatives
- Look for Lab partners whose research we could apply to this problem set

Questions?

