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ABSTRACT
In film cooling flows, it is important to know the temper-

ature distribution resulting from the interaction between a hot
main flow and a cooler jet. However, current Reynolds Aver-
aged Navier Stokes (RANS) models yield poor temperature pre-
dictions. A novel approach for RANS modeling of the turbulent
heat flux is proposed, in which the simple gradient diffusion hy-
pothesis (GDH) is assumed and a machine learning algorithm
is used to infer an improved turbulent diffusivity field. This ap-
proach is implemented using three distinct data sets: two are
used to train the machine learning algorithm and the third is used
for validation. The results show that the proposed method pro-
duces significant improvement compared to the common RANS
model, especially in the prediction of film cooling effectiveness.

NOMENCLATURE
0 Dimensionless temperature (T — 1 (Tcooi —
D Hole diameter in the jet in crossflow geometries
H Cube height in the cube in crossflow geometry
BR Blowing ratio in a jet in crossflow configuration
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U Velocity scale (either bulk velocity or free-stream velocity)
✓ Fluid kinematic viscosity
k Turbulent kinetic energy
E Turbulent dissipation rate

vt Eddy viscosity calculated by RANS, 1 e
at Turbulent diffusivity
at,RANS Turbulent diffusivity predicted by the fixed Prt = 0.85

model
Turbulent diffusivity extracted from the high-fidelity
simulation

Turbulent diffusivity predicted by the machine learning
algorithm

Prt Turbulent Prandtl number yr 1 at
ui i-th component of the velocity
d Distance to the nearest wall

a t,LES

at,AIL

1 INTRODUCTION
Film cooling is a widely used technique to control the ther-

mal stresses and increase the lifespan of gas turbine blades [1].
For design purposes, Reynolds-Averaged Navier-Stokes (RANS)
simulations are often used to solve for the temperature field in
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these flows, which can be used to determine the film cooling per-
formance and blade metal temperature distribution. Past stud-
ies have shown that RANS models struggle to accurately solve
for the velocity and temperature fields in film cooling config-
urations [2, 3]. There has been considerable effort in closure
strategies for the momentum equation: for example, Hoda and
Acharya tested seven different models [2]. However, previous
work has shown that the largest source of error in film cooling
predictions is the model for the turbulent heat flux [4]. There-
fore, the present work focuses solely on RANS models for the
scalar transport equation. In the case of non-buoyant flows, tem-
perature can be considered a passive scalar.

The simplest model to close the turbulent transport term in
the RANS scalar equation is the Gradient Diffusion Hypothesis
(GDH), shown in the following equation:

ae
to' = ataxi (1)

tti represents the velocity in the i-th direction and 0 = (T —

T—)1(Tcool —T.) is the dimensionless temperature, with E. be-
ing the inlet temperature and Tool being the coolant tempera-
ture. Primed quantities indicate turbulent fluctuations and over-
bars indicate time average. The turbulent diffusivity is isotropic
and given by at. The standard practice in commercial codes is
to calculate the eddy viscosity vt in the momentum equations
and use a fixed turbulent Prandtl number to find at, usually
Prt = vt 1 at = 0.85 [5].

Previous work has shown that this approach is not sufficient
for film cooling flows [3, 6-9]. He et al. [6] performed RANS
simulations in a normal jet in crossflow and recommended a tur-
bulent Schmidt number Sct = 0.2 to better match experimental
results, a value considerably lower than 0.85 (in the current pa-
per, sct and Pr, are considered indistinguishable because tem-
perature is assumed to behave as a passive scalar). Lakehal [7]
obtained improved results for the temperature field in a film cool-
ing geometry after considering an anisotropic diffusivity and a
spatially-varying Prt. The experimental measurements of Kohli
and Bogard [8] suggested that Prt varied between 0.5 and 2 in an
inclined jet in crossflow. Liu et al. [9] showed that the predicted
film cooling effectiveness prediction is sensitive to the choice of
Pr, and that a spanwise-varying Pr, improved the simulation re-
sults. Coletti et al. [3] used MRI data and concluded that vt and
at vary spatially according to different trends, so their ratio is not
uniform.

There are more complex algebraic closures of the scalar
equation as alternatives to the simple GDH. The Generalized
Gradient Diffusion Hypothesis (GGDH) of Daly and Harlow [10]
and the Higher Order Generalized Gradient Diffusion Hypothe-
sis (HOGGDH) of Abe and Suga [11] are two commonly cited
examples. Ling et al. [12] studied these closures in the context

of a discrete hole film cooling geometry and found that they
indeed yield slightly more accurate turbulent transport than the
GDH. However, they concluded that tuning model parameters in
simpler models produces greater improvements than switching
model form. In fact, their most accurate results were obtained
when the GDH was used in conjunction with a turbulent diffu-
sivity field extracted from a highly resolved Large Eddy Simu-
lation (LES) [12]. Inspired by those results, the present paper
seeks to use the simple GDH of Eqn. (1) with a machine learning
methodology to select a more appropriate at field.

Machine learning consists of a broad class of algorithms that
process large amounts of data and extract patterns from them in
order to make informed decisions in uncertain situations. Re-
cently, the fast increase in computational capability led to a surge
in the availability of large data sets from fluid mechanics simu-
lations. In turn, this sparked interest in using machine learn-
ing techniques in the context of turbulence modeling [13-18].
Tracey et al. [13] used machine learning algorithms to improve
RANS models and obtain error bounds in a turbulent combus-
tion and non-equilibrium boundary layer simulations. Tracey et
al. and Duraisamy et al. [14, 15] applied machine learning algo-
rithms to generate functional forms of turbulence models. Ling
and Templeton [16] evaluated different machine learning algo-
rithms applied to the problem of predicting regions where RANS
simulations yield uncertain results. Ling et al. [17, 18] predicted
the Reynolds stress anisotropy in a jet in crossflow geometry us-
ing machine learning and also solved for the RANS velocity field
using such anisotropy. Although the research mentioned is still
in an early phase, all the authors concluded that machine learning
seems a promising technique to inform turbulence modeling.

In this paper, a supervised learning algorithm is applied in
an attempt to improve the RANS results of the scalar transport
equation, particularly in film cooling geometries. The objective
is to predict an improved at field that can be used with Eqn. (1).
A total of three data sets are used, in which both RANS and
high-fidelity simulations are available. The high-fidelity data are
used to calibrate the machine learning model and to assess the
model performance. Section 2 describes these data sets. Section
3 explains the machine learning approach. Section 4 presents the
results of this study, both in terms of diffusivity and in terms of
the scalar field. Finally, section 5 contains the conclusions and
next steps for this research.

2 COMPUTATIONAL DATA SETS
To apply the machine learning framework, computational

data sets of three different geometries are used: a baseline in-
clined jet in crossflow, a skewed inclined jet in crossflow, and
a wall-mounted cube in crossflow. In all cases, a well-validated
high-fidelity simulation is available in conjunction with a RANS
simulation that uses the standard realizable k — e model in the
momentum equation and the GDH with Prt = 0.85 in the scalar
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equation. Throughout this paper, buoyancy and molecular dif-
fusion are neglected, so the analogy between temperature and a
passive scalar is used. Therefore, the scalar field will be treated
as the dimensionless temperature 0 and the turbulent Schmidt
and Prandtl numbers are indistinguishable. The three cases are
summarized in Table 1 and further described in the following
subsections.

2.1 Baseline inclined jet in crossflow
A schematic of the baseline jet in crossflow geometry can

be seen in Fig. 1. It consists of a single circular cooling hole of
diameter D injecting onto a square channel of side 8.62D. The
origin of the coordinate system is located at the center of the
hole. The hole is inclined 30° with respect to the y axis and is not
angled with respect to the x axis (the latter differentiates it from
the skewed case). The Reynolds number based on the channel
bulk velocity and hole diameter is ReD = 3, 000. The flow is
incompressible and the velocity ratio between the bulk main flow
velocity and the bulk hole velocity is BR = 1. The cooling flow is
fed from a plenum underneath the channel and has a prescribed
concentration of a scalar contaminant. An adiabatic boundary
condition is prescribed at all the walls.

The LES of this configuration was performed by Bodart et
al. [19] using CharLESx, a second order, unstructured, finite-
volume solver developed at Stanford University. It employs the
Vreman subgrid scale model in the momentum equation and the
GDH with SCSGS = 0.9 in the scalar equation. A posteriori anal-
ysis showed that the LES resolved most of the energy containing
scales. The authors also extensively validated the LES results
against experimental data and found good agreement. More de-
tails can be found in Ref. [19].

The RANS simulation of this configuration was performed
by Coletti et al. [3] using the software FLUENT. The first cell
above the wall was located at y+ < 1 and they confirmed grid-
independent convergence. More information can be found in
Ref. [3].

2.2 Skewed inclined jet in crossflow
A schematic of this configuration can be found in Fig. 2(a).

The skewed jet in crossflow geometry is very similar to the base-

TABLE 1. SUMMARY OF THE DATA SETS

Case Description and references Reynolds
number

Baseline Inclined jet in crossflow [3, 19] 3, 000

Skewed Skewed inclined jet in crossflow [20] 5, 800

Cube Wall-mounted cube in crossflow [21] 5, 000

0.1 0.2 0.3 0.4 0.5 0.6 0/ 0.8 0.9

Main
Flow

Coolant Flow

FIGURE 1. Schematic of the baseline geometry. Figure shows con-
tour of 6 at the center spanwise plane as calculated by the LES. Plenum
that feeds the jet is also simulated, but not shown.

line case described in the previous section, except that the cir-
cular cooling hole is inclined 30° both with respect to the y di-
rection and the x direction and the channel is wider in the span-
wise direction (8.62D x 17.3D). The skew creates a qualitatively
distinct mean velocity field: while the baseline case contains a
counter-rotating vortex pair (CVP) downstream of injection, the
secondary flow in the skewed case is dominated by a single vor-
tex [20]. The Reynolds number based on the main flow bulk
velocity and hole diameter is ReD = 5, 800 and the blowing ratio
is BR = 1. The skewed hole is fed from a plenum and contains
a prescribed passive scalar concentration, and all the walls are
adiabatic.

The LES of this geometry was performed by Folkersma [20].
It was a nominally compressible simulation, but since the Mach
number was low (approximately 0.2), the density variations were
negligible. It also used the CharLESx solver and a posteriori
results showed that subgrid scale contribution in the turbulent
transport was negligible. The results were validated against ex-
perimental data and good agreement was found. More details can
be found in Ref. [20].

The RANS simulation of this geometry was performed in
the scope of the present paper using the software FLUENT. The
simulation domain spanned 60D in the streamwise direction, di-
vided evenly before and after the injection point, to minimize the
influence of inlet and outlet boundary conditions. At the channel
inlet, a turbulent velocity profile was picked to best match the
LES velocity from Ref. [20]. A slip condition was applied at the
top wall, and no-slip was applied at all the other walls. A simi-
lar mesh to the one used in the baseline RANS was used in this
simulation, and it can be seen in Fig. 2(b). The equations were
considered converged when the continuity residuals were below
2.5x10-2 and the other residuals were below 10-6.

2.3 Wall-mounted cube in crossflow
Figure 3 shows a schematic of the wall-mounted cube in

crossflow. A cube of side H is attached to the wall and acts as
an obstacle for the incoming flow. The Reynolds number based
on H and the free-stream velocity is ReH = 5,000. The no-slip
boundary condition for the velocity field is imposed at the wall
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FIGURE 2. Skewed geometry. (a) is from [2o] and has a wall normal
plane showing the skewed hole and a spanwise plane showing dimen-
sions and the plenum (the latter is also valid for the baseline case). (b)
shows the mesh used in the RANS simulation at the wall around the
injection hole.

and cube surface, and a passive scalar is released from a circular
source centered on the top face of the cube. A direct numerical
simulation (DNS) and a RANS simulation of this geometry were
performed by Rossi et al. [21]. Their DNS was validated against
experimental data and good agreement was found. More infor-
mation about the configuration and the simulations can be found
in Ref. [21].

3 MACHINE LEARNING APPROACH

The proposed framework to RANS modeling consists of us-
ing a supervised learning algorithm to infer the turbulent diffu-
sivity field at. Supervised learning is a subset of machine learn-
ing algorithms in which the objective is to predict the value of

Main
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0.008
0.006
0.004

- 0.002
0

FIGURE 3. Schematic of the cube geometry. Figure shows contour
of 6 calculated by the DNS at the center spanwise plane.

a parameter given some information about the problem (the fea-
tures). The algorithm is calibrated with examples in which the
correct values for both the target parameter and the features are
known. These are called training examples. In the present work,
the parameter that the algorithm tries to predict is the turbulent
diffusivity at each cell in the computational domain and the fea-
tures are RANS variables at that cell.

3.1 Features
The features used to predict a cell's turbulent diffusivity are

exclusively quantities that are calculated in a k — E RANS simu-
lation. This is because the objective of the present approach is to
improve RANS predictions in a situation in which high-fidelity
data are not available. The features are chosen as quantities upon
which the turbulent diffusivity might depend: the RANS mean
velocity gradient (Vfi), the RANS mean scalar gradient as cal-
culated by the fixed Prt = 0.85 model (V0), the distance to the
nearest wall (d), and the eddy viscosity calculated by the k — E
model (v1). Note that if the fixed Prt model were sufficient, the
only RANS variable upon which at would depend is vt. By
adding other RANS variables, the algorithm is given more in-
formation about the local velocity and concentration fields and
then "learns" how to use it.

The raw RANS variables mentioned above need to be pro-
cessed before they are used in the machine learning framework
to ensure the algorithm is dimensionally consistent and produces
an isotropic result. To guarantee the former, the features are non-
dimensionalized by the following local scales: Va is divided by

, as suggested by Pope [22], V Õ is divided by 012 d is di-
vided by N/ic which creates a turbulence Reynolds number, and

Vt is divided by v. k and e are the kinetic energy and dissipa-
tion values predicted by the RANS equations, and v is the fluid's
kinematic viscosity. The resulting turbulent diffusivity oct is non-
dimensionalized by the global scale UD, where U and D are the
relevant velocity and length scales of the problem. Other possible
non-dimensional forms were tried, but the ones reported yielded
the best overall results.

Since the output of the machine learning algorithm is an
isotropic scalar, Ling et al. [23] suggest that this property be
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enforced by pre-processing the features and extracting isotropic
bases. The idea behind this is to add physical meaning to the
predictions: if the same flow were studied under a different co-
ordinate system, the raw features described in the last paragraph
would change, but the predicted at should not. Therefore, a poly-
nomial basis that is invariant to coordinate transformations is ex-
tracted from the dimensionless velocity gradient tensor and the
dimensionless scalar gradient vector as described in Smith [24].
This set of invariant scalars is then used together with the dimen-
sionless forms of d and -tit as the features fed into the supervised
learning algorithm, for a total of 19 features. More information
on this process can be found in Ref. [23].

3.2 Training Examples
To calibrate the algorithm, training examples in which the

turbulent diffusivity is known are needed. High-fidelity, time-
resolved simulations are used for this purpose. From the the
mean concentration gradient and turbulent transport term, which
is directly available in a DNS or LES, the turbulent diffusivity
can be inferred by assuming that the GDH of Eqn. (1) holds, ac-
cording to the following equation:

„tie,204,LES= do do
dx1 dx

(2)

where at,LES is the turbulent diffusivity inferred from the high-
fidelity simulation (either DNS or LES) and the terms on the
right-hand side are the statistics calculated from the high-fidelity
simulation at that cell. Eqn. (2) assumes that there is an isotropic
turbulent diffusivity that relates the mean gradient and the tur-
bulent transport. This assumption is not necessarily valid and
would still cause model form error. However, Ling et al. [12]
showed that using ar,LES in a RANS simulation dramatically in-
creases the accuracy of the results. So, 04,LES as calculated by
Eqn. (2) is considered to be the correct value that is used to train
the machine learning algorithm.

3.3 Algorithm
There are several supervised learning algorithms that can be

applied to the problem of predicting a continuous variable such
as the turbulent diffusivity. These include support vector ma-
chines, decision trees, and neural networks. Ling and Temple-
ton [16] tested different algorithms applied to turbulence model-
ing and concluded that random forests (RF) had the "best combi-
nation of good performance and easy implementatioC. Random
forests are capable of non-linear decision boundaries, are robust
against overfitting and against the inclusion of non-important
features. Also, pre-processing to force the data to fall within a
specified range is not required, as it is for some other algorithms.

Feature #7 > 100?

Yes

at = 0.01 at= 0.002 at = 0.01 at = -0.01

FIGURE 4. Example binary decision tree of height 2. To decide on
the value of at for any set of features, the rules are followed starting
from the top until a leaf is reached.

Finally, RFs are relatively cheap to train and test when compared
with neural networks [16]. Therefore, to demonstrate the frame-
work proposed in the present work, the random forest algorithm
is employed.

Random forests consist of an ensemble of binary decision
trees [25]. A diagram with an example binary decision tree is
shown in Fig. 4. It consists of a collection of rules (a feature
with an associated threshold) that are used to classify an example.
When a prediction is needed for a set of features, the decision tree
follows its rules starting from the top (the root) until it reaches
an endpoint (the leaves), where a value is assigned. To construct
a binary decision tree from a set of training examples, typically
a greedy algorithm is used to assign rules that maximize the lo-
cal information gain sequentially to each node, starting from the
root.

In a random forest, each decision tree is constructed by tak-
ing a random sample, with replacement, of all the training ex-
amples (a process called "baggine). The overall prediction of
the RF is an average of the predictions of each individual tree.
A single tree can be prone to overfitting, but constructing an en-
semble is done to minimize this problem while retaining good
accuracy. The main hyperparameter that must be chosen is the
number of trees in the ensemble, Ntrees. Usually, more trees give
better answers and lower variance between runs, but with dimin-
ishing returns and at a higher computational cost. After testing
performance and variance with different values of Ntrees for this
particular problem, Ntrees = 1,000 was chosen because higher
values of Ntrees barely change the results.

4 RESULTS
To demonstrate the proposed machine learning approach,

the skewed and the cube data sets are used for training the RF,
which in turn is tested on the baseline data set. The machine
learning routines were coded in Python using the Scikit-learn
open source library [26]. The high-fidelity data sets and the ex-

5 Copyright © 2017 by ASME



0

4

2
0

0

4

2
0

o

„0.0111116.--
0 5 10 15 20

(a) LES

25 30

0 5 10 15 20
(b) RANS

25 30

0 5 10 15 20 25 30
X/D

(c) Machine Leaming

L__17111
-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

-2

-2

-1

-1

o

2

›-

2 
0

FIGURE 5. Contours of non-dimensional turbulent diffusivity field at AUD) in the baseline geometry. The figures on the left are a spanwise plane
at the center of the channel, Z/D = 0. The figures on the right show streamwise planes at X ID = 2. The plots are blanked in regions in which the
dimensionless mean scalar gradient calculated by the RANS or by the LES data sets is smaller than 10-5. (a) is the field extracted from the LES using
Eq. 2, (b) is the RANS diffusivity calculate via a fixed Pr, = 0.85, and (c) is the field that the machine leaming algorithm predicts.

tracted turbulent diffusivity are linearly interpolated onto the re-
spective RANS meshes. The features are calculated and the cells
of the skewed and cube cases are used to train the random forest.
Not all points are used: only the cells where the 2-norm of the
dimensionless mean scalar gradient from both the DNS/LES and
RANS is larger than 10-5 are used for training and testing. This
is because in regions of low gradient, Eq. (2) could yield near sin-
gular results and the GDH would predict negligible scalar trans-
port anyway. Also, two small regions in the LES of the skewed
case (one close to injection and one near the outlet) had poorly
converged values of 0', which caused the extracted at,LES to be
orders of magnitude higher than what was observed in the rest of
the flow. These two regions were removed from the training set,
which considerably improved the performance of the resulting
algorithm. Overall, around 250k cells in the cube case and 450k
cells in the skewed case are used for training, and the algorithm
is tested on around 475k cells of the baseline case.

4.1 Turbulent Diffusivity Prediction

Figure 5 shows contours of the non-dimensionalized turbu-
lent diffusivity in the baseline geometry, including the prediction
from the machine learning algorithm after it was trained on the
skewed and cube cases. In Fig. 5(a), the turbulent diffusivity ex-
tracted from the baseline LES according to Eq. 2 is shown. This
is the field that the machine learning algorithm is trying to repli-
cate. One interesting feature is that it contains regions where

at,LES is negative, which implies that turbulent diffusion acts to
move heat from colder regions to hotter regions. This unphysical
behavior hints that underlying assumptions of the GDH, such as
turbulent length scales being smaller than the length scales over
which the mean temperature changes 1271, are not valid in those
regions.

Figure 5(b) shows the turbulent diffusivity field that typical
RANS codes would use, given by a tjmisis = (Cyk2 Prt, with
= 0.09 and Prt = 0.85. Comparing this field to Fig. 5(a) helps

explain the difficulties that RANS codes have to solve for 0. It is
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clear that in the region close to injection (especially for XID < 2)
and in a layer underneath the jet (Y ID around 0.5), the fixed Prt
model overestimates the turbulent diffusion, and that is expected
to create inaccurate scalar fields.

Figure 5(c) presents the turbulent diffusivity field that was
calculated by the random forest, aovm. Note that there are still
differences between this field and the one shown in Fig. 5(a).
For example, the RF fails to predict the regions of negative dif-
fusivity. However, it shows significant improvement over the
RANS diffusivity field close to injection and around the jet, re-
gions where the fixed Prt model was particularly inappropriate.

For a quantitative comparison between the fields in Figs.
5(b) and 5(c), one can define an integral error metric. A possible
choice is the sum of the error magnitudes in each cell normalized
by the sum of the magnitudes of the LES diffusivity, as shown in
the following equation:

E, I at - at,LES1 errora =
Elar,LES1

(3)

For each turbulent diffusivity field (at,RANs and at,nm), the
error can be calculated by Eq. 3. The sum is evaluated for all
cells in the RANS mesh of the baseline case where the 2-norm of
the dimensionless mean scalar gradient from the LES and RANS
is larger than 10-5. By this metric, the RANS diffusivity has
an error of 1.20, while the machine learning diffusivity achieves
0.60, a 50% improvement. The error is still relatively high, but
since the improvement is concentrated in regions of the flow with
high gradients, such as near injection and close to the wall, us-
ing %xi, to solve the scalar equation could conceivably generate
significant improvements.

4.2 Forward Propagation
The machine learning algorithm is designed to predict a tur-

bulent diffusivity field. However, the ultimate goal is to improve
the predictions of the mean temperature field 0. Therefore, the
best way to assess the performance of the RF prediction shown in
Fig. 5(c) is to use that field in a RANS code and compare its tem-
perature prediction against the LES results. This is the forward
propagation step.

Since the passive scalar assumption is used, the continuity
and momentum equations don't need to be solved again; it is
enough to take their results as a prescribed mean velocity field
to be used in the scalar equation. Assuming the mean fields are
steady, using the GDH of Eq. 1 to close the turbulent transport
term, and neglecting molecular diffusion produces the Reynolds-
Averaged Advection Diffusion (RAAD) equation shown below:

f _ z\ de

axi uiv) axi (at axi)
(4)

Note that with a known velocity field and turbulent diffusiv-
ity, Eq. 4 can be directly solved for the dimensionless tempera-
ture field. To test the potential of the machine learning approach,
Eq. 4 is solved in the baseline geometry using the RANS veloc-
ity field and each of the three turbulent diffusivity fields shown
in Fig. 5. The RANS velocity doesn't exactly match the true
velocity field from the LES [3]. But in an arbitrary geometry
in which RANS predictions are desired, a high fidelity velocity
field might not be available and the RANS velocity field might
be the only option. Thus, to simulate the predictive capabilities
in this scenario, the RANS velocity field is chosen.

Equation 4 is solved using an in-house code with a uniform
and structured mesh. It uses a finite volume method with sec-
ond order central differencing for the diffusion term and first or-
der upwinding for the convective term. The resolutions in the
streamwise and spanwise direction are similar to the ones in the
RANS simulation of [3] (dx/D = dz/D = 0.1), and the wall-
normal resolution was picked to match the one Coletti et al. used
at y/D = 1, dy/D = 0.05. This results in the first cell above
the wall being at approximately y+ = 10. Despite using simple
numerical methods and a coarse mesh, this solver was picked
because of the ease of prescribing a velocity and turbulent dif-
fusivity fields. The resolution is still enough to resolve the main
features of the mean velocity and temperature, so the results are
useful to determine whether the machine learning algorithm can
improve the temperature predictions.

The method described above is used the solve the RAAD
equation and the results are shown in Fig. 6. The diffusivity
fields needed to be marginally pre-processed before being fed
into the code. The LES and ML diffusivity were made non-
negative to guarantee convergence and a moderate positive value
(a t (UD)= 0.01) was prescribed for the blanked region of Fig. 6
in all three cases. The latter is done because the LES diffusivity
field was not extracted and the ML algorithm was not applied in
regions of low mean temperature gradient. Note that the value
of at in those regions is not important because the GDH applied
there would predict negligible turbulent transport regardless.

The results of the forward propagation are shown in Fig. 6.
Fig. 6(a) shows the LES scalar field from Bodart et al. [19]. This
is assumed to be the correct mean temperature field and is used
to assess the other three calculations. Figures 6(c)-(d) present
results of the RAAD equation solved with the three different tur-
bulent diffusivity fields.

Comparing the LES field of Fig. 6(a) with the field solved
for using at,RANs of Fig. 6(b) demonstrates the difficulties that
fixed Prt models have in film cooling geometries. In reality, at
BR = 1, the jet separates after injection and the temperature field
stays concentrated within it, in a characteristic kidney shape ob-
served on the right frame of Fig. 6(a). This causes a low adiabatic
effectiveness at around X/D = 2. However, the diffusivity ob-
tained from Prt= 0.85 is too high close to injection and between
the jet and the wall, as observed in Fig. 5(b). This makes the tem-
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has the LES field from Bodart et al. [19], (b)-(d) contain the mean scalar field calculated using Eq. 4 with different turbulent diffusivity fields.

perature diffuse towards the wall too quickly, which causes the
simulation to overestimate the adiabatic effectiveness and fail to
predict the kidney shape at X/D = 2.

Figure 6(c) is the result of using the turbulent diffusivity
field extracted directly from the LES of the baseline geometry.
Here, using the wrong turbulent diffusivity field is eliminated as a
source of error; the discrepancies between Fig. 6(a) and Fig. 6(c)
are caused from model form error, from using the RANS velocity
field, and from numerical discretization. As expected, it yields
improved results when compared to the field solved for using the
RANS diffusivity field. The adiabatic effectiveness, for example,
is qualitatively closer to the true one: particularly, it captures the

jet separation and a region of low effectiveness right downstream
of injection.

The results of Fig. 6(d) show the temperature field calculated
from the turbulent diffusivity field inferred by the machine learn-
ing algorithm, %AR,. It shows remarkable improvement over the
RANS diffusivity field. The adiabatic effectiveness is consider-
ably more accurate, even though it is slightly overestimated near
X/D = 0.75, and the separation region at around X/D = 2 is well
captured. The kidney shape of the temperature field at XID= 2
is not as clearly resolved as in Fig. 6(a), but it is much closer than
what was inferred from the Prt = 0.85 calculation. Surprisingly,
some of the qualitative featured mentioned above are better cap-
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tured in Fig. 6(d) than in Fig. 6(c). This is probably due to errors
in the ML diffusivity field negating part of the other sources of
error in the simulation mentioned in the previous paragraph and
causing a more appropriate temperature field in certain regions.

For a quantitative comparison, an integral error metric is de-
fined to assess the difference between each field and the LES
field. It consists of an average of the magnitude of the difference
between the temperature calculated and the LES temperature at
each cell, and is shown in the equation below:

error() = Ele eLES1 (5)

where the sum is performed over all cells in a particular region
of interest, N is the number of cells in that region of interest, and
°LES is the LES mean temperature in that cell.

Table 2 shows the error calculated according to Eq. 5 in three
distinct regions of interest of the baseline geometry, with their
respective definitions. The errors are not high in absolute terms
because the cells are uniformly spaced and the regions of interest
include portions where 0 is low, so any reasonable RANS so-
lution would get results similar to the LES field. However, the
numbers on Table 2 can still be assessed relative to each other.
As Fig. 6 suggested, both the LES and ML diffusivities pro-
duce improvements over the RANS diffusivity calculated with
Prt = 0.85, with the LES diffusivity producing higher gains than
the ML field as expected. In the most critical regions of inter-
est, the improvements are more noticeable and the difference be-
tween LES and ML diffusivity fields is relatively smaller. In the
injection region, the ML diffusivity produced almost 30% im-
provement, while in the wall region it produced over 60% im-
provement over the RANS field. Combined with the qualitative
improvements seen in Fig. 6, this shows that machine learning
approaches have potential to significantly improve RANS turbu-
lence closures.

TABLE 2. ERROR IN CALCULATED 0

Diffusivity
Region of interest

Total
X ID: -1 to 19

Y ID: 0 to 1.75

Z/D: -0.75 to 0.75

Injection
X ID: -Ito 4

Y/D: 0 to 1.75

Z/D: -0.75 to 0.75

Wall
X ID: 1 to 19

Y/D: 0 to 0.1

Z/D: -0.75 to 0.75

RANS

LES

ML

0.0277

0.0204

0.0231

0.0470

0.0314

0.0339

0.0566

0.0214

0.0223
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5 CONCLUSION
A machine learning approach to improve turbulent mixing

models was proposed, with special interest to film cooling ge-
ometries. The method consists in using a closure with a simple
form for the turbulent heat flux, the gradient diffusion hypoth-
esis, and then using a supervised learning algorithm to better
determine the parameter of this model, the turbulent diffusiv-
ity at. This approach was demonstrated using three data sets:
a baseline jet in crossflow, a skewed jet in crossflow, and a wall-
mounted cube in crossflow. The last two were used to train the
machine learning algorithm, while the baseline case was used to
test it. Calculations of the temperature field using the machine
learning diffusivity showed significant qualitative and quantita-
tive improvements over the usual Prt = 0.85 closure. In par-
ticular, predictions of the temperature at the wall (the adiabatic
effectiveness) were remarkably better.

The proposed approach was designed to be used in com-
plex configurations where no high-fidelity data are available.
The machine learning algorithm can be trained in a few geome-
tries where high-fidelity data for velocity and concentration exist
(like the three data sets presented in this paper) and then applied
to predict the turbulent diffusivity in an arbitrary geometry. A
RANS k — simulation of a complex geometry is needed to pro-
duce the features for the supervised learning algorithm, which
would then output a predicted turbulent diffusivity field for that
geometry. Such process can presently be applied with the code
base developed in this work. Finally, a second RANS would
need to be run, with the constraint that it should use the turbulent
diffusivity field produced by the machine learning algorithm to
close the temperature equation.

Future work includes evaluating how robust this approach
is in different film cooling geometries. It would also be inter-
esting to generalize it to other classes of turbulent flows. This
poses the question of how closely related flows used as training
sets need to be to the target flow to guarantee improved answers.
The approach itself can be perfected too. For example, new ma-
chine learning algorithms and different features might produce
improved answers in different flows. Also, more complex clo-
sures can be used in conjunction with machine learning: the
move to an anisotropic diffusivity could produce significant im-
provement. Finally, a careful study of how the machine learning
algorithm utilizes the features to make decisions could reveal im-
portant physics underlying turbulent mixing, which in turn could
inspire the development of new physics-based models.
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