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Abstract

We propose a new post-processing procedure for automatically adjusting node locations of an all-hex mesh to better match the
volume of a reference geometry. Hexahedral meshes generated via an overlay grid procedure, where a precise reference geometry
representation is unknown or is impractical to use, do not provide for precise volumetric preservation. A discrete volume fraction
representation of the reference geometry /1/1 on an overlay grid is compared with a volume fraction representation of a 3D finite
element mesh M°. This work proposes a procedure that uses the localized discrepancy between 0 and M° to drive node relocation
operations to more accurately match a reference geometry. We demonstrate this procedure on a wide range of hexahedral meshes
generated with the Sculpt code and show improved volumetric preservation while still maintaining acceptable mesh quality.
© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of IMR 26.
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1. Introduction

Overlay grid methods [1-4] developed in recent years have dramatically improved the ability to rapidly and au-
tomatically generate hexahedral meshes for complex geometries in massively parallel environments. Overlay grid
procedures utilize a mesh-first approach to mesh generation where an initial base grid is used to overlay the reference
geometry. Procedures to modify the base grid are employed to best capture the geometry to define a conformal all-hex
mesh. In contrast, geometry-first mesh generation approaches [5-7] rely on user-intensive procedures to first clean
and then decompose the geometry to fit blocking or sweeping topologies. Because of the nature of geometry-first
approaches, these methods can in most cases very accurately preserve volume of a reference geometry subject only to
a user defined mesh resolution, and would therefore benefit little from the proposed work. However, as geometry-first
technologies for hex meshing cannot be easily automated or scaled for general use, mesh-first procedures, such as
overlay grid are often preferred and consequently the focus of this work.
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Fig. 1. (a) CAD model for the brick-cylinder case (b) Input mesh M/ generated by Sculpt (c) Output mesh 1110 based on proposed method (d)
Close-up of one corner of input mesh MI (e) Close-up of same corner of mesh M°. Note that proposed method better represents geometric comer.

Some overlay grid procedures, such as Sandia's Sculpt [4] algorithm, use an interface reconstruction procedure
that relies on a volume fraction representation of the geometry on a Cartesian or adaptively refined grid. The primal
contouring approach described in [4] will adjust nodes on a base grid to conform to an approximation of the reference
geometry prior to application of pillowing and smoothing operations. Because of the approximate nature of the
interface reconstruction procedure combined with smoothing, the resulting all-hex mesh may not precisely conform
to the reference geometry. While in most cases Sculpt meshes have proven accurate in simulation compared to pave
and sweep approaches [8], we note one potential deficiency. In some cases where localized densities and material
properties demand accurate volume preservation, the interface reconstruction employed by Sculpt and other overlay
grid algorithms may not provide sufficient precision.

For our purposes we consider both explicit and implicit geometry representations with multiple components or
materials. Explicit geometry includes B-Rep standards such CAD and STL models while implicit can include 3D
image data and volume fractions on a Cartesian grid. Both types of input can be meshed using overlay grid methods.
For explicit geometry representations, closest-point projection to B-Rep surfaces may be employed to accurately
capture the reference geometry and correctly preserve volume. However, we note that projection operations in overlay
grid methods can often create topology cases that cannot be adequately smoothed, resulting in inverted elements. For
example, these can include cases where more than one face of a hex lies on a single surface or multiple edges of the
same hex lie on the same curve. To correct for these instances, special case topology operations are often employed
to locally improve quality [9,10]. These operations, while effective in some cases, can be complex and difficult to
employ, and in many cases can result in severely distorted elements.

The proposed volume preservation algorithm concentrates instead on relocating nodes of the mesh to more accu-
rately represent the underlying reference geometry without the need for complex topology operations. The generalized
approach we propose provides both for explicit geometry, and for implicit geometry where only the localized volume
fraction information is known and where exact closest-point operations are otherwise not practicle.

2. Definitions and notations

In this work we consider only all-hex meshes, however as the proposed solution is not limited to hexahedral
elements, we adopt the following definitions. In dimension 3, we call nodes the 0-dimensional cells, edges the 1-
dimensional cells, faces the 2-dimensional cells and cells the 3-dimensional cells. For 2D examples, faces will refer
to 1-dimensional cells.

In our context, meshes are used to discretize a physical space made of several materials. Let M be the set of
materials that disjointly fill a geometric domain SI and Mi a mesh that discretizes n, meaning that each cell of /1/1/ can
be filled with one or several materials. A cell containing a single material is said to be pure; otherwise it is said to be
mixed. Let ci be a cell of MI, the volume fraction of a material m in cl is the proportion of the volume of m in We
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denote fj,m the volume fraction of material m in ci and we have

fl m)

f = f (j, m) =  
1(cj)

where n m is the geometric intersection between and m.

and Ef;,,n = 1,
mEM (1)

3. Volume-control algorithm overview

For the purposes of this study, we propose a method for improving volume conservation of an ouput mesh that
has been constructed using an all-hex overlay grid method. Such algorithms start from a 3D input mesh /1/1/ where
each cell can be pure or mixed. As an output, they will produce an unstructured hexahedral mesh M°, where each
cell is pure, i.e. "fillecr by only one material. Although meshes produced in this manner will maintain watertight,
smooth and manifold interfaces between materials, they do not precisely control for the overall volume of the mesh.
We note that other interface reconstruction techniques, such as volume of fluids[l 1], do indeed precisely control for
volume, however rather than producing pure computational elements, they will often yield mixed elements where
local interfaces are defined by discrete planar geometry.

Remark. For purposes of this study, we consider Mi as representing a 3D Cartesian grid, however an unstructured
mesh may alternatively be used.

3.1. A brief presentation of the overlay-grid strategy

To illustrate the general behavior of overlay-grid algorithms, we consider the Sculpt algorithm [4], which handles
both implicit and explicit geometry representations. Sculpt uses an interface reconstruction procedure that relies on
a volume fraction representation of the geometry on a Cartesian or adaptively refined grid. Let us consider Figure 2
to illustrate the basic Sculpt procedure, beginning with a Cartesian grid as the input mesh MI, shown in Figure 2.a.
Provided as input, or computed from a CAD or STL description, volume fractions that satisfy equation (1), serve as
the basis for the Sculpt procedure. Figure 2.b shows a representation of a field of gradient vectors that are computed
from the scalar volume fraction data using finite differences of neighboring cells and a least squares fit of the localized
data. Locations where interfaces will most likely cross the virtual edges connecting cell centers are then computed as
illustrated in 2.c. Using the local gradient and edge cross locations, node locations of the base grid are repositioned
to approximate the interfaces of the reference geometry as shown in 2.d. Figure 2.e then shows conformal layers
of hexes or pillows inserted at the interfaces to provide additional degrees of freedom to allow for improvement
using smoothing. Finally, in Figure 2.f, combined Laplacian and optimization-smoothing operations are performed,
constraining nodes at interfaces to remain on the approximated surfaces and interior nodes repositioned to optimize
mesh quality.

3.2. Discrepancy definitions

For many physical applications, it is mandatory to preserve as best as possible the volume of each material during
the creation of M° from Mi while preserving their locality. In other words, the volume of a material m should be the
same in M° and Mi and it should be at the same geometric location. We define volume conservation for our purposes
as minimizing the quantity

AV = E lAymI = E 117,7°, — (2)
mEM mEM

where V,in and V° are respectively the volume of material m in meshes Mi and M° . We note that minimizing AV could
be done in a global manner. However to preserve material locality, we follow an approach localized to each cell. This
process has two benefits: (1) improves the volume conservation of every material, and (2) better controls interface
displacements, thus preserving the geometric locality of each material. We observe that conceptually, the objective of
the proposed solution is to project back each cell of M° onto Mi to compute a discrepancy value localized to each
cell of Mi.

Let be a cell of Mi and m be a material, we note di,,n the discrepancy of relatively to material m and we define
it as

= m) = V(clj n Kn) — fpnV(cli) (3)
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Fig. 2. Sculpt mesh generation process (a) Initial volume fraction input on a Cartesian grid. (b) Material gradient vectors computed and cells
changed to pure based on dominant material (c) Virtual edge cross locations computed (d) Grid nodes moved to approximated interface (e) Pillow
layers inserted (f) Smoothing performed.

di,A - .6,AV (cD

Fig. 3. Considering one input cell of the example of Figure 2, we graphically illustrate the discrepancy computation for materials A and B locally

to the cell cif.

where V (X) is the volume of any geometric space X , M r. is the output mesh restricted to the pure cells of material m

and M°m is the geometric intersection of with the cells of M
I
°
. 
We note that for this work, geometric intersections

m 
are performed using [12]2. If d j,,n > 0, it indicates that locally to we have too much of material m. In contrast, if

2 The interested reader can directly use the open-source library portage [12] based on R3D [13].
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dj,m < 0, it indicates that locally to cj, we do not have enough of material m. The total discrepancy of a cell cji can
then be evaluated as

and a global discrepancy can be evaluated as

dl = d(cli) = E ldj,ml,
mEM

d = (40, = di.

(4)

(5)

Incidentally, replacing dim in Equation 4 by its expression from Equation 3 and applying Minkowski's inequality
gives :

which in turn gives

di. E n Km) - fimV(cli)l IV(clj n Km)I + E Ifj,,07(C/;)1,
mEM mEM

(6)

2V(c/j). (7)

3.3. Algorithm structure

The following is a brief overview of the proposed volume preservation procedure. The solution is an iterative
method where each iteration aims to reduce the total discrepancy. Algorithm (1) and the following points outline the
proposed structure of the algorithm:

1. At each iteration, we first improve the quality of Al° by moving some inner nodes (line 3), which are nodes
adjacent to only cells of the same material. In practice we use a smart Laplacian [14] or the GETMe agorithm [15]
to improve mesh quality.

2. Global discrepancy is computed (line 4) and stored in order to check potential regression during the incoming
stage (lines 14 to 17). A regression occurs when the discrepancy does not diminish during two successive
iterations.

3. We evaluate the expected target volume of each cell c° E Al° individually (lines 5 to 7). This process requires
intersection of c° with cells of M. The full process is described in Section 4.

4. Nodes of M° are then moved following the algorithm described in Section 5 (line 9). If some movements induce
poor mesh quality (computed at line 10), they are withdrawn (lines 1 1 to 13 for the node update and line 8 for
the previous node location storage).

5. Each iteration stage ends with discrepancy evaluation to measure potential regression (line 14). A regression
implies canceling the last stage (lines 15 to 17).

4. Target volume of output cells

For a cell ci. E MI, the discrepancy di indicates how acurately materials are preserved inside of c/.. For a specifici J

material m, the discrepancy dj,m indicates how accurately m is preserved locally to cif. It is this second quantity that we

use for computing target volumes for the cells of M°. Let c°. E Arm, as c° is a pure cell, it contains a single material
m. We compute its target volume as being:

V(c° n cii) V(c° n cl.)
Tv(c7) =17(c°) — E d;,„, , . lqc°) E dim 

 1  (8)
CEAV 

V(M0 n ci.)lm J C;EICJEAF l CinC(/~0} E V(c° n clj)
C?E{COEM, l C°nCli#el}

where {c/ E M/ l c n c° ~ 0} are the cells of M/ that intersect c°. and {c° E M° l c° n c ~ 0} are the cells of M°z / Im J lin

that intersect cii. Figure 4 illustrates equation (8) where we consider the output cell c°. This cell intersects two input

cells c11 and c/2. For each of these cells, we compute a volume contribution, which is one term of the sum in the right
member in equation 8. Let us consider cell c11 for instance. Discrepancy dim indicates the quantity of material m that
is under (don < 0) or over (dim > 0) represented in cii .
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Algorithm 1: Global structure of the proposed algorithm.

Data: AF, M°, maxIter, e
Result: Geometrically modified M°

i iter 0; regression <— f alse;
2 while iter < mailter & regression == f alse do
3

4

s

smoothInside(M°);
dIN <—computeDis crepancy ;
for c°. E M° do

6 I Tv[q] <—computeTargetVolumes(q, AF) /* see Section 4 */;

7 end
8 prev <—storeNodeLocations(M°);
9 moveNodes(M°, Tv) /* see Section 5 */;
10 q computeQuality(M°);
11 if q < e then
12 I updatesomeNodes(M°, q, prey);
13 end
14 regression<— (computeDiscrepancy > dmr);
15 if regression == true then
16 I updateAllNodes(M°, prey);
17 end
18 iter iter + 1;

19 end

For example let us consider the first case, which is that dim < O. It indicates that we do not have enough material
m in Consequently we must inflate the cells of M° that contain the material m and that intersect These are the
cells c° c° and c° in our example. The inflate weight given to each cell c°. c° and c° by ci is proportional to theirP q J
geometric intersection with cl. For instance, for c°, it is:

V(c° n

v(c° n cid + V(c° n ci ) + V(c° n ci).P  q

The same computation is also done for the input cell c2. We also observe that as the discrepancy is negative when we
do not have enough material in an input cell, the right member of equation (8), equal to Tv(cc/), is greater than V(c,°).

cf

up  n ui CC) n Crq 1

2
,/

Fig. 4. Illustration of the different geometric quantities used to compute the target volume of the cell c7.

n

(9)
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5. Node displacement

Recalling that our objective is to achieve as accurately as possible the volume of input materials. If we consider
the output mesh M°, where each cell is pure, it is necessary to adjust interfaces between materials in order to better
preserve material volumes. To accomplish this we can move nodes that are located at the interface between distinct
materials. Let n be such a node (see Fig. 5). It is surrounded by pure cells {c°, , q}, which are all assigned to a
specific material and have a target volume computed during the previous stage of the algorithm. The procedure used
to move nodes is described in Algorithm 2 and depicted on Figure 5. It consists in three main stages:

1. First, we compute an ideal deformation for every cell ci° having at least one face lying on an interface between
distinct materials (lines 1 to 9). Let {A, . . . , fk} be those faces, the deformation consists in defining one translation
vector for each face fi, with 1 < i < k.

2. By construction, each interface face f receives two translation vectors v1 and v2, one per adjacent cells3 (except
when the void material is not explicitly meshed in M°, in that case there is only one vector). We assign the
average translation vector tf = vr±v2 to f (lines 10 to 13).

3. Finally, each node n that belongs to the interface between distinct materials is moved according to the translation
vectors previously assigned to adjacent interface faces (lines 14 to 21). Let {f{ • • • , fk} be those faces, then n is
translated along (tf, + tf2 + + tf,)/k.

Fig. 5. Illustration of the node displacement procedure. Let n be an interface node and q, and its adjacent cells. Ideal shape is computed

for each cell c?, c?, ,30 and 4 by moving interface nodes. We then define one translation vector for each interface face, which is averaged at
interface nodes to finally move the complete interface.

We drive the computation of the ideal shape of a cell ci° along its interface faces. More precisely, we need only
move interface nodes during this process using each face's contribution to preserve their normals. To illustrate, let us
consider the 2D example of Figure 6 where we list the five configurations we encounter for a quad cell in dimension
24. In the first case (see Fig. 6.a), only one face is on an interface. As a consequence, only the two red nodes can be
moved and they are constrained to follow the face normal (represented in black). In the second case (see Fig. 6.b),
two faces sharing a node are on an interface. The end nodes can move along their adjacent face normal, while the
common node has to follow the sum of the faces normals. The three last configurations are built in the same way
(see Fig. 6.c, 6.d and 6.e): a node adjacent to one interface face follows this face normal, while a node adjacent to
two interface faces follows the sum of their normal vectors. In other words, the computation of the ideal shape of a
cell c° starts by identifying the free nodes {ni, , nil of c° and computing the direction vectors {v1, , vil that the
nodes will be moved. Once direction vectors are computed, nodes are moved in an iterative way along their respective
vectors to fit the target volume Tac°1 previously calculated. At each iteration, the location of any node 1 < i < e,
is updated to ni = ni + Kvi. The K term is a dampening term progressively increased until V(c.,°) reaches Tv[c°].
Although the previous discussion illustrates the node displacement procedure in 2D, its extension to 3D can be done
in a similar manner.

3 Which belongs to distinct materials by definition.
4 Note that the configuration with only one node on an interface cannot occur due to the pillowing process applied during the primal contouring

procedure. Were it to happen when using other inputs, we might have to devise another method so as not to ignore the contribution of such a cell.
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Algorithm 2: Interface node displacement

Data: M° , Tv : M3 —) IR
Result: v : Mo

Lmap <— 0;
2 for CC) E 1110 do
3 vco Tv[C°];
4 , fi} gethaterialInterf aceFaces(c°);
s {tf, , . , tfi} computeIdealShape(c°, Vco, {A, • • • fil);
6 for f E fil do
7 I Lmap[f].add(tf);
s end

9 end
io f _map <— 0;
11 for e E Linap do
12 I f inap[e.first] = (e.second[0] + e.second[1])/2;
13 end
14 for n E Al° do

, . . . , <— gethaterialInterf aceFaces(n);
16 ninap <— 0;
17 for f E , fil do
18 I n_map.add(f _map(f));
19 end
20 v[n] computeAveragevector(n_map[n]);

21 end

(a) (b) (c) (d) (e)

Fig. 6. The five possible configurations to reshape a 2D cell to fit a specified target volume; the remaining other configurations can be obtained by
rotation. Interface faces and free nodes are both colored in red. In (a), only one face is on the interface leading to only two free nodes that can
move along the face normal. In (b) and (c), two faces are on the interface but in different topological configurations. In (d) and (e), respectively
three and four faces are on the interface.

6. Results

In this section we demonstrate and analyze the results of the proposed method applied to several cases that have
been initially meshed using the Sculpt algorithm. The parameters used, as seen in Algorithm 1, use a maximum
number of iterations, wafter, of 30 and a quality threshold E that depends on the cases. Since the M° meshes have
different initial minimum scaled Jacobian values, e will be specific to the individual meshes to be improved. For our
test cases we used c = 0.2 for the cases illustrated in Table 2 and e = iscaledjacobianinit for those illustrated in
Table 3. In all cases, the K term, as introduced in Section 5, is equal to 0.1 + 0.9 maTter •

We first demonstrate the procedure using a simple CAD-based model that consists of the brick and cylinder con-
figuration shown in Figure 7.a. Its corresponding Sculpt output is shown in Figure 7.b, while Figures 8.a and b
show the value of the discrepancy ratio per cell of Mi respectively before and after applying our algorithm. We note
that the discrepancy decreases after applying our method and is consistent with Figure 9.a that shows the distribution
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of the discrepancy ratio across the cells. The same is true for the computed target volume adjustment (defined as
Tv(c°) — V(c°)) of the cells of M° (see Fig. 8.c and d). Our measures confirm observation from Figures 1.c and
d where the discrepancy is largest around the geometric sharp features both in our input and output M° mesh. We
observe that our solution improves the overall discrepancy, most notably around sharp features.

6.1. Mesh orientation sensitivity

Overlay grid procedures can be particularly sensitive to the orientation of the overlay Cartesian grid with respect to
the reference geometry. In this example, we examine the effect of overlay grid orientation on the results of the volume
preservation procedure

The following cases use the simple brick-cylinder configuration of the previous example, however apply incremen-
tal rotations of 10 degrees to the geometry with respect to the initial overlay Cartesian grid. Tables 1 and 2 illustrate
results from varying orientations from 0 to 90 degrees. We observe that our method consistently improves M° , and
note that although discrepancy improvements vary, they are indeed improved in all cases (see Fig. 9 and 10). In
particular, the proposed method decreases the total discrepancy as well as the maximum discrepancy ratio per cell.

(a) (b) (c) (d)

Fig. 7. Brick cylinder example. (a) CAD model with two materials (b) Sculpt output used as our Mga mesh (c) 2D representation of CAD model
with 0 rotation angle (d) and 10 degree rotation angle with respect to the overlay Cartesian grid.

(a) (b) (c) (d)

Fig. 8. Results for the brick-cylinder case. (a and b) initial and final discrepancy (cells ci E Mt that have ̀1,*,)) < 0.05 are not represented). We can

see that in both the input and output the worst cells are located near the sharp geometric features and that our method improved on that criteria ; (c
and d) initial and final target volume adjustment. Again we can note that the cells that need the biggest adjustment are those located near geometric
features.
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Fig. 9. Cell discrepancy ratio distribution in the initial and final Af° mesh (cells c/ E M I that have < 0.05 are not represented). Lower and

narrower is better. (a) for the brick-cylinder with rotation angle 0, it confirms the difference seen between Figures 8.a and b. (b) same for the
rotation angle 10 example.

50

45

35

RO

10

tter

(a)

angle_00 —
angle_10 —
angle_20 —
angle30 —
angle,10
angle_50 —
anglefi0 —
angleg0
—

angle_90 —

0 9

0 8

03

o

0 a

0 2

tter

(b)

angle_00 —
engle_10 —
ang1420 — -
angle,/ —
8,191,40
ang1,50 — -
angleJ50 —
angle-30 —
angle_80 —
91e90—

Fig. 10. (a) Discrepancy evolution for the brick-cylinder cases compared with iteration. Note that a step in the graph is indicative that node positions

did not move due to elements reaching a minimum e quality threshold. (b) Same data but with the ratio a=°dini,1.

6.2. Other examples

For additional validation of the proposed methods, we applied our approach on different types of input data. We
give here the results from several examples based on three different input formats:

• CAD models (the v2_tweaked and the anc101 cases in Figures 11.a and 12.a) ;
• STL models (the lumbar and asteroid cases in Figures 11.c and d);
• Volume fraction models (the two-phase and the microstructure cases in Figures 11.b and 13.a).

Results from these examples are given in Table 3. Similar to the brick-cylinder case we note that discrepancies are
reduced in all the cases.

6.3. Results analysis

We note several observations from the preceding results. We focus on three specific features that required additional
effort to apply or interpret the volume preservation procedures: namely, reloading node positions, fuzzy volume
fractions and cell contribution error.
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Table 1. Volume survey for the brick cylinder cases (the void material is excluded). We are interested here in evaluating the difference in material
volume globally, as defined in Eq. 2. While volumes of the materials were already well preserved in the initial mesh our method still improves
upon that.

angle (degrees) AVinit(brick) AV fmal(brick) AVinidcy0 AV fthal(cyl) AVinit å Krim/

Ig(brick) Ig(brick) (cyl) VI(cyl) 1 17,, (v„,

0 8.79e-03 1.78e-05 -6.31e-03 -9.54e-06 8.25e-03 1.60e-05
10 2.26e-03 -1.39e-04 -2.07e-03 -5.27e-04 2.22e-03 2.24e-04
20 9.54e-04 -3.67e-04 -4.10e-04 -2.13e-04 8.34e-04 3.33e-04
30 7.99e-04 -5.49e-04 -9.21e-04 -6.77e-05 8.26e-04 4.43e-04
40 9.71e-04 -3.28e-04 -9.94e-04 3.81e-05 9.76e-04 2.65e-04
50 1.02e-03 -4.80e-04 -7.02e-04 9.02e-05 9.47e-04 3.94e-04
60 7.63e-04 -1.59e-04 -9.14e-04 -3.82e-05 7.96e-04 1.32e-04
70 9.62e-04 -2.39e-04 -1.61e-05 -1.97e-04 7.54e-04 2.30e-04
80 2.26e-03 -1.55e-06 -2.08e-03 -4.79e-04 2.22e-03 1.06e-04
90 -1.32e-03 -1.51e-04 4.19e-03 3.27e-04 1.95e-03 1.89e-04

Table 2. Discrepancy results for the brick cylinder cases. Columns 2 and 3 show the discrepancy as defined in Eq. 5. Columns 4 and 5 show the
ratio of this discrepancy over the total volume of the materials; it expresses how "fa?' the M° mesh is from the volume fractions carried by M.
Column 6 is the ratio between the final and the initial total discrepancy where it is shown that our method has divided the initial discrepancy by
a factor 4 to 10 depending on the case. Between columns 7 and 8 can be seen the improvement of the maximum discrepancy ratio per cell (the
maximum of those values is 2, as seen in Eq. 7). In columns 9 and 10 are the minimum scaled jacobian before and after applying our procedure.

angle dinit dfinal
dinit
Vtot

dfin.a1 df d f
scalecUinit scaled- finai

Vtot dinit
max(
cEmi v(c) MaX(

cEM1

0 51.6792 5.36181 4.03e-02 4.18e-03 1.04e-01 4.03e-01 1.28e-01 0.39 0.40
10 44.2667 6.76245 3.45e-02 5.28e-03 1.53e-01 5.66e-01 3.97e-01 0.26 0.20
20 40.6279 6.07868 3.17e-02 4.74e-03 1.50e-01 5.68e-01 3.42e-01 0.33 0.20
30 40.0265 9.62336 3.12e-02 7.51e-03 2.40e-01 5.02e-01 3.90e-01 0.31 0.20
40 42.72 11.0175 3.33e-02 8.60e-03 2.58e-01 5.42e-01 5.37e-01 0.26 0.20
50 42.7854 9.51502 3.34e-02 7.43e-03 2.22e-01 5.42e-01 4.79e-01 0.28 0.20
60 39.7635 6.09284 3.10e-02 4.75e-03 1.53e-01 5.02e-01 3.81e-01 0.31 0.20
70 40.7345 6.10349 3.18e-02 4.76e-03 1.50e-01 5.68e-01 2.08e-01 0.28 0.20
80 44.256 6.20802 3.45e-02 4.84e-03 1.40e-01 5.66e-01 3.89e-01 0.26 0.20
90 50.5343 7.44741 3.94e-02 5.81e-03 1.47e-01 4.08e-01 2.38e-01 0.28 0.20

(a) (b)

e 
(c) (d)

Fig. 11. Several input data. (a) CAD model for v2Aweaked ; (b) fraction presence for two_phase ; (c) STL for lumbar ; (d) STL for asteroid

Reloading node position. An initial implementation of our procedure moved and reloaded nodal locations when
minimum mesh quality fell below a threshold E scaled Jacobian. This implementation proved problematic, particularly
in cases such as illustrated in Figure 12.d, where relocating nodes proved ineffective in improving local discrepancy.
In these cases, relocating nodes can result in a few badly shaped elements. When this occurred, the procedure would
reload previous positions of all nodes of the mesh. Subsequent iterations would compute new nodal offsets that would
hopefully provide for improved mesh quality.
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Table 3. Discrepancy results for several other examples.

angle dinit dfinal
dinit
Vtot

dfthal irwi

dinit
dinit(c) dfthai(c),

scaledjinit scaledJ finalVtot InaX( 1 )
c€11.11 cEmi v(e)

anc101 88975.4 7164.96 1.08e-02 8.73e-04 8.05e-02 5.88e-01 4.52e-01 0.20 0.15
v2_tweaked 212759 14622.9 2.72e-02 1.87e-03 6.87e-02 1.23e-01 5.75e-02 0.14 0.11
microstructure 142693 137804 1.61e-01 1.56e-01 9.66e-01 1.44e+00 1.40e+00 0.11 0.08
two-phase 94746100 55919300 9.47e-02 5.59e-02 5.90e-01 2.00 2.00 0.19 0.14
asteroid 12.914 1.87471 5.16e-03 7.48e-04 1.45e-01 6.25e-02 9.80e-02 0.23 0.17
lumbar 0.480773 0.057342 8.18e-03 9.76e-04 1.19e-01 4.36e-02 2.09e-02 0.20 0.15

This proved to be a limiting factor of our method. As a consequence, we chose to identify such nodes and avoid
moving them after several attempts. This limited the amount of discrepancy improvement at these nodes in favor of
preserving a minimum cell quality, E.

*-40- a*\1..

(a)

'ow
(b) (c) (d)

Fig. 12. The anc101 example. (a) CAD model ; (b) MI mesh, which is actually an adapted grid in this case ; (c) final tle mesh ; (d) the two selected
elements comer nodes should be moved outward in order to better follow the cylindric hole, but cannot be else the elements become non-convex.

Fuzzy volume fractions. In some cases, input volume fractions will not necessarily denote a sharp interface. De-
pending on the technology used while acquiring the data, the transition region between two materials may spread
across several cells such as that illustrated in Figure 13.b. We observe this phenomenon in the microstructure test case
illustrated in Figure 13.a. While the proposed method can still decrease the discrepancy it is more difficult to interpret
the results since it will stay high whatever the changes brought to M° . (see results for microstructure in Table 3) We
note that this large transition between materials make for many additional non-zero discrepancy cells reducing the
reported effectiveness of the procedure (see Fig. 13.c).

(a) (b) (c)

Fig. 13. The microstructure example. (a) M° mesh ; (b) close-up of the volume fraction of one material. The cells represented are those with a
volume fraction ranging from 0.1 to 0.9. In this case we observe that the transition is more than 4 cells wide (c) the discrepancy (cells ci e Mi that

have d() < 0' 05 are not represented), which is not limited to a width of one or two cells intersecting the interfaces between material, but spreadsv(cJ) 
farther. The cells that actually intersect the interfaces between materials can in fact have a lower discrepancy than their neighbors.
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Cell contribution error. We have observed that a cell of MI, despite having a fraction of its volume composed of
material m may have no part in moving the nodes of M° at the interface of material m. Let cf be a cell of Mi and m be
a material where Am ~ 0 and cf fl Mr. = 0, in this case cf has no contribution to the target volume of any cell of M.

At)It is especially visible in the two-phase case : in Table 3 the maximum discrepancy ratio per cell dEw ) max( is equal

to the theoretical maximum of 2 (see Equation 7) because some small areas of one material do not appear in M°.

7. Conclusion

We have proposed a post-processing procedure that improves upon mesh-first overlay grid methods by more ac-
curately preserving volume of its reference geometry. The procedure was run on a variety of meshes built from STL
models, complex CAD assemblies and volume fraction grids and proved to be effective in reducing the discrepancy
criteria in all cases. In addition, geometric feature sharpness was improved compared to our input meshes.

While we have demonstrated the effectiveness of the procedures on overlay grid meshes, the proposed methods
may conceivably be applied to any hexahedral mesh given a reference geometry. Where small deformations are
applied to the reference geometric model, the hex mesh may be updated accordingly to preserve volume and density
characteristics. We envision geometric deformations applied based on design changes or adaptively driven by an
analysis code where discrete target densities are supplied to drive the volume preservation algorithm.

Although the proposed methods were demonstrated as a post-processing procedure applied to existing hexahedral
meshes, future work will integrate the volume preservation algorithms directly into the Sculpt application. Sculpt uses
a combined Laplacian-optimization-based smoothing technology, that while producing smooth material interfaces,
may not directly preserve volume. Incorporating the volume preservation methods proposed in this work as part of
Sculpt's smoothing procedures will result in more geometrically accurate hexahedral meshes.
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