This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Exceptional service in the national interest

Laboratories

Generalized Reversible Computing,
Truly Adiabatic Circuits,
and Asynchronous Ballistic Logic

Michael P. Frank
Center for Computing Research
Sandia National Laboratories

Presented at the Energy Consequences of Information Workshop
February 23-25, 2017, Santa Fe, NM

DRAFT v0.3, 1/16/2017

':'fq@:‘ U.S. DEPARTMENT OF VY A t\(xﬂ

‘f ) N A 2 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
k/.ég

s NeSlanay ot Sumsoly Adminotnton Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. '




Structure of the Talk )

1. Explain the motivations for this work
= Qvercoming limitations of traditional reversible computing theory
= Dispelling confusion and facilitating technological progress

2. Develop Generalized Reversible Computing (GRC) theory
= Starting point: Properly understanding Landauer’s principle

= [|ogically reversible computations: The correct general concept

3. Show how GRC can be used to model adiabatic circuits
= Adiabatic transitions are conditionally-reversible computational ops
= Building simple designs for truly, fully reversible AND and OR gates

4. Show how GRC makes possible a novel quasi-asynchronous
ballistic style of reversible logic with reduced clocking needs
= | call this Asynchronous Reversible Computing (ARC)

5. Conclusion




Motivations for this Work ) i,

= We want to show how to transcend the limitations of the
traditional (Landauer-Fredkin-Toffoli) theoretical model of
reversible logic networks, which:

= Are insufficiently general to express the full range of truly logically- and
physically-reversible computations that are in fact possible!

= Are inadequate to represent the inherent computational structure of the
real-world adiabatic logic mechanisms that we can actually build!

= |Lead to overly complex “primitive” gate operations that don’t map easily
to device-level implementations! = Resulting designs are inefficient

= Are restricted to synchronous logic schemes requiring extensive clocking
overheads! > Creates an additional level of inefficiencies
= Due to these limitations, the traditional reversible logic model
has engendered a lot of confusion, and has unfortunately been
somewhat of a roadblock holding back progress in the field...
= |t’s high time that we adopt a more comprehensive theoretical model!




Landauer — What he got right! 7 s
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= |nformation expelled from the computational state cannot be
destroyed, due to the reversibility of fundamental physics

= Therefore (“Landauer’s principle”), it ultimately ends up as thermal
entropy in the environment, if it’s not explicitly preserved somewhere

= For a computational operation applied in a given statistical context, the
amount AS of entropy that must be expelled from the device is simply
given by the initial state entropy S’ minus the final state entropy S

= Computable from initial and final state probability distributions pl!, plF

AS = St —

z p; log z p; log

* There was actually an arithmetic error in the specific numerical example
Landauer computed in his 1961 paper, but his formulas were correct.

= | emphasize: The validity of this formula follows immediately from the
unitarity of quantum time-evolution, and is absolutely unquestionable!!




Landauer — What he got wrong! )
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= Here, he defines logical (ir)reversibility ... RESTORE TO ONE is an
for an N-bit device, which he assumes example of a logical truth function which we shall call
implicitly to operate on the entire space irreversible. We shall call a device logically irreversible if

. . . e el th tput of a device does not yniguely define the inputs.

of 2N combinatorially possible initial St R A .
states (or “inputs” ... Now assume that the computer is loglcall_y reversi-

( P ) ble. Then the machine cycle maps the 2V possible initia]

= However (c.f. prev. slide), what's states of the machine onto the same space of 2V states,
actually important for determining the rather than just a subspace thereof. .

entropic reversibility of a computation
is not just the choice of operation (state mapping) implemented by the devices, but also the
statistical operation context — the probability distribution over the initial states!
= Landauer appears to be forgetting, here, that in the actual entropy-ejected formula (as shown on the
previous slide), AS depends not just on the operation, but also on p!, the initial state probabilities!!
= DeBenedictis & Frank previously pointed this out, at ICRC 2016 (http://bit.ly/2hYWLdV)

= Crucial: If some initial states have probability 0, then not all of the 2"’ combinatorially-possible

initial states are statistically possible, in that context, but it’s the statistical characteristics that
are the actual thing that really matters for entropy purposes!

= Thus, in such contexts, a device operation can, perfectly consistently with known physics, map the full
combinatoric space of 2V initial states onto a smaller set of final states, while retaining the property
that the entropy ejected AS = 0 (reversibility)!

= Landauer’s definition of “logical reversibility” tragically obscured this critically important fact!
= Landauer also got a few other important things wrong at first, like not realizing that

computed information that is no longer needed can be reversibly decomputed (as
Bennett later showed), but that’s already widely known.




Logically reversible computations usin
. . . . r‘1 National
“logically irreversible” devices  greversivie copy
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Initial state Final state
= This diagram illustrates a state Initial~ In- Out- - Out-  Final
mapping or “device operation” that state A0 5 ‘"R state
is normally assumed to be “logically probs. g Probs.
irreversible” under Landauer’s 0.6 0.6
original, literal definition
= Maps the 2V=4 initial states to 0.0 0.0
only 2 final states!
= .. Merges some states! . ' 0.4 0.0
= However! Note that, crucially, in
the specific operation context 0.0 0.4

shown here, some of the initial
state probabilities are zero.

= Under this distribution, the identity of the input, out of the actually-possible

(that is, nonzero-probability!) inputs, is uniquely determined by the output!

= Note there are Jess than 2N possible (nonzero-probability) initial states of the device,
given this distribution, and this subset of states is mapped onto a (different) set of
states with the same size (i.e., smaller than the full set of 2" states).
= We know that in fact this operation, done in this context, is logically reversible,
because its AS = 0! It does not eject any logical entropy into the environment!




What’s the implication? )
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= The concept of “logically reversible computation” that has
been used throughout a large part of the reversible computing
literature, from Landauer on, is simply the wrong one!

= |n the sense that, it is significantly more restrictive than necessary.

= We need to reconstruct reversible computing theory from
scratch, on top of a new, less restrictive foundation.
= Many applications of the theory will end up changing as a result!

= Some elements of the necessary conceptual progression:
= Distinctions between devices, operations, and computations.

= Concept of devices supporting conditionally-reversible operations.

= Crucially, the correct general concept of reversible computing includes
computing with conditionally-reversible operations, in design contexts in
which their preconditions are met.

= Thence, we can develop devices and circuits using the new model.

= We’'ll see that it makes designs much simpler, and enables completely new
styles of reversible circuits, such as asynchronous styles...




Devices, Operations, Computations @,

= One thing that is very helpful in understanding this issue, is
distinguishing several fundamentally distinct concepts:
= A device — physical artifact that can perform one or more operations.

= Associated with some local state info. (I/O terminal states, internal states)

= An operation —a mapping O transforming initial states to final states
= The terms “input” and “output” are really too vague for many purposes

— Since real hardware devices may use some of their I/O terminals for both
input and output functions (bidirectional), and some for neither, at times

= We’'ll include consideration of partial mappings (i.e., partially undefined)
= A computation —an operation performed within an operating context

= Specifies the initial state probabilities, as well as the operation performed

= The probabilities are essential for a meaningful thermodynamic analysis!

|H

— Note that “entropy” always implicitly means “weighted-average entropy!
» It’s the expectation value of the log-improbability of the state:

S(p) = Ex, llog ] zpl log—




Conditionally Reversible Operations

=  We restrict attention, in this talk, to deterministic operations.
= Nondeterministic (randomizing) operations raise other issues:

= Carrying them out can actually absorb entropy from the environment

= Computations using operations that are both nondeterministic and
logically irreversible can thus be thermodynamically reversible overall

— In the case where the initial state information was already truly random
= Those points are all very interesting, but are not our present focus...

= Definition: A (deterministic) operation is conditionally
reversible if and only if there is any non-empty subset S of
initial states that it maps onto an equal-size set of final
states. We say that such an operation is conditionally
reversible under the precondition that the initial state is in S.

= Theorem: All deterministic operations (that are defined over any
non-empty set of initial states) are conditionally reversible.

= Proof: Consider the singleton set consisting of any one initial state,
out of those that the operation is defined over. Since the operation is
deterministic, this set necessarily maps onto a singleton final state.

= This definition may therefore seem a bit vacuous at first,
= but we’'ll see that in fact, it has enormous utility...
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Nondeterministic

Final state
is random

Deterministic

This operation
is not reversible,

It'’s
conditionally
reversible,
under the
condition that
the initial state
is (say) A



Operation Contexts, Computations, 7 i
and Logical Reversibility (done right!)
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= An operation context, for our purposes, simply means a probability
distribution p over initial states.

= |t’s just a statistical situation in which a given operation may be performed.
= |t has an associated entropy S(p).

= A (deterministic) computation C is defined by a pair (O, p) of a
deterministic operation O, and an associated operation context p.
= This represents, performing the operation O within the context p.
= () must be defined over at least all nonzero-probability initial states

= Definition: A computation C = (0, p) is logically reversible if and only if the
operation O is conditionally reversible under the precondition that the initial
state is contained in the set of all states that are assigned nonzero probability
within the operating context p.

* Theorem: C = (0, p) is logically reversible (according to this definition) if and
only if the entropy S(p) is not changed under the state transformation 0.
= As mentioned previously, the “if” part of this theorem wouldn’t always hold in the

nondeterministic case — since there are nondeterministic, irreversible operations
that also don’t change entropy in some operation contexts

= The “if” part also wouldn’t hold under the conventional definition of “logically
reversible,” which fails to recognize that unconditional reversibility isn’t required.




Sandia

Now, we can say this: .

"= Theorem: A deterministic computation C = (O, p) can be
carried out in a thermodynamically reversible way (by some
appropriately-designed mechanism) if and only if C is logically
reversible (according to our new, corrected definition).

= Proof is by construction using known abstract physical procedures
= Still need to design specific concrete mechanisms with highest efficiency

= Note that the classic definition of logical reversibility that has
been used throughout most of the reversible computing
theory literature, starting with Landauer, is the wrong one,
because it does not actually satisfy the above theorem!!

= The “only if” part of the theorem would not hold, because the
traditional definition of logical reversibility fails to recognize that even
conditionally-reversible operations can also be carried out in a
thermodynamically reversible way, in operation contexts in which
their precondition has probability 1 of being met.




Almost-Logically-Reversible Computations (i) e
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= You might object, “But real probabilities are almost never exactly 0.”
= But, that’s OK... If they are close to 0, that’s good enough to be almost fully reversible.

= Theorem: For an operation that is conditionally reversible under any
precondition P, if we consider a progression of operation contexts in which
the probability that P is not satisfied approaches 0, the entropy ejected by
the computation due to Landauer’s principle also falls to 0 accordingly.
= Lemma: For a state with probability g = p/n (where n > 1) not satisfying P
that merges with some state satisfying P that has a larger probability p = ng,
the contribution As; of this state merger to the total entropy AS ejected from

the computation approaches the following expression as the probability ratio n
increases (i.e., as the probability g falls), to first order in n:

As; - = (1+Inn)kg A s oA Py (il s T
n : 1 :
1 p 1 f
(And this value itself approaches 0, 5 ~

........................

almost in proportion to g as it falls.) " initial states satisfying P

=  Apply this lemma to all states not satisfying
the precondition, merging with ones that do,
and it’s easy to see the theorem always holds.




Conditionally-Reversible Operations are Useful!
Universality does not require unconditional reversibility

Conditionally-Reversible Boolean AND Operation

h
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Conditionally-Reversible Boolean OR Operation
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Conditionally-reversible operations can
have very simple implementations!

= The rCOPY (reversible copy) operation from earlier can be
performed by a single MOSFET!

= QOratransmission gate (2 T’s) if we want a full-swing output
= Logical precondition:

= [B=0] - Meaning: B is initially 0 (with probability 1)
= (QOperation semantics:
= B:=A - Meaning: Change B to a logical copy of A

= A computation “[B=0] B:=A" (designating, doing this operation in
a context satisfying the precondition in brackets) is logically
reversible under our new definition

= Hereis a procedure by which this simple device can perform an
rCOPY operation:
1. Driving node D is initially statically held at 0
2. Input A is externally supplied (D&B are connected if and only if A is high)
3. Externally transition driving node D from 0 to (weak) logic high
4. Voltage level on node B follows D iff A is logic high
= Bisthen afterwards logically equal to A (with a weak swing)

= Note this process is asymptotically thermodynamically reversible
in all operating contexts that satisfy the precondition [B=0], in the
limit of relatively large devices (low leakage) and slow transitions
= The traditional definition of logical reversibility fails to account for the fact
that this process is, in fact, physically reversible in this contextx!
= Note: Step 2 would have a nonzero average dissipation if the
precondition on B was not satisfied, if A might be 1

Sandia
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Reversible COPY

Initial state Final state
In-  Out- In-  Out-
put put put put

AB AB

D B
0->1 0>A

(Here, D and B have a
reduced swing, but a T-gate
can easily fix this)




Another example: Reversible OR ) 5,

" In this design, we use CMOS transmission gates  (This is also AND
(parallel complementary MOSFETSs) to ensure It we flip polarnities)

the output levels are full-swing DY’
= All signals are dual-rail (complementary wires) ‘_L
= Use circuit twice to produce dual-rail output ANp=t1P
= Computation sequence: B@: b-
1. Precondition: Output signal Q initially at logic 0 @2
2. Driving signal D is also initially logic 0 @1

3. Attime 1 (@1), inputs A, B transition to new levels
= Connecting Dto Qif and only if A or Bis logic 1 Anp

4. Attime 2 (@2), driver D transitions from 0 to 1 By
"= Qfollowsitto 1ifandonlyif AorBislogicl
"= Now Q is the logical OR of inputs A,B
. . ‘ —AvB
= Reversible things that we can do afterwards: On -
= Restore A, B to 0 (latching Q), or, undo above steps @2

Wil




Unconditionally-Reversible Operations
are only a special case!
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More critiques of Landauer ‘61...

= Here, Landauer introduced what we
now refer to as the Toffoli gate
operation, or controlled-controlled-
NOT, an unconditionally logically
reversible operation:

r=1@Dpq.

= Landauer describes (correctly) that
AND can be embedded into this
operation. (Given initial r = 0)

Consider, for example, a particular three-
input, three-output device, i.e., a small special purpose
computer with three bit positions. Let p, g, and r be the
variables before the machine cycle. The particular truth
function under consideration is the one which replaces
r by p - q if r=0, and replaces r by p - q if r=1. The vari-
ables p and g are left unchanged during the machine
cycle. We can consider r as giving us a choice of pro-
gram, and p, g as the variables on which the selected
program operates. This is a logically reversible device,
its output always defines its input uniquely. Nevertheless
it is capable of performing an operation such as AND
which is not, in itself, reversible.

= However, his statement here that the
AND operation “is not, in itself, .
reversible” is somewhat misleading!

= That would only be true if:
* The input bits were consumed...
— But CMOS gates never consume inputs!

= Or, if the output bit was destructively
overwritten with the result

— Merging nonzero-probability states

— As opposed to, being transformed, in a
logically reversible way, to the result

— When the output bit is destructively
overwritten, even NOT is irreversible!

The approach Landauer takes here, of

XOR’ing the result into the output bit, is
indeed one that is logically reversible in all
operation contexts.

But, it is rather complex to implement...

= The simpler, conditionally-reversible
setting of the output also works fine, in
suitably restricted contexts!

= Landauer did not consider this.

Laboratories




All truly, fully adiabatic circuits )
are (at least) conditionally reversible!

Laboratories
= “Dry switching” rules for designing truly adiabatic circuits:

= Never close a switch when there’s a voltage #0 between its terminals
= E.g., don’t turn on a transistor when Vs # 0.

= Never open a switch when there’s a current passing through it.
= E.g., don’t turn off a transistor when I, # 0.
= Only exception to this rule: If there’s an alternate path for the current.

= Never pass current through diodes (which have a voltage drop)
= Violating any of these rules leads to significant dissipation!

= Theorem: The operation of a switching circuit carries out a
(conditionally) logically reversible computation, in any
operation context where the above rules are always satisfied.

= |t’s impossible to erase information in any truly, fully adiabatic logic
operation. = Logically-reversible computing is key to adiabatic design

= But the right definition of “logically reversible” is our generalized one!




The “synchrony curse” in =
traditional reversible design
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= All of the traditional, unconditionally-reversible operations
(e.g., Fredkin & Toffoli gates) are implicitly synchronous in
their design...

= Assume that all gate inputs are available at exactly the same time

= Requires extensive clock distribution (in adiabatic implementations),
or unrealistically-precise timing (in ballistic implementations)

= Failure to meet timing assumptions generally leads to irreversibility
= . .. Even our supposedly “unconditionally reversible” gate designs
are actually only conditionally reversible, because we always implicitly
assume the precondition that their timing assumptions are in fact met.
= Since our real-world reversible gate implementations are
really only conditionally-reversible anyway,

= can we come up with timing-related preconditions that are easier to
meet than the usual full-synchrony assumption?



A much looser timing constraint! )
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" |magine a scenario in which computational information is
conveyed by time-limited, near-ballistically-propagating
pulses/particles/wave packets

= Torequire all incoming pulses to arrive at precisely-aligned
times would be an extremely stringent constraint!

==
= Any uncertainty in the relative arrival times of pulses would i A
generally lead to exponential amplification of uncertainties over —-
successive interactions (chaotic instability) ‘ B
— Thus, entropy would increase during the interaction (historically, this allgnmet

observation goes all the way back to Boltzmann’s H-theorem)
= Consider the following constraint, instead:

= Suppose all incoming pulses are required to arrive at different, non- i
overlapping times! —A
— Much looser constraint

— Instead, we might only require a specific relative order of arrival of
pulses (e.g., first a pulse on terminal A, then one on terminal B)

= |f devices are just quiescently stable in between subsequent pulses,
then the dynamical response of a device to a pulse’s arrival is
independent of the exact arrival time of the pulse

— We may plausibly expect that any increases in the timing uncertainty
can be more easily constrained to be limited (growing linearly rather
than geometrically, say) due to this time-independence

= What are the logical implications of this new, looser constraint?




Asynchronous Ballistic Logic ) =
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= Given that inputs must arrive at different times,
= this implies that devices must, in general, have internal state
= orelse no inter-signal interaction, and thus no logic, would be possible
= Given that the devices must be reversible,
= then each pulse that comes in must (after some delay),
= vyield a pulse out that carries away the timing information that was contained in the input pulse

= Given that pulses arrive one at a time, and that the order matters, but the exact
arrival time does not matter,

® aninput stream can be characterized by a sequence of compound signal 5 A
characters (read here from right to left, imagining the data flowing to the n B
right)

G €0 = (1) (7). () 6= (). ()

where each C; designates which terminal T; the next incoming pulse arrives on,
and (if there is more than one variety of pulse), which variety V; of pulse is arriving.

=  Qutput streams are described in the same way, w.r.t outgoing pulses

= Given the above constraints, these devices’ computational function can be
completely characterized by:
= A (conditionally) logically reversible map of pairs (Ciy, Sini) = (Stin, Cout)

= Where the S’s are device states (initial vs. final), and the C’s are signal characters (incoming vs.
outgoing). (Note that we’re allowing here that terminals may, in general, be bidirectional)

= These devices are thus conditionally-reversible versions of finite-state Mealy machines




What’s the advantage? ) .

= Some amount of timing
uncertainty is still going to
accumulate in each device...

= Eventually, this dispersion can
cause pulses to arrive out-of-order,
and prevent correct operation

= Therefore, it is still necessary to
re-synchronize signals periodically,
= and doing this is irreversible, because
exact timing information is discarded
= However!

= |f the rate of pulse dispersion is low enough that we can do
N (> 1) stages of logic reliably in between synchronization steps,

= then we can reduce clocking overhead by a factor of N X compared to
fully-synchronous reversible logic,

= and reduce energy dissipation by N X compared to irreversible logic!

YVVY VY VNV NVVVVVY Y

(

——
N stages




A simple universal set of )
asynchronous reversible (AR) devices

= |t’s easy to catalogue all possible AR
devices for small numbers of terminals,
pulse varieties, and internal states. A

Rotary (Circulator)

= Among AR devices with no more than 3
terminals, 2 states, and 1 pulse variety, B
the following is the simplest universal
set of devices that | have found so far: Toggled Barrier

= A rotary or circulator simply routes incoming _'_
pulses to the next output terminal in a clockwise
(or counterclockwise) direction. State is fixed.

= The toggled barrier has 2 states, “pass/block”

1.
11

= When the device is in the “block” state, horizontal pulses reflect off of it
= When the device is in the “pass” state, they pass through
= Pulses to control terminal reflect off, and simultaneously toggle the state
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Example AR circuit construction ) .

= Building a toggling switch gate out of
rotaries and toggled barriers C C

: ; A
= Starting from this, we can build more T
complex constructions including normal

(non-toggling) switch gates L &
= Switch gates were previously shown to be . D

universal gates for reversible logic by
Feynman (1986) and others II (3 primitives)

= Another implementation using a
toggled barrier with a pass-thru Co _ Co

control: -
C. Cout -
in ou ) ¢/

fi -4 o
g i el

(2 primitives)




Possible implementation technologies @i
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= The pulses in ARC might be implemented by things like:
= SFQ pulses in passive long Josephson junction (LJJ) transmission lines
= More generally, soliton-like excitations of any nonlinear medium

= Single particles or quasiparticles (e.g. excess electrons or excitons)
propagating ballistically in suitable media (vacuum or crystal)

= QOptical pulses in some suitable medium
= Electrical pulses in coaxial transmission lines

= Circulators already exist for microwave circuits and SFQ

= Still-open problem:
= How to build a toggled barrier, or other AR device(s) sufficient for
universal reversible logic?
= For any AR devices, an engineering challenge will be to get
the pulse dispersion as low as possible in devices and wires

= Reliability of the logical operation is also important to maximize
= Error correction can be done, but is inherently irreversible




Conclusions 3 &
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= The traditional formalizations of reversible logic going all the way back

to Landauer, and further developed by Fredkin and Toffoli, do not, in
their existing form, comprise an adequate theoretical foundation for
the engineering of real reversible hardware

= The classic definition of logical reversibility is unnecessarily restrictive

= The classic concept of “logically reversible device operations” must be extended
to encompass the more general notion of conditionally logically reversible
operations, and logically reversible computations that meet the conditions

— These offer more flexibility for hardware implementations, while still avoiding
incurring any minimum dissipation from Landauer’s principle

The resulting new theoretical model of Generalized Reversible
Computing (GRC) offers many advantages over the old model:
= |t offers a precise, rigorous correspondence to the set of asymptotically
adiabatic (thermodynamically reversible) physical computing mechanisms

= |t provides a foundation for designing much simpler primitive operations out
of which more efficient reversible logic architectures may be constructed

= GRC also is general enough to allow us to build on top of it a new framework
for Asynchronous Reversible Computing (ARC),

= which avoids many of the overheads incurred in clocking synchronous designs

The reversible computing community really needs to embrace GRC
(and models based on it) as the right foundation for further progress!




