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ABSTRACT

The uncertainty of a system is usually quantified with the use
of sampling methods such as Monte-Carlo or Latin hypercube
sampling. These sampling methods require many computations
of the model and may include re-meshing. The re-solving of the
model is a very large computational burden. One way to greatly
reduce this computational burden is to use a parameterized re-
duced order model. This is a model that contains the sensitives
of the desired results with respect to changing parameters such
as Young’s modulus. The typical method of computing these
sensitives is the use of finite difference technique which gives
an approximation that is subject to truncation error and subtrac-
tive cancellation due to the precision of the computer. One way
of eliminating this error is to use Hyper-Dual numbers, which
are able to generate exact sensitives that are not subject to the
precision of the computer. This paper uses the concept of Hyper-
Dual numbers to parameterize a system that is composed of two
substructures in the form of Craig-Bampton substructure repre-
sentations, and combine them using component mode synthesis.
The synthesis transformations using other techniques require the
use of a nominal transformation while this approach allows for
exact transformations when a perturbation is applied. This paper
presents this technique for a planar motion frame and compares
the use and accuracy of the approach against the true full system.
This is the preliminary work in performing a component mode
synthesis using Hyper-Dual numbers.
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1 Introduction

In order for designers to overcome the variability in a design
due to manufacturing tolerances and unknown loads, the uncer-
tainty and sensitivity of the design must be evaluated. The sensi-
tivity analysis is typically the preliminary step in an uncertainty
quantification analysis. There are multiple ways to get the sensi-
tivity of the system that is used: predominately finite difference
and complex step [1]. Both of these methods have some ma-
jor drawbacks which will be discussed along with an expected
solution to each of these drawbacks by the use of Hyper-Dual
numbers.

One problem that all sensitivity and uncertainty quantifi-
cation analyzes experience is the curse of dimensionality. As
computers and super-computers get faster and better every year,
the finite element (FE) models are becoming more complex with
higher fidelity. This causes many troubles for the transfer of in-
formation along with different techniques such as sub-structuring
which require multiple models combined together. One way to
reduce the dimensionality of the model is to use a reduced or-
der model (ROM) such as a Craig-Bampton representation. This
representation contains modal degrees of freedom (DOF) for the
interior of the model and physical DOF for the interface where
the model is expected to be connected to another model [2]. This
can greatly reduce the size of a model due to the independence
of the modal DOF in the system which can be truncated based of
expected load range or experimental resolution.

While ROMs are good at reducing the size of the model,
this can still produce a problem for the uncertainty quantification
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analysis. This ROM does not contain any information about how
the model will change due to a change in a parameter. This brings
about the use of parameterized reduced order models (PROMs)
which contain the information about the sensitives [3]. These
PROMs can allow the uncertainty quantification to be performed
at a much lower computational cost since the entire model is no
longer required and small variations can be accounted for with
perturbation theory.

This paper is structured as follows: Section 2 explains how
to determine the sensitives using multiple methods while pre-
senting the use of Hyper-Dual numbers to get exact sensitives
with only a single computational evaluation. Section 3 describes
the Craig-Bampton substructure representation used to generate
the PROM. Section 4 shows an example of a planar frame with
an appendage that is separated into two substructures and then
resynthesized and compared to the true solution. This section
also includes a preliminary sensitivity analysis by using PROMs
and comparing to the true perturbed solution. Section 5 sum-
marizes the results and describes the planned future work in this
field of research.

2 Determining Sensitivities

The most common way to determine the sensitivity of the
system to a parameter is to use a finite difference approach. The
finite difference method requires multiple calculations of the sys-
tem’s FE model. As the size of the models increase to produce
more accurate results, the time required for a single calculation
becomes very large and multiple calculations can take an im-
practical amount of time and computational effort. Along with
the computational effort, the accuracy of the results must also
be taken into account. The order of the finite difference method
used determines the accuracy of the solution, which will never
be exact. For the first derivative, a 1** order scheme requires 2
evaluations of the FE model and a 2" order scheme requires 3
evaluations.

While the finite difference methods can take multiple com-
putations, the complex step method was developed in order to
determine sensitivities with only a single calculation [4]. This
calculation now involves performing complex calculations that
takes longer per calculation but overall requires much less com-
putational time compared to the finite difference methods. The
complex step method however is only a second order approxi-
mation since it truncates the Taylor series at the second deriva-
tive [4]. This method eliminates the rounding error due to the
computer bit size, but no matter the step size, the complex step is
still an approximation since the Taylor series is truncated. A way
to eliminate this approximation is with the use of a generalized
complex number, the dual number.

The dual number is a non-real number that is in a perpen-
dicular direction than the real axis, much like a complex number.
The main difference comes in how the square is defined. For a

complex number, the complex variable, i, is defined as 2 =—1,
while for a dual number, the complex variable, e, is defined as
e> = 0 but e # 0. This is useful, for example, when considering a
first order Taylor series expansion. All of the higher order terms
contain at least ¢? and are therefor zero. This shows that using
a dual number step instead of a regular complex step will give
the solution along with the exact sensitivity with only a single
calculation [1].

A dual number is only able to extract a single first order
sensitivity of the solution. In order to produce multiple sensitivi-
ties, a multi-dimensional generalization is used, which is called a
Hyper-Dual number [1]. This higher dimensional dual numbers
is similar to the higher dimensional complex numbers, which are
called quaternions [1]. Each step is thought of as a movement
in a mutually perpendicular direction with respect to the other
steps and the real domain. The Hyper-Dual numbers that are
used in this paper contain two independent directions and a cross
direction which are represented by the variables e, e, and e,
respectably. For a more detailed presentation on how to perform
these calculations both analytically and numerically, the reader is
referred to [1] while a short review is given below. For the most
part, Hyper-Dual numbers act mathematically similar to com-
plex variables with some added simplifications. For example,
the commutative property e; X e = e X e] = ej. This property
is not shared with quaternions, which makes the use of Hyper-
Dual numbers simple since the order of multiplication does not
affect the sign of the result. The main advantage of Hyper-Dual
numbers is based on a Taylor series expansion. A n”" order Tay-
lor series for a single parameter x close to a nominal value a is
given by Eq. 1.

1) = £(@)+ /(@) (=) + 3y /" (@) x—a) +--- (@) —a)'

(1

This series is subject to truncation and subtractive cancella-

tion errors since the Taylor series is an infinite series. The use of

Hyper-Dual numbers eliminates these errors. If the variable x is

designated a Hyper-Dual number of the form of Eq. 2, then the
Taylor series expansion becomes of the form in Eq. 3.

x=a-+hye; +hyey+0ey (2)

fx) = fla)+hif'(a)er +hof (a)er + iy f"(a)ers  (3)

By the definition of Hyper-Dual numbers, all the higher or-
der terms are zero. The first derivative of the function at point
a can be determined exactly by taking the coefficient of ¢; then
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dividing by /;. With a similar computation, the second deriva-
tive can be determined exactly by dividing the e, coefficient by
hihy. This can be generalized for multiple parameters. The first
derivative can be determined by Eq. 4

df(x)  eipart(f(x+ hee;+gerej+0ejaejj))
T 7 “4)

where f is the output functional such as the natural frequency
or mode shape, x is a vector of nominal parameter values, e; is
a unit vector in non-real space that is spanned by the perturbed
parameter. The cross derivative or the second derivative can be
found in a similar way. This can be calculated based on Eq. 5.
Any higher order derivatives can be determined in a similar way
but with additional non-real variables, such as e3.

92 f(x) _ enpart(f(x + heiei + gesej + Oeineyj))
Ix;0x; hg

)

The use of Hyper-Dual numbers can be implemented at sev-
eral different levels of a calculation. This example uses Hyper-
Dual numbers at the very beginning of the problem, the creation
of the mass and stiffness matrices from the FE model. A non-
real perturbation is applied to a model parameter and the rest of
the calculations are performed with the perturbation already built
into the system. Using this method produces all values in terms
of Hyper-Dual numbers. This process however takes some ex-
tra computational effort using functions such as an eigenvector
solver and taking the inverse of a matrix of Hyper-Dual num-
bers. For this example, a class is created in Matlab which per-
forms all the special operations automatically. Once this is done,
the same functions that perform the sub-structuring analysis with
real numbers are used and requires only minor changes. This is
helpful if functions that are going to be used are already created
and verified. Using Hyper-Dual numbers does not affect the re-
sults of these functions with the added benefit of be able to pro-
duce extra information. The real part of the Hyper-Dual number
is the same as if the calculation is performed with only real num-
bers. Besides applying a non-real step at the generation of the
system, the Hyper-Dual number can be formulated analytically
with just using real numbers and by determining the sensitivi-
ties analytically based on the specific FE or result. This can be
done for simple cases but can become impossible with any small
complexity in the model.

With the information about the sensitives, an uncertainty
quantification analysis or an optimization analysis can be per-
formed. This paper addresses uncertainty quantification by using
Hyper-Dual numbers. Other research is taking place on the use of
Hyper-Dual numbers in an optimization. For more information

about using Hyper-Dual numbers in an optimization, the reader
is referred to [5]. Hyper-Dual numbers can require less computa-
tional time to perform either of these analyzes compared to other
methods.

3 Reduced Order Model Representation

In order to produce a PROM, a ROM must be selected.
For this paper, the Craig-Bampton substructure representation
is used. The Craig-Bampton substructure representation uses a
mixed coordinate system that uses physical interface DOF and
modal interior DOF which can be truncated due to the indepen-
dence of the modes [2]. The transformation from physical sub-
structure coordinates to Craig-Bampton coordinates is shown in

Eq. 6
ujp | (OTE Y n
[”j] a [ 0 1] L‘/} @)

where u is the physical displacement vector, subscript i refers to
the interior partition of the DOF, subscript j refers to the interface
partition of the DOF, @y is the fixed-interface mode matrix trun-
cated to the desired range based on frequency or importance, 0 is
a zero matrix, / is an identity matrix, ¥ is a matrix of constraint
modes describing the deflection of the substructure interior due
to a unit deflection in the interface, and 1 represent the modal
DOF of the fixed-interface substructure. The constraint modes
are determined using the partitioned stiffness matrix as shown in
Eq. 7

¥ = —K; 'K (7)

where Kj; is the partition of the stiffness matrix corresponding to
the interior DOF and K;; is the partition of the stiffness matrix
corresponding to the coupling of the interface and interior DOF.
This process is performed for each substructure. The substruc-
tures are then combined to determine the system matrices. This
recombination can be seen in Eq. 8

n* 100 "
w' | loor| |1,
rlﬁ - 070 77_ (8)
uf 007 | L%

where the superscript o corresponds to the first substructure and
the superscript B corresponds to the second substructure. This

synthesis enforces equal displacements at the interface, u;x = uf .
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4 Applied Example Problem

The use of Hyper-Dual numbers in sub-structuring is investi-
gated using an example that shows some complexity while being
simple enough that a truth model can be used as a verification.
This example is a frame with an appendage. The frame is con-
strained to planar motion. The full system can be seen in Fig.
1. The full system is split into two substructures with repeated
nodes that are identified by the red nodes in Fig. 1.

This system has some unique characteristics that adds a level
of complexity to the system. One complexity is that the cross-
sectional area of the frame is not constant. The cross-section of
the left substructure is a 1.0 in® square while the substructure on
the right has a cross-section of a 0.75 in® rectangle with the same
width as the left section. Since the cross-sections are different,
this frame can be unbalanced if this structure were to be experi-
mented upon.
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FIGURE 1. Example system finite element model

For each substructure, the red nodes are defined as the inter-
face nodes, each possessing two translations and one rotation, to-
taling six interface DOF due to constrained planar motion. Finite
elements are represented by Euler beams. The interior physical
DOF are transformed into fixed-interface modal DOF. This ex-
ample keeps all substructure modes up to 500 Hz. This results in
nine modes for each sub-structure that include three rigid-body
modes, which produces a dramatic reduction from 129 DOF to
15 DOF. Since this is a simple example, there is not much com-
putational effort required to analyze the full system, but this ex-
ample shows the usefulness of the technique.

The mass and stiffness matrices for each substructure are
generated as Hyper-Dual numbers. In order to do this, uncertain

model parameters must be defined. For this example, two dif-
ferent parameters are used: Young’s modulus and mass density.
Due to the implementation within Matlab, a single evaluation
of the FE code can only produce a single second derivative, so
the code is evaluated twice, once for Young’s modulus and an-
other for the mass density. The 2" order perturbation analysis
requires the second derivative which can be determined based on
the e1, term of the Hyper-Dual number. For a 1* oder pertur-
bation analysis, only the e; or the e, value of the Hyper-Dual
number depending on how each one of those is defined. In or-
der to do this, a non-real step is taken. For the evaluation of the
Young’s modulus, the Young’s modulus is defined as in Eq. 9

E=E,+1le1+ 1ley+0epp %)

where E is the Young’s modulus and £, is the nominal value
of the Young’s modulus. With this redefinition, the substructure
model matrices are determined. By using Hyper-Dual numbers,
the mass matrix takes the form of Eq. 10

IM,] . I[Mo]

9% [M,)
o 1T oF

JE2 €12

[M] = [Mo] + (10)

ey +

where [M] is the mass matrix and [Mp] is the nominal mass ma-
trix. This is the same form that the stiffness and damping matri-
ces take. Since the non-real step was a value of 1, then no ex-
tra calculations are required to determine the sensitivities. These
matrices are then transformed into a Craig-Bampton substructure
representation and then synthesized together. This synthesized
system is then compared to the system as fully constructed in the
FE code.

The first result for this example is a perturbation of the
Young’s modulus. The first system elastic natural frequency as a
function of the change in the Young’s modulus is shown in Fig.
2. This shows three different curves, the black curve is the truth
data, the red curve is for a 1% order Taylor series expansion that
only uses the first derivative, and the blue curve is for a 2" order
Taylor series expansion. It is easy to see that the second order ap-
proximation is accurate for a larger region compared to the first
order approximation. The percentage error of Fig. 2 is calculated
and shown in Fig. 3. The figures for the rest of the paper are gen-
erated with the same resolution. The resolution is 0.1% change
in the parameter. The parameter is swept from —75% to 75%.

For a 5% tolerance range, the first order approximation is
valid for a fractional change of greater than —40% while the
second order approximation is valid for a fractional change of
greater than —65%. This range would roughly be the same if
a finite difference calculation was performed, but would require
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FIGURE 2.
tional change of Young’s modulus with the black line as the true data,
the red line as the 1% order perturbation, and the blue line as the ond
order perturbation
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FIGURE 3. Percentage error as a function of fractional change in
Young’s modulus with the red line as the 1 order perturbation and the
blue line as the 2" order perturbation

more computational effort. This calculation however is more ac-
curate since the sensitivities are exact compared to an approxi-
mation. The computational effort for this calculation is less than
that for a finite difference, which requires at least three compu-
tational runs in order to get the sensitivities while using Hyper-

0.8

Dual numbers only requires one computational run. The exact
difference in computational time and accuracy between a Hyper-
Dual step and finite difference is not computed but is expected to
be computed in future work.

The Young’s modulus is not the only model parameter for
the FE code, the mass density is also an important parameter
since the density of a material can also change based on environ-
mental factors such as humidity and temperature. For this rea-
son, the same calculations are also performed for a perturbation
in the mass density. The first system elastic natural frequency is
shown in Fig. 4 where the black line is the truth data, the red
line is the 1% order Taylor series expansion, and the blue line is
the 2" order Taylor series expansion. Compared to the change
in Young’s modulus, the mass density is much more non-linear.
This is emphasized in the percentage error which can be seen in
Fig. 5.
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FIGURE 4. 1% System elastic natural frequency as a function of frac-
tional change of mass density with the black line as the true data, the
red line as the 1% order perturbation, and the blue line as the 2"¢ order
perturbation

For a 5% tolerance range, the first order approximation can
be treated as accurate for a percentage change in mass density
on the range of —40% to 40% and the second order approxima-
tion can be treated as accurate on the range of —55% to 60%. The
time required to perform this calculation was compared to assem-
bling the entire system for each value of mass density or Young’s
modulus. For this particular example, using Hyper-Dual num-
bers along with a perturbation analysis was significantly faster.
On the computer used by the authors, which is a fairly standard
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FIGURE 5. Percentage error as a function of fractional change in
mass density with the red line as the 1*” order perturbation and the blue
line as the 2" order perturbation

desktop, constructing the full system takes about 175 times more
computational time than using the Hyper-Dual numbers. This
time was measured for the full construction of the FE model for
the full system at all of the perturbations. For the Hyper-Dual
number system, the time measured the construction of the sub-
structures, synthesis of the full system, and then matrix perturba-
tion based on a Taylor expansion.

5 Conclusions and Future Work

This technique of using Hyper-Dual numbers for sensitiv-
ity and uncertainty quantification is a new technique that is very
powerful. This paper is a preliminary assessment of using Hyper-
Dual numbers for a sensitivity analysis on a relatively simple ex-
ample. The use of Hyper-Dual numbers on a system is an exact
method for determining sensitives. These sensitivities are de-
termined without the use of multiple computational evaluations
of the FE code or subject to truncation error due to the Taylor
series expansion to determine the sensitives. The Hyper-Dual
number is a multi-dimensional expansion of a generalized com-
plex number, the dual number. The use of the dual number al-
lows for the Taylor series expansion to produce a finite series
compared to the expected infinite series which then is truncated.
This technique is applied to a substructure representation in or-
der to produce a parameterized reduced order model which can
be combine with other PROMs in order to produce a full system
representation. The approach was applied to two Craig-Bampton
substructure representations on a example of a planar frame with
an appendage. The accuracy of the method is compared to the

0.8

full system that is constructed at each perturbation value to de-
termine the true solution. Hyper-Dual numbers allow analysts
to overcome the weaknesses of approximating the sensitivity of
a model that are present in the use of finite difference and the
complex step approaches.

There are many possible future paths that this research can
lead. One of the expected future work options is to do a direct
comparison to the finite difference and complex step analysis.
This would include both an accuracy analysis along with a com-
putational time requirement analysis. Another expected topic of
future work is to use the sensitivities to perform an uncertainty
quantification analysis such as covariance propagation. Along
with a traditional uncertainty quantification analysis, the authors
are particularly interested in the quantification of epistemic un-
certainty, specifically uncertainty due to the model form. These
techniques are currently being derived and evaluated. While the
topics described are interested in the system after the synthe-
sis, different forms of ROMs are available besides the Craig-
Bampton substructure representation. Another topic of future
work is the use of different substructure ROMs to produce a
PROM. This can be done with purely numerical data such as the
example that is presented in this paper or with experimental data
gathered in the laboratory.
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