

Exceptional service in the national interest

Generalized Reversible Computing, Truly Adiabatic Circuits, and Asynchronous Ballistic Logic

Michael P. Frank
Center for Computing Research
Sandia National Laboratories

Presented at the Energy Consequences of Information Workshop
February 23-25, 2017, Santa Fe, NM

DRAFT v0.3, 1/16/2017

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Structure of the Talk

1. Explain the motivations for this work
 - Overcoming limitations of traditional reversible computing theory
 - Dispelling confusion and facilitating technological progress
2. Develop **Generalized Reversible Computing** (GRC) theory
 - Starting point: Properly understanding Landauer's principle
 - *Logically reversible computations*: The correct general concept
3. Show how GRC can be used to model adiabatic circuits
 - Adiabatic transitions are conditionally-reversible computational ops
 - Building simple designs for truly, fully reversible AND and OR gates
4. Show how GRC makes possible a novel quasi-asynchronous ballistic style of reversible logic with reduced clocking needs
 - I call this **Asynchronous Reversible Computing** (ARC)
5. Conclusion

Motivations for this Work

- We want to show how to transcend the limitations of the traditional (Landauer-Fredkin-Toffoli) theoretical model of reversible logic networks, which:
 - Are insufficiently general to express the full range of truly logically- and physically-reversible computations that are in fact possible!
 - Are inadequate to represent the inherent computational structure of the real-world adiabatic logic mechanisms that we can actually build!
 - Lead to overly complex “primitive” gate operations that don’t map easily to device-level implementations! → Resulting designs are inefficient
 - Are restricted to synchronous logic schemes requiring extensive clocking overheads! → Creates an additional level of inefficiencies
- Due to these limitations, the traditional reversible logic model has engendered a lot of confusion, and has unfortunately been somewhat of a roadblock holding back progress in the field...
 - It’s high time that we adopt a more comprehensive theoretical model!

Landauer – What he got right!

- Information expelled from the computational state cannot be destroyed, due to the reversibility of fundamental physics
 - Therefore (“Landauer’s principle”), it ultimately ends up as thermal entropy in the environment, if it’s not explicitly preserved somewhere
 - For a computational operation applied *in a given statistical context*, the amount ΔS of entropy that must be expelled from the device is simply given by the initial state entropy S^I minus the final state entropy S^F
 - Computable from initial and final state probability distributions p_i^I, p_i^F

$$\Delta S = S^I - S^F$$

$$= \left(\sum_i p_i^I \log \frac{1}{p_i^I} \right) - \left(\sum_i p_i^F \log \frac{1}{p_i^F} \right)$$

- There was actually an arithmetic error in the specific numerical example Landauer computed in his 1961 paper, but his formulas were correct.
- I emphasize: The validity of this formula follows *immediately* from the unitarity of quantum time-evolution, and is *absolutely unquestionable*!!

Landauer – What he got wrong!

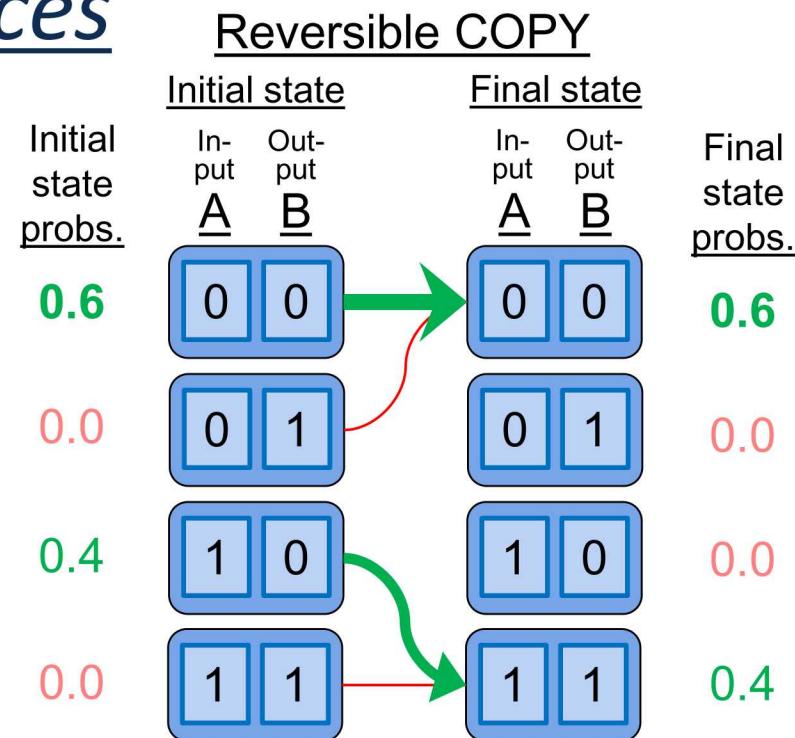
- Here, he defines logical (ir)reversibility for an N -bit *device*, which he assumes implicitly to operate on the *entire* space of 2^N combinatorially possible initial states (or “inputs”)
- However (c.f. prev. slide), what’s actually important for determining the entropic reversibility of a computation is *not just* the choice of operation (state mapping) implemented by the devices, but also the statistical operation context – the probability distribution over the initial states!
 - Landauer appears to be forgetting, here, that in the actual entropy-ejected formula (as shown on the previous slide), ΔS depends not just on the operation, but also on p^I , the initial state probabilities!!
 - DeBenedictis & Frank previously pointed this out, at ICRC 2016 (<http://bit.ly/2hYWLDV>)
- **Crucial:** If some initial states *have probability 0*, then *not* all of the 2^N combinatorially-possible initial states are statistically possible, in that context, but it’s the *statistical* characteristics that are the actual thing that really matters for entropy purposes!
 - Thus, in such contexts, a device operation can, perfectly consistently with known physics, map the full combinatoric space of 2^N initial states onto a *smaller* set of final states, while retaining the property that the entropy ejected $\Delta S = 0$ (reversibility)!
 - Landauer’s definition of “logical reversibility” tragically obscured this critically important fact!
- Landauer also got a few other important things wrong at first, like not realizing that computed information that is no longer needed can be reversibly *decomputed* (as Bennett later showed), but that’s already widely known.

... RESTORE TO ONE is an example of a logical truth function which we shall call *irreversible*. We shall call a device *logically irreversible* if the output of a device does not uniquely define the inputs.

... Now assume that the computer is logically reversible. Then the machine cycle maps the 2^N possible initial states of the machine onto the same space of 2^N states, rather than just a subspace thereof.

Logically reversible computations using “logically irreversible” devices

- This diagram illustrates a state mapping or “device operation” that is normally assumed to be “logically irreversible” under Landauer’s original, literal definition
 - Maps the $2^N=4$ initial states to only 2 final states!
 - ∴ Merges some states!
- However! Note that, crucially, in the specific operation context shown here, *some of the initial state probabilities are zero*.
 - Under this distribution, the identity of the input, out of the actually-possible (that is, nonzero-probability!) inputs, is uniquely determined by the output!
 - Note there are less than 2^N possible (nonzero-probability) initial states of the device, *given this distribution*, and this subset of states is mapped onto a (different) set of states with the same size (i.e., smaller than the full set of 2^N states).
 - We know that in fact this operation, done in this context, is logically reversible, because its $\Delta S = 0$! It does not eject any logical entropy into the environment!



What's the implication?

- The concept of “logically reversible computation” that has been used throughout a large part of the reversible computing literature, from Landauer on, is simply **the wrong one!**
 - In the sense that, it is significantly more restrictive than necessary.
- We need to reconstruct reversible computing theory from scratch, on top of a new, less restrictive foundation.
 - Many applications of the theory will end up changing as a result!
- Some elements of the necessary conceptual progression:
 - Distinctions between devices, operations, and computations.
 - Concept of devices supporting conditionally-reversible operations.
 - Crucially, the correct general concept of reversible computing *includes* computing with conditionally-reversible operations, in design contexts in which their preconditions are met.
 - Thence, we can develop devices and circuits using the new model.
 - We'll see that it makes designs much simpler, and enables completely new styles of reversible circuits, such as asynchronous styles...

Devices, Operations, Computations

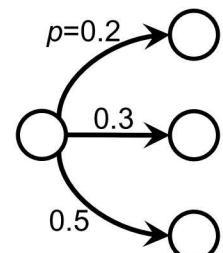
- One thing that is very helpful in understanding this issue, is distinguishing several fundamentally distinct concepts:
 - A *device* – physical artifact that can perform one or more operations.
 - Associated with some local state info. (I/O terminal states, internal states)
 - An *operation* – a mapping O transforming *initial states* to *final states*
 - The terms “input” and “output” are really too vague for many purposes
 - Since real hardware devices may use some of their I/O terminals for *both* input and output functions (bidirectional), and some for neither, at times
 - We’ll include consideration of partial mappings (*i.e.*, partially undefined)
 - A *computation* – an operation *performed within an operating context*
 - Specifies the initial state probabilities, as well as the operation performed
 - The probabilities are essential for a meaningful thermodynamic analysis!
 - Note that “entropy” always implicitly means “weighted-average entropy!”
 - » It’s the expectation value of the log-improbability of the state:

$$S(p) = \text{Ex}_p \left[\log \frac{1}{p} \right] = \sum_i p_i \log \frac{1}{p_i}$$

Conditionally Reversible Operations

- We restrict attention, in this talk, to *deterministic* operations.
 - Nondeterministic (randomizing) operations raise other issues:
 - Carrying them out can actually *absorb* entropy from the environment
 - Computations using operations that are *both* nondeterministic and logically irreversible can thus be thermodynamically reversible overall
 - In the case where the initial state information was already truly random
 - Those points are all very interesting, but are not our present focus...
- **Definition:** A (deterministic) operation is *conditionally reversible* if and only if there is *any* non-empty subset S of initial states that it maps onto an equal-size set of final states. We say that such an operation is *conditionally reversible under the precondition that the initial state is in S* .
 - **Theorem:** All deterministic operations (that are defined over *any* non-empty set of initial states) are conditionally reversible.
 - **Proof:** Consider the singleton set consisting of any one initial state, out of those that the operation is defined over. Since the operation is deterministic, this set necessarily maps onto a singleton final state.
- This definition may therefore seem a bit vacuous at first,
 - but we'll see that in fact, it has enormous utility...

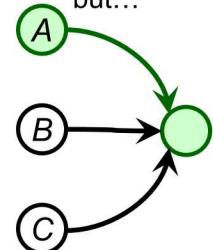
Nondeterministic



Final state
is random

Deterministic

This operation
is not reversible,
but...



It's
conditionally
reversible,
under the
condition that
the initial state
is (say) A

Operation Contexts, Computations, and Logical Reversibility (done right!)

- An *operation context*, for our purposes, simply means a probability distribution p over initial states.
 - It's just a statistical situation in which a given operation may be performed.
 - It has an associated entropy $S(p)$.
- A (deterministic) *computation* C is defined by a pair (O, p) of a deterministic operation O , and an associated operation context p .
 - This represents, performing the operation O within the context p .
 - O must be defined over at least all nonzero-probability initial states
- **Definition:** A computation $C = (O, p)$ is *logically reversible* if and only if the operation O is conditionally reversible under the precondition that the initial state is contained in the set of all states that are assigned nonzero probability within the operating context p .
 - **Theorem:** $C = (O, p)$ is logically reversible (according to this definition) if and only if the entropy $S(p)$ is not changed under the state transformation O .
 - As mentioned previously, the “if” part of this theorem wouldn’t always hold in the nondeterministic case – since there are nondeterministic, irreversible operations that also don’t change entropy in some operation contexts
 - The “if” part also wouldn’t hold under the conventional definition of “logically reversible,” which fails to recognize that unconditional reversibility isn’t required.

Now, we can say this:

- **Theorem:** A deterministic computation $C = (O, p)$ can be carried out in a thermodynamically reversible way (by some appropriately-designed mechanism) if and only if C is logically reversible (according to our new, corrected definition).
 - Proof is by construction using known abstract physical procedures
 - Still need to design specific concrete mechanisms with highest efficiency
- Note that the classic definition of logical reversibility that has been used throughout most of the reversible computing theory literature, starting with Landauer, is the wrong one, because it does *not* actually satisfy the above theorem!!
 - The “only if” part of the theorem would not hold, because the traditional definition of logical reversibility fails to recognize that even conditionally-reversible operations can *also* be carried out in a thermodynamically reversible way, in operation contexts in which their precondition has probability 1 of being met.

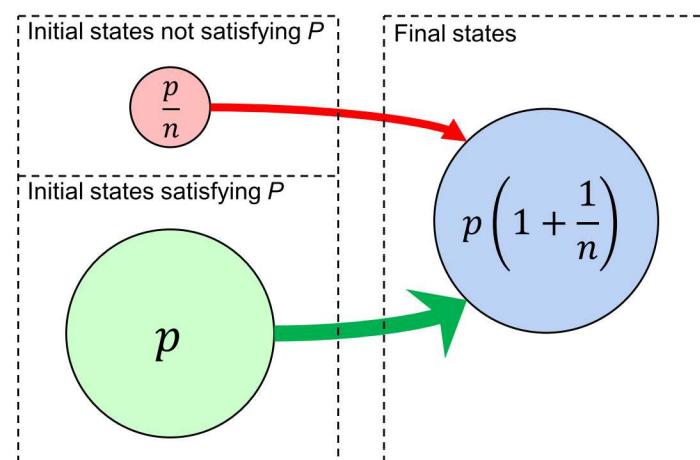
Almost-Logically-Reversible Computations

- You might object, “But real probabilities are almost never *exactly 0*.”
 - But, that’s OK... If they are *close to 0*, that’s good enough to be *almost* fully reversible.
- **Theorem:** For an operation that is conditionally reversible under any precondition P , if we consider a progression of operation contexts in which the probability that P is not satisfied approaches 0 , the entropy ejected by the computation due to Landauer’s principle also falls to 0 accordingly.
 - **Lemma:** For a state with probability $q = p/n$ (where $n > 1$) not satisfying P that merges with some state satisfying P that has a larger probability $p = nq$, the contribution Δs_i of this state merger to the total entropy ΔS ejected from the computation approaches the following expression as the probability ratio n increases (i.e., as the probability q falls), to first order in n :

$$\Delta s_i \rightarrow \frac{p}{n} (1 + \ln n) k_B$$

(And this value itself approaches 0 , almost in proportion to q as it falls.)

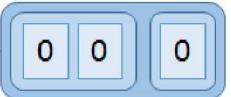
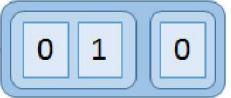
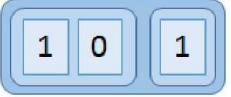
- Apply this lemma to all states not satisfying the precondition, merging with ones that do, and it’s easy to see the theorem always holds.



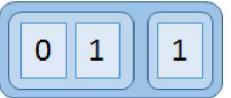
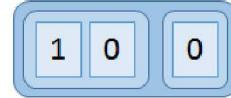
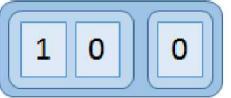
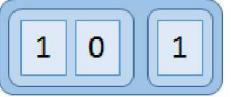
Conditionally-Reversible Operations are Useful!

Universality does *not* require unconditional reversibility

Conditionally-Reversible Boolean AND Operation

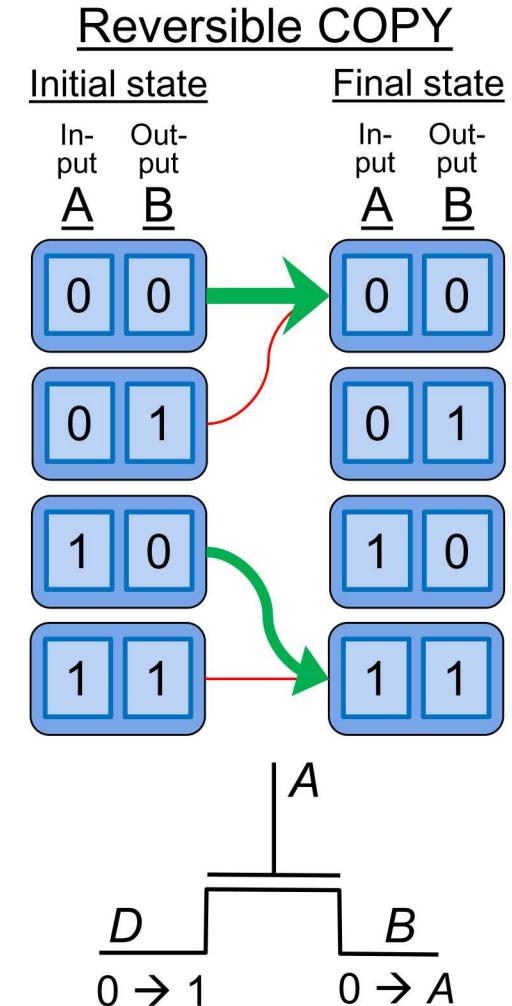
Example initial state probabilities	State before operation		State after operation		Final state probabilities
	Input state (Bit A)(Bit B)	Output state (Bit Q)	Input state (Bit A)(Bit B)	Output state (Bit Q)	
0.1					0.1
0.0					0.0
0.3					0.3
0.0					0.0
0.2					0.2
0.0					0.0
0.4					0.0
0.0					0.4

Conditionally-Reversible Boolean OR Operation

Example initial state probabilities	State before operation		State after operation		Resulting final state probabilities
	Input state (Bit A)(Bit B)	Output state (Bit Q)	Input state (Bit A)(Bit B)	Output state (Bit Q)	
0.1					0.1
0.0					0.0
0.3					0.0
0.0					0.3
0.2					0.0
0.0					0.2
0.4					0.0
0.0					0.4

Conditionally-reversible operations can have very simple implementations!

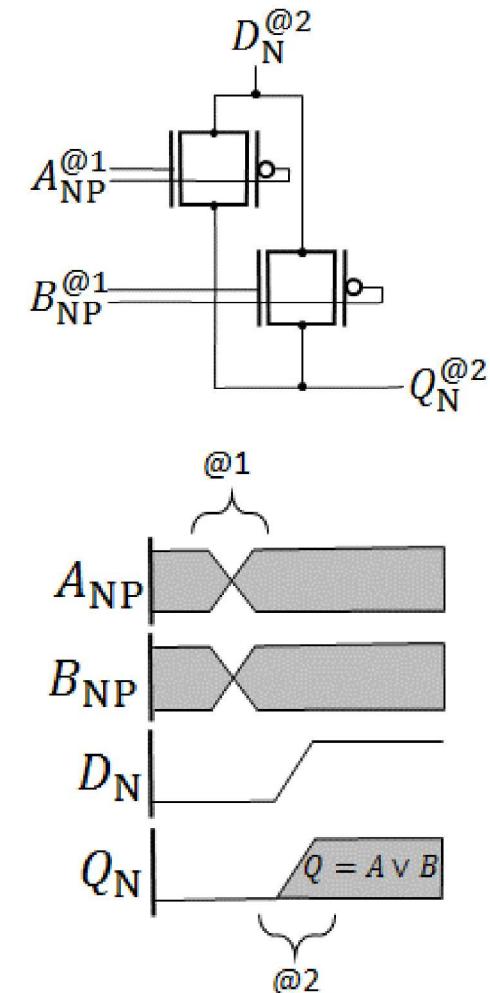
- The rCOPY (reversible copy) operation from earlier can be performed by *a single MOSFET!*
 - Or a transmission gate (2 T's) if we want a full-swing output
- Logical precondition:
 - $[B=0]$ - Meaning: B is initially 0 (with probability 1)
- Operation semantics:
 - $B:=A$ - Meaning: Change B to a logical copy of A
- A computation “[B=0] B:=A” (designating, doing this operation in a context satisfying the precondition in brackets) is *logically reversible* under our new definition
- Here is a procedure by which this simple device can perform an rCOPY operation:
 1. Driving node D is initially statically held at 0
 2. Input A is externally supplied (D&B are connected if and only if A is high)
 3. Externally transition driving node D from 0 to (weak) logic high
 4. Voltage level on node B follows D iff A is logic high
 - B is then afterwards logically equal to A (with a weak swing)
- Note this process is asymptotically thermodynamically reversible in all operating contexts that satisfy the precondition $[B=0]$, in the limit of relatively large devices (low leakage) and slow transitions
 - The traditional definition of logical reversibility fails to account for the fact that this process is, in fact, physically reversible in this context!
- Note: Step 2 would have a nonzero average dissipation if the precondition on B was not satisfied, if A might be 1



(Here, D and B have a reduced swing, but a T-gate can easily fix this)

Another example: Reversible OR

- In this design, we use CMOS transmission gates (parallel complementary MOSFETs) to ensure the output levels are full-swing
 - All signals are dual-rail (complementary wires)
 - Use circuit twice to produce dual-rail output
- Computation sequence:
 1. Precondition: Output signal Q initially at logic 0
 2. Driving signal D is also initially logic 0
 3. At time 1 (@1), inputs A, B transition to new levels
 - Connecting D to Q if and only if A or B is logic 1
 4. At time 2 (@2), driver D transitions from 0 to 1
 - Q follows it to 1 if and only if A or B is logic 1
 - Now Q is the logical OR of inputs A, B
- Reversible things that we can do afterwards:
 - Restore A, B to 0 (latching Q), or, undo above steps



Unconditionally-Reversible Operations are only a special case!

More critiques of Landauer '61...

- Here, Landauer introduced what we now refer to as the *Toffoli gate operation*, or controlled-controlled-NOT, an unconditionally logically reversible operation:

$$r = r \oplus pq.$$

- Landauer describes (correctly) that AND can be embedded into this operation. (Given initial $r = 0$)
- However, his statement here that the AND operation “is not, in itself, reversible” is somewhat misleading!

- That would only be true if:
 - The input bits were *consumed*...
 - But CMOS gates never consume inputs!
 - Or, if the output bit was *destructively overwritten* with the result
 - Merging nonzero-probability states
 - As opposed to, being transformed, in a logically reversible way, to the result
 - When the output bit is destructively overwritten, even NOT is irreversible!

Consider, for example, a particular three-input, three-output device, i.e., a small special purpose computer with three bit positions. Let p , q , and r be the variables before the machine cycle. The particular truth function under consideration is the one which replaces r by $p \cdot q$ if $r = 0$, and replaces r by $\overline{p \cdot q}$ if $r = 1$. The variables p and q are left unchanged during the machine cycle. We can consider r as giving us a choice of program, and p , q as the variables on which the selected program operates. This is a logically reversible device, its output always defines its input uniquely. Nevertheless it is capable of performing an operation such as AND which is not, in itself, reversible.

- The approach Landauer takes here, of XOR'ing the result into the output bit, is indeed one that is logically reversible in *all* operation contexts.
 - But, it is rather complex to implement...
 - The simpler, conditionally-reversible setting of the output also works fine, in suitably restricted contexts!
 - Landauer did not consider this.

All truly, fully adiabatic circuits are (at least) conditionally reversible!

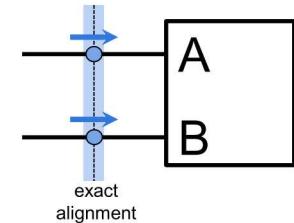
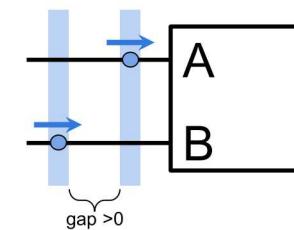
- “Dry switching” rules for designing truly adiabatic circuits:
 - Never close a switch when there’s a voltage $\neq 0$ between its terminals
 - E.g., don’t turn on a transistor when $V_{DS} \neq 0$.
 - Never open a switch when there’s a current passing through it.
 - E.g., don’t turn off a transistor when $I_{DS} \neq 0$.
 - Only exception to this rule: If there’s an alternate path for the current.
 - Never pass current through diodes (which have a voltage drop)
- Violating any of these rules leads to significant dissipation!
- **Theorem:** The operation of a switching circuit carries out a (conditionally) logically reversible computation, in any operation context where the above rules are always satisfied.
 - *It’s impossible to erase information in any truly, fully adiabatic logic operation.* → Logically-reversible computing is key to adiabatic design
 - But the *right* definition of “logically reversible” is our generalized one!

The “synchrony curse” in traditional reversible design

- All of the traditional, unconditionally-reversible operations (e.g., Fredkin & Toffoli gates) are implicitly *synchronous* in their design...
 - Assume that all gate inputs are available at exactly the same time
 - Requires extensive clock distribution (in adiabatic implementations), or unrealistically-precise timing (in ballistic implementations)
 - Failure to meet timing assumptions generally leads to irreversibility
 - \therefore ... Even our supposedly “unconditionally reversible” gate designs are *actually* only *conditionally* reversible, because we always implicitly assume the precondition that *their timing assumptions are in fact met*.
- Since our real-world reversible gate implementations are *really* only conditionally-reversible anyway,
 - can we come up with timing-related preconditions that are easier to meet than the usual full-synchrony assumption?

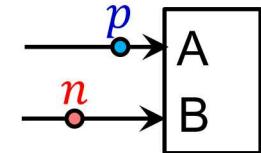
A much looser timing constraint!

- Imagine a scenario in which computational information is conveyed by time-limited, near-ballistically-propagating pulses/particles/wave packets
 - To require all incoming pulses to arrive at precisely-aligned times would be an extremely stringent constraint!
 - Any uncertainty in the relative arrival times of pulses would generally lead to exponential amplification of uncertainties over successive interactions (chaotic instability)
 - Thus, entropy would increase during the interaction (historically, this observation goes all the way back to Boltzmann's H-theorem)
 - Consider the following constraint, instead:
 - Suppose all incoming pulses are required to arrive at *different*, non-overlapping times!
 - Much looser constraint
 - Instead, we might only require a specific relative *order* of arrival of pulses (e.g., first a pulse on terminal A, then one on terminal B)
 - If devices are just quiescently stable in between subsequent pulses, then the dynamical response of a device to a pulse's arrival is independent of the exact arrival time of the pulse
 - We may plausibly expect that any increases in the timing uncertainty can be more easily constrained to be limited (growing linearly rather than geometrically, say) due to this time-independence
 - What are the logical implications of this new, looser constraint?



Asynchronous Ballistic Logic

- Given that inputs must arrive at *different times*,
 - this implies that devices must, in general, have internal state
 - or else no inter-signal interaction, and thus no logic, would be possible
- Given that the devices must be reversible,
 - then each pulse that comes *in* must (after some delay),
 - yield a pulse *out* that carries away the timing information that was contained in the input pulse
- Given that pulses arrive one at a time, and that the order matters, but the exact arrival time does not matter,
 - an input stream can be characterized by a sequence of compound signal characters (read here from right to left, imagining the data flowing to the right)



$$[C_k, \dots, C_2, C_1] = \left[\binom{T_k}{V_k}, \dots, \binom{T_2}{V_2}, \binom{T_1}{V_1} \right]$$

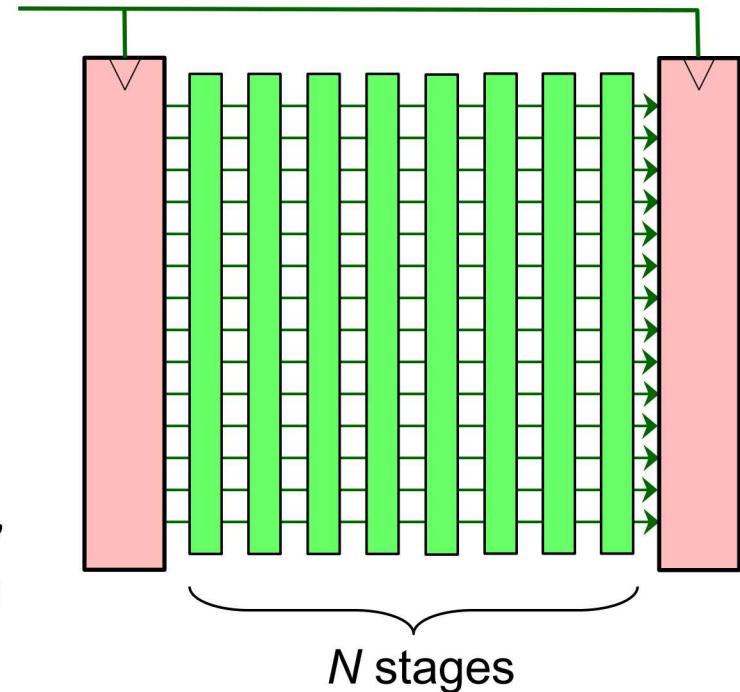
$$[C_2, C_1] = \left[\binom{B}{n}, \binom{A}{p} \right]$$

where each C_i designates which terminal T_i the next incoming pulse arrives on, and (if there is more than one variety of pulse), which variety V_i of pulse is arriving.

- Output streams are described in the same way, w.r.t outgoing pulses
- Given the above constraints, these devices' computational function can be completely characterized by:
 - A (conditionally) logically reversible map of pairs $(C_{\text{in}}, S_{\text{ini}}) \rightarrow (S_{\text{fin}}, C_{\text{out}})$
 - Where the S 's are device states (initial vs. final), and the C 's are signal characters (incoming vs. outgoing). (Note that we're allowing here that terminals may, in general, be bidirectional)
 - These devices are thus conditionally-reversible versions of finite-state Mealy machines

What's the advantage?

- Some amount of timing uncertainty is still going to accumulate in each device...
 - Eventually, this dispersion can cause pulses to arrive out-of-order, and prevent correct operation
- Therefore, it is still necessary to re-synchronize signals periodically,
 - and doing this is irreversible, because exact timing information is discarded
- However!
 - If the rate of pulse dispersion is low enough that we can do N ($\gg 1$) stages of logic reliably in between synchronization steps,
 - then we can reduce clocking overhead by a factor of $N \times$ compared to fully-synchronous reversible logic,
 - and reduce energy dissipation by $N \times$ compared to irreversible logic!

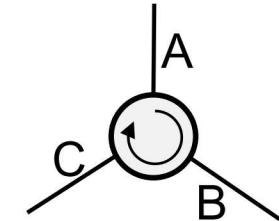


A simple universal set of asynchronous reversible (AR) devices

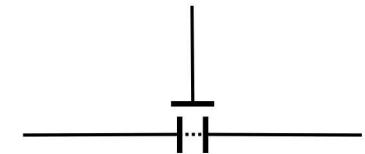
- It's easy to catalogue all possible AR devices for small numbers of terminals, pulse varieties, and internal states.
- Among AR devices with no more than 3 terminals, 2 states, and 1 pulse variety, the following is the simplest universal set of devices that I have found so far:

- *A rotary or circulator* simply routes incoming pulses to the next output terminal in a clockwise (or counterclockwise) direction. State is fixed.
- *The toggled barrier* has 2 states, “pass/block”
 - When the device is in the “block” state, horizontal pulses reflect off of it
 - When the device is in the “pass” state, they pass through
 - Pulses to control terminal reflect off, and simultaneously toggle the state

Rotary (Circulator)

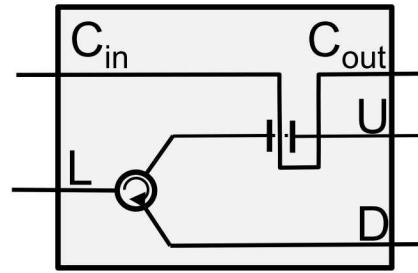


Toggled Barrier

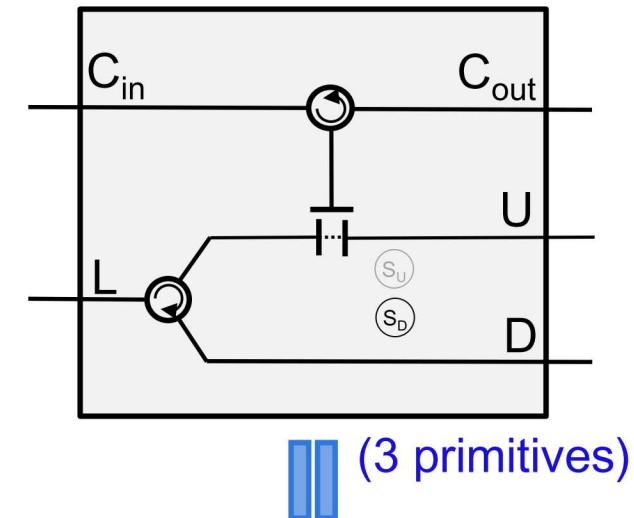
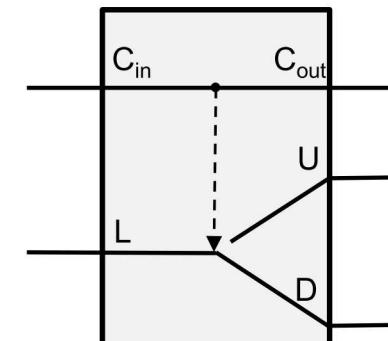


Example AR circuit construction

- Building a *toggling switch gate* out of rotaries and toggled barriers
- Starting from this, we can build more complex constructions including normal (non-toggling) switch gates
- Switch gates were previously shown to be universal gates for reversible logic by Feynman (1986) and others
- Another implementation using a toggled barrier with a pass-thru control:



(2 primitives)



Possible implementation technologies

- The pulses in ARC might be implemented by things like:
 - SFQ pulses in passive long Josephson junction (LJJ) transmission lines
 - More generally, soliton-like excitations of any nonlinear medium
 - Single particles or quasiparticles (e.g. excess electrons or excitons) propagating ballistically in suitable media (vacuum or crystal)
 - Optical pulses in some suitable medium
 - Electrical pulses in coaxial transmission lines
- Circulators already exist for microwave circuits and SFQ
- Still-open problem:
 - How to build a toggled barrier, or other AR device(s) sufficient for universal reversible logic?
- For any AR devices, an engineering challenge will be to get the pulse dispersion as low as possible in devices and wires
 - Reliability of the logical operation is also important to maximize
 - Error correction can be done, but is inherently irreversible

Conclusions

- The traditional formalizations of reversible logic going all the way back to Landauer, and further developed by Fredkin and Toffoli, do not, in their existing form, comprise an adequate theoretical foundation for the engineering of real reversible hardware
 - The classic definition of *logical reversibility* is unnecessarily restrictive
 - The classic concept of “logically reversible device operations” must be extended to encompass the more general notion of *conditionally logically reversible operations*, and *logically reversible computations* that meet the conditions
 - These offer more flexibility for hardware implementations, while still avoiding incurring any minimum dissipation from Landauer’s principle
- The resulting new theoretical model of **Generalized Reversible Computing** (GRC) offers many advantages over the old model:
 - It offers a precise, rigorous correspondence to the set of asymptotically adiabatic (thermodynamically reversible) physical computing mechanisms
 - It provides a foundation for designing much simpler primitive operations out of which more efficient reversible logic architectures may be constructed
 - GRC also is general enough to allow us to build on top of it a new framework for **Asynchronous Reversible Computing** (ARC),
 - which avoids many of the overheads incurred in clocking synchronous designs
- The reversible computing community really needs to embrace GRC (and models based on it) as the right foundation for further progress!