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ABSTRACT
Identifying high-performance, system-level microgrid

designs is a significant challenge due to the overwhelming array
of possible configurations. Uncertainty relating to loads, utility
outages, renewable generation, and fossil generator reliability
further complicates this design problem. In this paper, the
performance of a candidate microgrid design is assessed by
running a discrete event simulation that includes extended,
unplanned utility outages during which microgrid performance
statistics are computed. Uncertainty is addressed by simulating
long operating times and computing average performance over
many stochastic outage scenarios. Classifier-guided sampling, a
Bayesian classifier-based optimization algorithm for
computationally expensive design problems, is used to search
and identify configurations that result in reduced average load
not served while not exceeding a predetermined microgrid
construction cost. The city of Hoboken, NJ, which sustained a
severe outage following Hurricane Sandy in October, 2012, is
used as an example of a location in which a well-designed
microgrid could be of great benefit during an extended,
unplanned utility outage. The optimization results illuminate
design trends and provide insights into the traits of high-
performance configurations.

1. INTRODUCTION
Technological advancements, environmental pressures, and

economic incentives are causing a shift from large, centralized
power generation plants to smaller, distributed energy resources
(DERs) [1]. However, haphazard placement of grid-integrated
DERs, such as fuel-based generators, renewable sources, and
storage components, creates many problems regarding
maintenance, safety, and central dispatch control. Therefore, it
may be beneficial to organize a collection of DERs into a
microgrid (MG), thus enabling them operate as a single self-
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controlled entity [2]. An MG is defined as a collection of
interconnected DERs and loads that may operate in one of two
modes: grid-tied mode or islanded (autonomous) mode [3]. In
grid-tied mode, MGs can provide congestion relief,
postponement of increased generation and transmission
capacity, and fast response to load changes [2].

In autonomous mode, the islanded MG can continue to
supply power during planned or unplanned grid outages due to
scheduled maintenance or faults, respectively [4]. Planned
outages can be scheduled to occur during "off-peak" hours
when loads are expected to be relatively small. However,
unplanned outages can, by definition, occur at any time, and the
cost of installing the capacity to fully accommodate worst-case
peak-loads may be prohibitive. The impact on consumers
becomes very significant when the outage lasts for an extended
period of time, such as one that might follow a natural disaster
or severe weather event.

The focus of this work is on identification of system-level
MG designs that perform well during unplanned, extended
periods of disconnect from the main utility grid. The variables
that comprise the design problem are the sizes and locations of
DERs and the topology of the microgrid. Designs are sought
that reduce average loads not served (LNS) in islanded mode
and do not exceed a pre-defined installation cost.

There are many sources of uncertainty in microgrid design
and operation. For example, the magnitudes of loads, durations
of outages, and reliability of generators are all uncertain. In
addition, no generation or distribution components in the
system are 100% reliable. For example, natural gas generators
may fail during operation, or overhead lines may fault due to
falling tree branches. Lastly, outages can last anywhere from a
few seconds to weeks (in rare cases), making identification of a
design for the most likely scenario difficult. In this work, these
uncertainties are addressed by running a discrete event
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simulation of MG operation over a very long time horizon. The
frequencies and durations of all failures, including generation
components, transmission components, and the main grid, are
generated by sampling from representative probability
distributions. Using this evaluation model, a large number of
outages are simulated and average performance of a given MG
design can be computed and used as an objective function in an
optimization algorithm.

A drawback of this approach is that each evaluation of the
objective function requires many simulations of a grid outage.
This computational expense makes simulation-based
optimization and design space exploration difficult, because
common metaheuristic optimization methods such as genetic
algorithms may require a large number of function evaluations
to identify high-performance solutions. Furthermore, the
simulation is black-box in that it carmot be readily modeled
using analytical equations. It is not known if the objective
function is multi-modal or convex. This property rules out the
possibility of using traditional optimization techniques.

Metamodels, also known as surrogate models, can be used
in place of computationally expensive simulations to increase
computational efficiency in support of engineering design
optimization [5]. Traditionally, metamodels are developed by
fitting a surface to a set of training points that are generated
from an expensive base model. However, this approach relies
on the assumption of continuous design variables and a smooth
objective to approximate [6]. Surrogate modeling techniques
for mixed discrete/continuous functions remains a challenge,
and existing methods have only been shown to be viable for
problems with small numbers of categorical variables that have
few discrete choices [7].

To address this challenge, classifier-guided sampling
(CGS) [8, 9], an optimization technique appropriate for
computationally expensive problems with discrete variables and
discontinuous responses, is used to identify MG configurations
that reduce average LNS while not exceeding a specified cost
constraint. The classifier is a probabilistic model that serves as
an inexpensive approximation of the expensive simulation.
This method is similar to direct-search metamodel-based design
optimization techniques [5], but is better suited to solve
problems that have combinatorial variables and discontinuous
objective functions (such as the MG design problem studied
here).

As a test case, the city of Hoboken, NJ, which experienced
a week-long outage in the aftermath of Hurricane Sandy in
October 2012, is modeled and simulated. The optimization
results enable the identification of design trends among top-
performing solutions and generate useful insights into the types
of MG configurations that reduce average LNS during extended
grid outages.

In the following section, the MG simulation tool that is
used to assess MG performance is described. In Section 3, the
CGS algorithm is discussed in detail. In Section 4, the
microgrid simulation model and CGS are used together to
identify high-performance MG designs for Hoboken, NJ that

reduce average LNS during an extended main grid outage.
Concluding remarks are provided in Section 5.

2. MICROGRID SIMULATION MODEL
The model that is used to simulate grid outages and assess

the performance of candidate MG designs is referred to here as
the Performance and Reliability Model (PRIVI). The PRM is a
simulation code written in C++ that is used to statistically
quantify the performance and reliability of an MG operating in
autonomous (islanded) mode. The PRM allows the
performance of an MG to be quantified in terms of fuel usage,
renewables penetration, renewables spillage, and other
operational characteristics. MG reliability can be quantified in
terms of frequency and magnitude of load lost on a tier-by-tier,
load-by-load, or bus-by-bus basis, or on an aggregated basis
over the MG The PRM also supports calculation and reporting
of individual equipment reliability statistics. The PRM
simulation relies on a representation of an unreliable power
utility, specifically through the definition of failure and repair
modes. The PRM typically simulates thousands of such utility
outages to ensure that the calculated statistics are stable.

The PRM models systems behavior as a discrete sequence
of events in time. At each event, appropriate logic is executed
which may result in the scheduling of more events. The
simulation proceeds until all events have been executed or until
some explicit stopping criterion is satisfied. This type of
simulation is minimalistic in the sense that logic is only
executed in response to a known event. This approach contrasts
to some other simulation methods whereby regular time steps
are taken and at each, tests are run to see if anything should be
done and only then is appropriate logic executed.

The primary input to the PRM is an MG topology
specification. A topology specification includes descriptions of
components such as electrical lines, busses, switches,
transformers, generation assets and fuel sources, batteries, and
inverters, in addition to the details of how these components are
interconnected. Most components in the PRM can be modeled
as potentially unreliable. To specify an unreliable component,
failure modes must be defined where each mode represents a
specific type or mode of component failure. Each failure mode
specifies a failure time generator and a repair time generator. In
this context, a "generatoe refers to a sampling scheme,
typically associated with a parametric statistical distribution.

In addition to the physical layout and reliability
characteristics of an MG, the PRM requires three configured
controllers to define how the grid operates during different
phases. A controller implements and executes the logic applied
during the three phases of operation: grid-tied operation, MG
startup operation, and autonomous MG operation.

Grid-tied operation includes any period of normal
operations occurring in the time leading up to the first simulated
utility outage and the time period between utility outages. A
utility outage is a complete failure of the bulk power grid
leaving the microgrid to operate in autonomous mode.
Microgrid startup operation occurs in the period immediately
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following the onset of a utility outage. This controller
implements the logic that manages the formation of the
microgrid (starting of required MG assets, connecting busses
together, connecting or reconnecting renewables, etc.).
Microgrid operation is the period immediately following the
microgrid startup phase. This controller handles operation of
the fully formed autonomous MG

The process of handling a utility outage begins with
operating the Grid-Tied Controller (GTC) for the time leading
up to the start of the utility outage. The GTC performs a
relatively small amount of work, as its only job is to manage the
failures and repairs of those pieces of equipment that function
during normal operations. This includes components such as
lines, transformers, and renewable generators, but excludes
components such as backup diesel generators as these do not
operate during normal operations. The GTC serves to provide a
reasonable estimate of the state of these pieces of equipment at
the onset of the next utility outage.

At the beginning of the next sampled utility outage, the
startup controller (SC) is entered. The SC does no generator
dispatch beyond the simplistic strategy of starting them all
immediately. The SC also manages the interconnection of all
busses and assets. This is necessary because the MG is not
technically formed at the onset of the outage. Generators may
or may not start according to their startup probabilities, and
restart attempts may be made if configured to do so. Each
generator may have a delay associated with it to represent the
spin-up time that must pass before it can be connected to its
bus. After spin-up, a generator can be immediately connected
to its bus if the bus is not yet energized. If the bus is energized
(i.e., another generator is already connected to it), then a
synchronization delay is employed.

Once startup is complete, control passes to the sustained
microgrid controller (MC). The MC reacts to all events during
autonomous operation and rebalances the grid at each one.
Events include failures and repairs, load changes, renewable
output changes, fuel outages, refueling events, and so on. Most
importantly, the MC must determine what generation assets
should be operational, and then it must make use of these
operational assets to serve loads.

The logic that determines what generation assets should be
operating is handled by a dispatcher. The dispatcher is
executed when the current grid load conditions are such that it
is below a user-defined dispatch threshold or above the reserve
power requirement. Once the operational assets are known, the
MC determines how much power is coming from each; the
running fossil generators are all assumed to run in a droop
control mode and thus will run at the same utilization rate.

The first action the dispatcher takes when determining
which generation assets should be operational is to account all
currently running dispatchable generation units. A dispatchable
unit in this context is a fossil unit such as a diesel or natural gas
generator. Renewables are not considered dispatchable by the
PRM. The dispatcher minimizes the changes from the currently
running set in an attempt to prevent frequent start and stop

actions on generators. The controller must account for
currently producing generators as well as those that are in their
startup phase but have not yet connected or synchronized on the
grid. Any predicted power deficit (PPD) or excess (PPE) must
account for these generators as though they were producing.

Using this information, the dispatcher attempts to
determine whether or not it would like to start generators, stop
generators, or leave things the way they are. The generator
dispatch rules are summarized in Table 1. Once it has made this
determination, it attempts to execute. In the case where it
decides to leave things the way they are, it exits without action.
If it believes that generators should be started, it attempts to do
so according to the logic that is summarized in Table 2. If the
dispatcher has determined that some generators should be
stopped, then it enters the generator stop logic, which is
surnmarized in Table 3.

Table 1: Generator dispatch rules
Generator START attempts are made if ANY of the following are true:
• There are fewer that the than the minimum allowable number running
• The maximum predicted load is greater than the maximum possible

generation of the currently running generators
• The maximum predicted load is greater than the reserve power

requirement and the average predicted load is closer to the maximum than
the minimum

Generator STOP attempts are made if NONE of the start clauses are true and
ANY of the following are true:
• The minimum predicted load is less than the minimum desirable

generation of the currently running set. (Each generator has a minimum
desirable running rate. In the case of a diesel generator, this is usually a
rate below which wet stacking begins to occur and efficiency drops
sharply)

• The average predicted load is closer to the minimum than the maximum 
Lastly, no START or STOP attempts are made if ANY of the following are true:
• The dispatcher would like to stop some but to do so would violate the

minimum allowable number of running generators
• The maximum predicted load is greater than the reserve power

requirement but the average load is closer to the minimum than the
maximum

Table 2: Generator START logic
The START logic begins by gathering a list of all "startable generators. A
startable generator is one that:
• Is not running
• Is functional
• Has at least enough fuel to run for the minimum runtime specified as a

parameter to the dispatcher
• Is microgrid enabled if dealing with a non-isolated bus 

Once the list is determined, it is sorted by appropriateness of the generators to
meet the load. A generator (A) is favored over another generator (B) if:
• It is large enough to cover the PPD and (B) is not
• Both are large enough to cover the PPD and (A) is smaller than (B)
• Both are too small to cover the PPD and (A) is larger than (B)

Once the list is sorted, the winning generator is at the top. It is scheduled for
start. The PPD is reduced by that generator's recommended maximum running
rate and the remaining list is resorted using the new PPD. This process is
repeated until the required minimum running generators are running and the
PPD is covered or there are no more generators that can be started. 
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Table 3: Generator STOP logic
The STOP logic begins by gathering a list of all "stoppable' generators. A
stoppable generator is one that:
• Is running
• Is not so large that to shut it down would result in shedding more

generation than desired 
Once this list is determined, it is sorted by appropriateness of each generator. A
generator (A) is favored for shutdown over another generator (B) if:
• It is larger (remember that both are small enough that stopping them will

not result in a PPD)
Once the list is sorted, the winning generator is at the top. It is scheduled for
shutdown. The PPE is reduced by that generators recommended maximum
running rate and the remaining list is resorted using the new PPE. This process
is repeated until the required minimum number of running generators has been
reached, the PPE is gone or there are no more generators that can be shut down
without resulting in a PPD. 

If there is excess power and the dispatcher has opted to
keep it online, then the excess power may be used to serve
previously dropped loads or to charge UPSs and batteries. If
after all sources are accounted for in full there is not enough
generation to meet load, then loads are dropped if possible. A
load can only be dropped if there is a switch in the path between
it and the bus. The logic for dropping loads is similar to the
logic for starting and stopping generators in that a list of
droppable loads is created and sorted by priority and size.
Loads are dropped one at a time until enough has been shed.

The MC's job is complete when the utility outage ends.
There is a small amount of logic that must be carried out for
reconnection to the main grid. All microgrid paths that were
closed during startup must be opened and all backup generators
must be shut down. These tasks are all performed
instantaneously (i.e., no simulation time passes). Once
reconnection is complete, control is passed back to the GTC
until the next utility outage occurs.

The primary outputs of the PRM are computed quantities
and statistics. All unreliable entities gather statistics detailing
the outages they suffer, their durations, and the amount of
downtime attributable to each failure mode. All levels of the
grid for which it makes sense to express load service statistics
track load served and not served.

All generator types have statistics computed for them in
addition to unreliability statistics. They include run time
statistics, utilization rate statistics, energy production statistics,
statistics describing the time for which the generator was not in
use, and statistics for efficiency.

Any of the quantities and statistics that are computed by the
PRM may be used for optimization purposes. In the context of
emergency autonomous operation, which is the focus of this
paper, the impact of MG topology (generators, lines, busses,
and how these components are interconnected) on average LNS
is the quantity of interest.

3. CLASSIFIER-GUIDED SAMPLING OPTIMIZATION
Classifier-guided sampling (CGS) [8, 9] is a stochastic

optimization technique suitable for discrete optimization
problems with computationally expensive objective functions.

CGS achieves efficient global optimization by using a Bayesian
classifier to provide categorical predictions of the performance
of candidate solutions prior to expensive evaluation. The
classifier enables CGS to focus on promising solutions and
avoid wasteful evaluations on poor-performing ones. A brief
overview of Bayesian classifiers is provided next, followed by a
detailed explanation of the CGS algorithm.

Bayesian Classifiers 
In machine learning, a classifier is used to predict

categorical class labels to test points that have known feature
attributes but unknown class labels [ 1 0]. A classifier is trained
using a set of feature vector / class label pairs that are generally
obtained experimentally. In the context of design optimization,
a set of design point / objective function value pairs can be used
as training points.

A Bayesian classifier uses a factorization of probability
distributions to predict the categorical performance of a
candidate configuration based on all previously evaluated
points. Consider a K category classifier. If c is the discrete
class variable, let ck be the class k (i.e., a specific instance of c)
for k E {1, . The classification is performed in a D-

dimensional design space, and x = [x x2,..., xp] is a vector of
design variables. If ii is a specific design instance of x, Bayes'
formula can be used to estimate the posterior probability of the
class ck given x, P(ckli), according to:

P(ilck)P(Ck)_  POI COP(Ck) 
P(Ck 110= POO 

ck)P(ck)
(1)

where P(ck) is the prior probability of any randomly selected
point belonging to class ck, and P(xlck) is the class conditional
probability of a design instance given the class label. Design /I
is classified as a member of class ck that has the highest /Acid i)
when compared to all other classes.

In this work, the prior probabilities, P(ck), are set according
to a constant discrete uniform distribution such that:

1
P(ck).—, Vk (2)

where K is the number of performance categories.
P(x1c) is a D-dimensional joint distribution that must be

estimated from a training set of design vector / class label pairs.
Due to the large number of training points required to achieve
an accurate predictor, it is advantageous to make conditional
independence assumptions about the design variables and
refactor P(x1c) into a product of univariate distributions.
Specifically, by assuming that all design variables are
independent of each other, P(x1c) reduces to:

P(x1c)=P(xi c)P(x2 c)...P(x, I c) (3)
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Using the factorization in Eq. (3) in Eq. (1) is a special case of
Bayesian classifier known as the naive Bayes classifier [11].
The task of estimating the D distribution parameters is achieved
by assigning class labels to all design points that have been
evaluated with the expensive simulation. For example, assume
a design variable x has domain {0, 1} and we want to estimate

P(xlcgood) where cgood is a class label assigned to 'good' design
points. This distribution can be modeled with a probability
mass function with two parameters: 9),=0,,good and Ox=1,,good.
The distribution parameter 19.„Av—good is estimated according to•

p+#(x=o,c= good)
x=0,c=good a +#(x =1,c = good)+ 13 +14(x =0,c = good)

(4)

where #(x = 0, c = good) and #(x = 1, c = good) are the number
of times the training points (x = 0, 'good') and (x = 1, 'good')
appear in the training set, respectively. The parameters a and p
represent initial counts and can be used to initialize the class
conditional probability distributions when prior knowledge of
the distribution probabilities is available. The distribution
parameter 8x-1,,good is estimated similarly.

The process is generalized to variables with larger domain
sizes as follows. If the discrete design variable x, has

cardinality (domain size) C, then .x/ is the jth level in the

domain of xi, where j e {1, 2,..., . Furthermore, if the initial

counts are represented by the vector a = [a 1,a 29 • • • a C], then

the discrete distribution parameters for x' given class ck are

estimated by Eq. (5):

a . +#(x, = ,c = ck). 
=xi=.4 ,c=c, C

E [ot +#(.7c, = ,c = ck)] (5)

The simplest setting for the initial counts is to set them all
to unity [12]. Doing so sets all of the class conditional
probability distributions to uniform before any training points
are added to the classifier. This approach generally makes
sense unless there is reason to believe, possibly through prior
experimentation, that some variable values have higher
likelihood than others given the class label.

Global Optimization with Bayesian Classifiers 
CGS uses a Bayesian classifier to achieve efficient design

space exploration and optimization. Each newly evaluated
point is assigned a class label (e.g., 'good' / 'bad') depending
on its objective function value, and the point is added to the
classifier training set. The updated classifier is then used to
screen each new candidate solution based on the posterior
probability of the design's class prior to expensive evaluation.
Furthermore, new candidate points are generated by sampling
the class conditional probability distributions that comprise the

classifier. By sampling the distributions that are trained with
high-performance solutions, new points are generated that are
likely to improve the objective function. In general, the first
sample will be drawn from a uniform random distribution over
the input domain. With each new point that is evaluated,
assigned a class label, and added to the classifier training set,
the classifier improves its ability to generate high-performance
solutions and filter out low-performance solutions.

Figure 1 shows a flow chart of the CGS method. It begins
by instantiating the class-conditional probability distributions as
uniform discrete distributions. The next step is to sample the
class conditional probabilities of the high-performance class to
generate a candidate solution. In Step 2, the candidate's
posterior probability of being 'good' or not is determined by the
classifier. In Step 3, the candidate solution is accepted or
rejected for evaluation based on two criteria. First, the solution
is checked against all previously evaluated solutions to avoid
repeat evaluations of the same solution. Second, if the
candidate solution's posterior probability of being 'good' is
below a threshold, it is rejected. The threshold value is
determined for each candidate solution by sampling from a
uniform distribution ranging from zero to one. If the candidate
solution is accepted, the new design point is evaluated with the
expensive simulation in Step 4. Otherwise, the method returns
to Step 1 to generate a new point.

In Step 5, a class label is assigned to the newly evaluated
point based on the fitness of the design, and the classifier
training set is updated. At a minimum, two classes are required,
but more may be used if desired. For this paper, each evaluated
design is given a class label of either 'good' or 'bad'. The
labels are determined by assigning the top N solutions a label of
`good' and all others a label of 'bad', where N is a user-defined
constant. Therefore, new solutions that outperform those in the
set of top N will replace those that are inferior (i.e., their class
label will be reassigned from 'good' to ̀ bad').

The process repeats if a convergence criterion does not end
the cycle. Stopping criteria can include reaching a
predetermined number of design evaluations, achieving a
desired objective function value, or failing to improve the best
design by some percentage after a predetermined number of
new designs are evaluated.

In light of the discussion above, the choice of a Bayesian
classifier over other techniques becomes clear. A Bayesian
classifier is ideal for CGS because it provides a probability that
a test point belongs to a class, while many other classification
methods only provide the class label. Furthermore, sampling
the distributions of 'good' solutions effectively generates new
candidate solutions that have a high likelihood of improving the
objective function value.
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( O. Begin )

1. Sample the Probability
Distribution of "Good" Solutions

2. Determine Probability of
Being "Good"

4. Expensive Evaluation

49
5. Update the Classifier

( 7. End )

Figure 1: Classifier-guided sampling algorithm

4. HURRICANE SANDY CASE STUDY
In October of 2012, Hurricane Sandy brought intense wind,

rain, storm surges and claimed hundreds of lives. In the U.S., it
is estimated that Sandy damaged or destroyed 650,000 houses,
left 8 5 million customers without power, and caused 72 deaths
[13]. It also left millions of homes and business without electric
power. The storm was particularly devastating to the small city
of Hoboken, NJ, which sits on the Hudson River across from
Manhattan. Sandy's storm surge was over 17 feet above mean
sea level, and as a result, Hoboken was flooded for several days
following the storm. The city was disconnected from the main
utility grid during this time. A well-designed MG may have
been able to provide autonomous support to critical
infrastructure during this outage. However, the decisions about
what DERs to install, where to install them, and how they
should be interconnected have significant implications on their
cost and ability to serve loads during autonomous MG
operation. In this section, this problem is formulated as a
single-objective optimization problem, and CGS is used to
identify configurations that reduce LNS subject to an upper
limit on installation cost. This work is an extension of a
previous study in which a thorough energy surety analysis was

performed for the City of Hoboken by Sandia National
Laboratories [14].

Microgrid Design Problem Parameters 
There are 55 buildings in Hoboken that are designated as

critical and should remain operational during an emergency.
The buildings include emergency services, pump stations (for
flood control), affordable and senior housing units, grocery
stores, gas stations, and government buildings. A complete
listing of the buildings, their locations, and their estimated
continuous loads is given in Appendix A, Table A.1.

The problem addressed here is to design a microgrid that
minimizes average LNS, in kWh per hour of outage, of the 55
buildings without exceeding a limit on installation cost. There
are two types of design variables that define this problem. First,
the sizes and locations of natural gas generators are considered.
Natural gas generators are chosen as the generator type because
the high-pressure natural gas pipeline that runs throughout
Hoboken is assumed to remain operational during an
emergency, as it did during Hurricane Sandy. If installed, the
generators are to be co-located with the 55 critical buildings.
Generator installation costs are based on their size. The second
type of design variable defines the topology of the microgrid.
K-means clustering was used to group the 55 potential
generator sites into 13 sub-grids based on geographic location.
All buildings are assumed to be connected within each sub-grid,
and each sub-grid can only be connected to adjacent sub-grids.
The cost to connect each sub-grid is based on the cost per foot
of underground cable. The building sub-grid assignments are
tabulated in Table A.1 and shown on a city map in Figure A.1.

In total, there are 153 design variables. Each variable is
binary in the sense that the choice for each is to either do
nothing or install something (either a generator or MG
connection). There are 131 generator installation design
variables, and 22 MG connection design variables. All 153
design variables and their installation costs are tabulated in
Appendix B, Table B.1. An upper limit on installation cost is
set at $8M. Because of the emergency nature of this problem,
fuel cost is not considered because fuel use is a short-term need
that will be a relatively low cost in the long run.

Load not served is evaluated by running a PRM simulation
on candidate microgrid designs that are proposed by the
optimizer. Time-dependent hourly load data for each building
is estimated based on the estimated peak loads presented in
Table A.1. Utility outage frequencies and durations are sampled
from probability distributions such that they have an average
duration of 1 week and occur an average of every 100 years.
The PRM is used to simulate grid-tied and autonomous
operation continuously over a period of 100,000 years.
Therefore, the expected number of outages that are simulated
with each run is 1,000. Recall from Section 2 that a large
number of simulations are required because PRM considers all
components that comprise the MG to be unreliable (i.e., they
fail and are subsequently repaired according to user-defined
probability distributions). Therefore, a simulation of a single
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outage does not provide a meaningful estimate of "average"
microgrid performance. The expected outage count was
selected by increasing the total simulation time until stable
results were observed between runs of identical configurations.

Results and Discussion 
In this section, CGS is used to identify Hoboken MG

configurations that reduce LNS and do not violate the cost
constraint. To validate the effectiveness of CGS, a genetic
algorithm (GA) was also used to solve the optimization
problem. The GA implementation used is the JEGA single-
objective solver available in the Dakota toolkit [15].

For CGS, the parameter N (number of solutions with the
`good' label) is set to 50. To promote broad search early in the
solution process, the first 100 candidates are sampled randomly
from uniform distributions. After these initial 100 samples, the
classifier is used to guide the search for the remainder of the
optimization. For the GA, the population size is 50, and the
crossover and mutation rates are 0.8 and 0.1, respectively.

Both optimization methods handle the cost constraint by
always preferring feasible solutions to infeasible ones. When
comparing two infeasible solutions, the one that exceeds the
cost limit by a lesser amount is preferred. This approach is
similar to that which is proposed by Deb [16].

Performance comparison of CGS and the GA is achieved
by executing a set of rate of convergence tests in which the
current best known solution versus the number of objective
function evaluations is recorded. The two methods are
executed five times each with a fixed upper limit of 10,000
objective function evaluations, and the average results of the 5
trials are computed. Repeat evaluations of previously assessed
solutions are not performed and are therefore not included in
the rate of convergence results. This test provides a visual
measure of how quickly each method identifies high-
performance configurations. In Figure 2, the results of a rate of
convergence test are shown.
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Figure 2: Rate of convergence results
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On average, CGS identifies high-performance (low LNS)
solutions with significantly fewer objective function evaluations
than the GA. Neither method immediately identifies solutions
that satisfy the cost constraint in all five trials. Therefore, the
curves in Figure 2 begin at the lowest number of evaluations
needed for all five trials to identify feasible solutions. Beyond
the first 5,000 function evaluations, the curves level off at
almost identical levels of average LNS until the algorithms were
terminated at 10,000 evaluations.

The overall "best" solution found by CGS is indicated in
Table B.1. This configuration has an estimated installation cost
of $7.91M, and the PRM simulation estimates that it results in
average LNS of 5.06 kWh/h (kWh per hour of outage).
Considering that the estimated peak building loads in Table A.1
sum to approximately 9.9 MW, this level of LNS is relatively
low.

This configuration implements 34 natural gas generators
with a total installed generating capacity of 7.5MW. This
capacity is significantly less than the sum of the estimated static
loads in Table A.1. However, the loads used in the PRM
simulation are time-dependent (hourly), and were estimated
using a combination of metered data and the quantities in Table
A.1. Since the peak loads for each building occur at a different
times of the day, the overall time-dependent peak load for all
building combined is significantly less than the total static load.

The best known solution forms 8 microgrids by connecting
some, but not all, of the clusters (MG1-MG8, MG2-MG9-MG3,
MG7-MG4-MG12, MG11, MG5, MG6, MG1UB, and MG10).
Connecting some of these grids enables generators in one
cluster to serve loads in another. Therefore, the connections
give the search algorithm more and better choices about how to
optimally match installed capacity to estimated loads.

Another noteworthy feature of this configuration is that
Building 7 (B7), the sewage treatment plant, does not have any
additional generation capacity installed and is not connected to
any other sub grids. The plant currently has an existing diesel
backup generator that is large enough to cover its expected peak
load. However, an additional NG generator or a connection to
another bus could reduce LNS by providing redundant power
sources (the single existing diesel generator could fail). This
feature sheds light on the difficulty that the tight cost constraint
places on the decision making process. For B7, the cheapest
generation option is nearly $1M, and the least inexpensive sub-
grid connection option is roughly $672k (MG8-MG11). Either
of these options would consume a significant percentage of the
$8M cost limit, and the CGS result indicates that spending the
money on other assets does more to reduce LNS.

5. CONCLUSIONS
Design of an autonomous microgrid is a significant

challenge due to a large number of design choices and
uncertainty related to loads and component reliability. In this
paper, a discrete event simulation was used to model and assess
the average performance of a candidate microgrid design by
simulating a large number of stochastic utility outages over a
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long time horizon. To mitigate the computational expense that 7. Swiler, L.P., et al., Surrogate models for mixed
is inherent to this approach, classifier-guided sampling (CGS), a discrete-continuous variables. 2012, Sandia National
Bayesian classifier-based optimization algorithm, was used to
identify high-performance configurations that do not exceed a
pre-determined installation cost. As a test case, a microgrid is
designed for the city of Hoboken, NJ, which suffered an
extended outage in the wake of Hurricane Sandy in 2012.
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Shahan, D.W., P.B. Backlund, and C.C. Seepersad,
Classifier-Guided Sampling for Discrete Variable,
Discontinuous Design Space Exploration, in ASME

Results show that CGS is able to identify high-performance International Design Engineering Technical
solutions with fewer objective function evaluations than the
genetic algorithm implementation.
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APPENDIX A

CRITICAL HOBOKEN BUILDINGS

Table A.1: Buildings in Hoboken, NJ designated as critical during extended utility outage [14]
Bldg. # Building Name Type Location Estimated Load (kW) Cluster #

1 Fire Engine Company 3 Emergency 1313 Washington Street 150 1
2 Fire Engine Company 4 Emergency 801 Clinton Street 22.5 2
3 Fire Headquarters Emergency 201 Jefferson Street 37.5 3
4 Fire Engine Company 1 Emergency 43 Madison Street 45 6
5 Police Headquarters Emergency 106 Hudson Street 150 7
6 University Medical Center Emergency 308 Willow Avenue 1000 9
7 Sewage Treatment Plant Flood Control Adams Street 900 11
8 Pump Station 5th Street Flood Control 500 River Road 750 4
9 Pump Station llth Street Flood Control 83 llth Street 15 1
10 Pump Station H1 Flood Control 99 Observer Highway 225 7
11 Volunteer Ambulance Corps Emergency 707 Clinton Street 15 2
12 Hoboken City Hall Operation 94 Washington Street 225 7
13 Hoboken High School Shelter 800 Clinton Street 150 2
14 Wallace School Shelter 1100 Willow Avenue 250 8
15 Hoboken Homeless Shelter Shelter 300 Bloomfield 45 12
16 St. Matthew's Church Shelter 57 8th Street 15 5
17 St. Peter and Paul Church Shelter 404 Hudson Street 30 4
18 A&P Groceries 614 Clinton Street 45 9
19 Kings 1 Groceries 325 River Street 450 4
20 Kings 2 Groceries 1212 Shipyard Lane 450 1
21 Sunoco Gas Station 1301 Willow Avenue 15 8
22 Multi-Service Center Shelter 124 Grand Street 90 3
23 Public Works Garage Operation 256 Observer Highway 30 7
24 Garage B Parking Garage 28 2nd Street 90 7
25 Garage D Parking Garage 215 Hudson Street 225 7
26 Garage G Parking Garage 315 Hudson Street 150 4
27 Midtown Garage Parking Garage 371 4th Street 150 9
28 Columbian Arms Senior Housing 514 Madison Street 90 10
29 Marion Towers Senior Housing 400 1st Street 225 3
30 Columbian Towers Senior Housing 76 Bloomfield Street 150 7
31 Housing Authority 1 Affordable Housing 655 6th Street 450 1 UB
32 Housing Authority 2 Affordable Housing 501 Marshall Drive 90 1UB
33 Housing Authority 3 Affordable Housing 400 Marshall Drive 45 1 UB
34 Housing Authority 4 Affordable Housing 320 Marshall Drive 67.5 1 UB
35 Housing Authority 5 Affordable Housing 300 Marshall Drive 90 1 UB
36 Housing Authority 6 Affordable Housing 321 Harrison Street 45 1UB
37 Housing Authority 7 Affordable Housing 311 Harrison Street 45 1 UB
38 Housing Authority 8 Affordable Housing 320 Jackson Street 90 1 UB
39 Housing Authority 9 Affordable Housing 310 Jackson Street 90 1UB
40 Housing Authority 10 Affordable Housing 311 13th Street 90 8
41 Housing Authority 11 Affordable Housing 804 Willow Avenue 90 2
42 Fox Hill Housing Senior Housing 900 Clinton Street 45 2
43 5 Church Towers Affordable Housing Grand Street 45 9
44 10 Church Towers Affordable Housing Clinton Street 150 9
45 15 Church Towers Affordable Housing Grand Street 90 9
46 Clock Towers Affordable Housing 300 Adams Street 150 9
47 Marineview 1 Affordable Housing 331 Hudson Street 450 4
48 Marineview 2 Affordable Housing 301 Hudson Street 450 4
49 Applied 1 Affordable Housing 111 Newark 45 7
50 Applied 2 Affordable Housing 1203-1209 Willow Avenue 225 8
51 YMCA (SR0s) Affordable Housing 1301 Washington Street 150 1
52 Police Department Radio Repeater Emergency N/A 450 7
53 Fire Department Radio Repeater Emergency N/A 15 5
54 CVS Pharmacy 59 Washington Street 150 7
55 Walgreens Pharmacy 101 Washington Street 90 7

9 [Copyright Statement Placeholder]



1% Annual Flood

Depth in Feet

0-1.6

1.6 - 3.0

3.0-4.3

4.3- 5.4

5.5 - 6.6

6.6 - 8.4

8.4 - 10.8

- 10.9 - 13.6

▪ 13.6 - 15.4

▪ 15.5 - 17

PPP F fw1A

!Offt st :CO vl +2.3 feet

Above FEMA
100 yr +2.5 faatJL

Hudson
River

500 1,000 2.000
 Feet

Figure A.1: Critical Hoboken buildings shown on a flood map [14]
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APPENDIX B

HOBOKEN MICROGRID DESIGN VARIABLES

Table B.1: Hoboken microgrid design variables and costs [14]
ID Label Option Cost ($)
1 B12-NG1 ... 200kW $ 187,500
2 B13-NG1 200kW $ 187,500
3 B13-NG2 200kW $ 187,500
4 B13-NG3 250kW $ 217,500
5 B13-NG4 250kW $ 217,500
6 B13-NG5 500kW $ 396,000
7 B14-NG1 30kW $ 81,000
8 B15-NG1 _. 60kW $ 107,100
9 B15-NG2 60kW $ 107,100
10 B15-NG3 125kW $ 147,600
11 B15-NG4 150kW $ 68,000
12 B16-NG1 T 30kW $ 81,000
13 B16-NG2 30kW $ 81,000
14 B16-NG3 50kW $ 97,800
15 B16-NG4 75kW $ 125,400
16 B17-NG1 30kW $ 81,000
17 B17-NG2 50kW $ 97,800
18 B18-NG1 60kW $ 107,100
19 B19-NG1 300kW $ 234,000
20 B19-NG2 300kW $ 234,000
21 B19-NG3 600kW $ 507,000
22 B19-NG4 1500kW $ 1,246,185
23 B1-NG1 175kW $ 183,000
24 B1-NG2 400kW $ 318,000
25 B20-NG1 400kW $ 318,000
26 B20-NG2 600kW $ 507,000
27 B20-NG3 800kW $ 648,000
28 B20-NG4 800kW $ 648,000
29 B21-NG1 30kW $ 81,000
30 B22-NG1 100kW $ 139,800
31 B22-NG2 250kW $ 217,500
32 B23-NG1 40kW $ 81,000
33 B23-NG2 75kW $ 125,400
34 B24-NG1 125kW $ 147,600
35 B24-NG2 125kW $ 147,600
36 B25-NG1 300kW $ 234,000
37 B25-NG2 400kW $ 318,000
38 B26-NG1 200kW $ 187,500
39 B26-NG2 350kW $ 264,000
40 B27-NG1 200kW $ 187,500
41 B27-NG2 200kW $ 187,500
42 B27-NG3 275kW $ 226,500
43 B27-NG4 500kW $ 396,000
44 B28-NG1 125kW $ 147,600
45 B28-NG2 125kW $ 147,600
46 B28-NG3 - 150kW $ 68,000
47 B28-NG4 150kW $ 68,000
48 B28-NG5 175kW $ 183,000
49 B29-NG1 100kW $ 139,800
50 B29-NG2 250kW $ 217,500
51 B29-NG3 300kW $ 234,000
52 B29-NG4 300kW $ 234,000
53 B29-NG5 350kW $ 264,000
54 B29-NG6 350kW $ 264,000
55 B2-NG1 30kW $ 81,000
56 B30-NG1 200kW $ 187,500
57 B30-NG2 400kW $ 318,000
58 B31-NG1 125kW $ 147,600
59 B31-NG2 250kW $ 217,500
60 B31-NG3 175kW $ 183,000
61 B32-NG1 60kW $ 107,100
62 B33-NG1 100kW $ 139,800
63 B34-NG1 125kW $ 147,600
64 B34-NG2 275kW $ 226,500
65 B35-NG1 60kW $ 107,100

ID Label Option Cost ($)
66 B36-NG1 100kW $ 139,800
67 B37-NG1 125kW $ 147,600
68 B37-NG2 275kW $ 226,500
69 B37-NG3 300kW $ 234,000
70 B38-NG1 125kW $ 147,600
71 B38-NG2 300kW $ 234,000
72 B39-NG1 125kW $ 147,600
73 B39-NG2 275kW $ 226,500
74 B39-NG3 300kW $ 234,000
75 B3-NG1 30kW $ 81,000
76 B40-NG1 300kW $ 234,000
77 B40-NG2 350kW $ 264,000
78 B40-NG3 400kW $ 318,000
79 B40-NG4 600kW $ 507,000
80 B40-NG5 600kW $ 507,000
81 B40-NG6 650kW $ 607,500
82 B40-NG7 650kW $ 607,500
83 B41-NG1 150kW $ 68,000
84 B41-NG2 175kW $ 183,000
85 B41-NG3 275kW $ 226,500
86 B42-NG1 60kW $ 107,100
87 B42-NG2 150kW $ 68,000
88 B43-NG1 125kW $ 147,600
89 B43-NG2 275kW $ 226,500
90 B43-NG3 300kW $ 234,000
91 B44-NG1 60kW $ 107,100
92 B45-NG1 200kW $ 187,500
93 B45-NG2 275kW $ 226,500
94 B46-NG1 200kW $ 187,500
95 B46-NG2 275kW $ 226,500
96 B46-NG3 500kW $ 396,000
97 B47-NG1 275kW $ 226,500
98 B47-NG2 350kW $ 264,000
99 B47-NG3 600kW $ 507,000
100 B47-NG4 1500kW $ 1,246,185
101 B48-NG1 300kW $ 234,000
102 B48-NG2 300kW $ 234,000
103 B48-NG3 600kW $ 507,000
104 B48-NG4 1000kW $ 774,000
105 B49-NG1 300kW $ 234,000
106 B49-NG2 750kW $ 622,500
107 B4-NG1 50kW g $ 97,800
108 B4-NG2 50kW $ 97,800
109 B4-NG3 125kW $ 147,600
110 B4-NG4 150kW $ 68,000
111 B50-NG1 60kW $ 107,100
112 B51-NG1 200kW $ 187,500
113 B51-NG2 400kW $ 318,000
114 B52-NG1 400kW $ 318,000
115 B52-NG2 600kW $ 507,000
116 B52-NG3 1500kW $ 1,246,185
117 B52-NG4 1500kW $ 1,246,185
118 B53-NG1 30kW $ 81,000
119 B54-NG1 200kW $ 187,500
120 B54-NG2 400kW $ 318,000
121 B55-NG1 125kW $ 147,600
122 B5-NG1 100kW $ 139,800
123 B5-NG2 100kW $ 139,800
124 B6-NG1 30kW $ 81,000
125 B7-NG1 1200kW $ 996,948
126 B7-NG2 1500kW $ 1,246,185
127 B7-NG3 2000kW $ 1,661,580
128 B8-NG1 350kW $ 264,000
129 B8-NG2 350kW $ 264,000
130 B8-NG3 500kW $ 396,000

ID Label Option Cost ($)
131 B8-NG4 600kW $ 507,000
132 MG 1-2 Connect $ 782,320
133 MG 1-5 Connect $ 465,250
134 MG 1-8 Connect $ 322,960
135 MG 2-5 Connect $ 413,200
136 MG 2-8 Connect $ 402,160
137 MG 2-9 Connect $ 132,100
138 MG 3-6 Connect $ 438,680
139 MG 3-7 Connect $ 592,240
140 MG 3-9 Connect $ 207,700
141 MG 3-13 Connect $ 435,400
142 MG 4-5 Connect $ 449,680
143 MG 4-7 Connect $ 97,900
144 MG 4-9 Connect $ 502,300
145 MG 4-12 Connect $ 201,500
146 MG 6-7 Connect $ 429,800
147 MG 7-9 Connect $ 619,700
148 MG 7-12 Connect $ 356,600
149 MG 8-11 Connect $ 671,600
150 MG 9-10 Connect $ 394,400
151 MG 9-12 Connect $ 352,800
152 MG 9-13 Connect $ 438,700
153 MG 10-13 Connect $ 360,500

There are two types of design
variables in this Hoboken MG design
optimization problem: those that
indicate installation of a new generator
(IDs 1-131) and those that indicate
connecting two building cluster
microgrids (IDs 132-153).

Each variable has two discrete
choices (install/don't install). Labels
indicate the building and generator
number or the two clustered microgrids
to connect. E.g., the variable "B12-
NG1" is a decision about whether to
install a natural gas generator in
Building 12, and MG1-2 is a decision
about whether to connect microgrids 1
and 2.

The highlighted variables are those
that were chosen by the overall best
solution that was identified with CGS.
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