This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2016- 3329C

ACES and Cray Collaborate on Advanced Power Management for Trinity

James H. Laros III, Kevin Pedretti,
Ryan E. Grant, Stephen L. Olivier,
Michael Levenhagen, David DeBonis
Center for Computational Research
Sandia National Laboratories
Email: jhlaros,kepedre,regrant,
slolivi,mjleven,ddeboni@ sandia.gov

Abstract—The motivation for power and energy measure-
ment and control capabilities for High Performance Computing
(HPC) systems is now well accepted by the community. While
technology providers have begun to deliver some capatilities in
this area, interfaces to expose these features are vendor specific.
The need for a standard way to leverage these emerging capabil-
ities, now and in the future is clear. To address this need, the De-
partment of Energy funded an effort to produce a Power appli-
cation programming interface (API) specification for High Per-
formance Computing systems with the goal of contributing this
API to the community as a proposed standard for power mea-
surement and control. In addition to the open publication of
this standard an Advanced Power Management Non-recurring
Engineering project has been initiated with Cray Inc. with the
intention of advancing capabilities in this area and delivering
them on a leadership class platform. We will detail the collab-
oration established between the Alliance for Computing at Ex-
treme Scale (Sandia Laboratories and Los Alamos Laboratory)
and Cray and the portions of the Power API that have been se-
lected for the first production implementation of the standard.

Keywords-power monitoring; control;

efficiency; power measurement;

power energy

I. INTRODUCTION AND BACKGROUND

As the need to include power as a first-class consideration
in every aspect of High Performance Computing (HPC)
became clear, the lack of standard interfaces in this area
became more evident. Sandia National Laboratories (Sandia)
began investigating how to address this gap in 2012 by
evaluating use cases revealed by early research in this area.
The result of this effort was a document [1] that outlined the
scope and interfaces that a power application programming
interface should address if it were to meet the demanding
needs of HPC. Immediately following this effort, in January
2014, a team at Sandia formally began creating the High
Performance Computing - Power Application Programming
Interface specification [2] (Power API).

The Power API targets a broad range of interfaces
ranging from low level capabilities exposed by technology
providers to higher level interfaces that address use cases

*Sandia National Laboratories is a multiprogram laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the United States Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.

Scott Pakin,
Computer, Computational, and
Statistical Sciences Division
Los Alamos Laboratory
Email: pakin@lanl.gov

Steven Martin, Matthew Kappel,
Paul Falde
Research and Development
Cray Inc.
Email: stevem,mkappel,
falde@cray.com

involving end users, applications and work-load managers,
for example. Six months after focusing primarily on the
core interfaces of the specification an early draft was vetted
by a range of technology providers (Adaptive Computing,
Cray, AMD, Penguin Computing, Intel, and IBM), laboratory
(National Renewable Energy Laboratory, Oak Ridge National
Laboratory) and university (University of New Mexico)
representatives. The technology providers were specifically
targeted since the success of any proposed standard depends
on it being implemented. However, community involvement is
just as critical to drive the development of the specification in
an unbiased manner and ensure that it remains vendor-neutral.
One of the primary goals of the Power API is to present a set
of portable interfaces, shielding the end user, no matter what
role they serve, from vendor specific implementation details.

During the same time that Sandia was preparing to begin
development of the Power API, the Alliance for Computing at
Extreme Scale (ACES), a collaboration between Sandia and
Los Alamos National Laboratory (Los Alamos), was prepar-
ing to release a Request for Proposal (RFP) for Trinity, the
DOE’s National Nuclear Security Administrations (NNSA)
first Advanced Technology System (ATS-1). An important
aspect of this new effort by the DOE is the investment in ad-
vanced technologies in the form of non-recurring engineering
(NRE). A portion of funding for each platform in the ATS line
is invested in advanced technologies selected for their poten-
tial impact to the DOE/NNSA mission. For the Trinity (ATS-
1) procurement, Burst-Buffer and Power were selected as the
two focuses of NRE investment. This paper will focus on the
Trinity Advanced Power Management (APM) NRE program.

In 2014 the contract to deliver Trinity was awarded to
Cray Inc. The Trinity APM NRE with Cray Inc. focuses
on two general areas that leverage technologies of interest
that Cray exposes in the Trinity time-frame. An additional
collaboration has recently been established with Adaptive
Computing (Adaptive). Adaptive is the provider of the
production resource manager that will be used on Trinity.
The bulk of this paper will discuss the NRE efforts that
are currently in progress with both Cray and Adaptive
(Section 1V). We will present some essential background
regarding Power API concepts (Section II) and Crays system

—
Facility

Hardware
e

HPCS
Manager

!

HPCS HPCS
Resource Resource
Manager Manager.

\]
HPCS HPCS
Monitor & Monitor &
. Control |__Control

HPCS
Manager

Facility
Manager

HPCS User

A

HPCS Admin
: HPCS HPCS
HPCS % 5
5 —» Operating Operating
Assounting . System System
w— I —
Application HPCS
Hardware
N————o

Figure 1. Power API, Roles and Interfaces

management infrastructure (Section III). This paper will
also briefly discuss some related works (Section V) and will
provide some concluding thoughts and our intentions for
future work in this area (Section VI).

II. POWER API

As previously mentioned, the scope of the Power API is
broad. While a complete description of the specification is be-
yond the scope of this paper, some fundamental concepts are
important to understand the areas of focus that were selected
for the ACES/Cray and ACES/Adaptive collaborations. The
following is a very high-level description of topics included
in the Power API specification. For a complete description
please refer to the specification itself [2]. Figures 1 and 2
will help illustrate some fundamental Power API concepts.

The diagram in Figure 1 was developed during the use
case exercise [1] preceding the development of the Power
API specification. The key at the top lists the two named
shapes that are used in the diagram, Actor and System. These
names are a result of the Unified Modeling Language (UML)
approach that was applied during our use case investigation.
The diagram depicts two important concepts that are used
in the specification and are important for the material in
this paper. The Actors in the diagram are nearly directly

[Power Plane ‘ Power Plane }

N

Figure 2.

Example System Description

translated into the Roles covered in the specification. A
Role, as it relates to the specification and this paper, is
the entity interacting with the HPC system whether it is a
physical person or a program (application for example). A
System is an entity that is being interacted with, provides a
service, instrumentation (like sensors), anything that enables
measurement and control of power and energy. The lines
in Figure 1 represent the interfaces between a Role and
the System that it interacts with. Note, that in many cases
a Role acts as the System for another Role. !

Figure 2 depicts an example of a system description
comprised of basic objects supported, but not required to be
used, arranged hierarchically that represent a description of
a hypothetical system (note, not a System) presented to the
user of the Power API. As you can see in figure 2, objects
represent very familiar types of components found in most
HPC systems like nodes, sockets and cores and higher level
physical organization constructs like boards, cabinets and
platform. The system description is exposed to the user of the
Power API as part of the context returned upon initialization.
Figure 2 represents a symmetric homogeneous example but
a system description can be constructed to represent any
system, or portion of a system. In fact, while not required,
it is suggested that an implementation limit the view of the
system that a user of the API is exposed to based on their
typical use case. For example, an application will likely only

IThroughout this paper we will highlight the words Role and System
with a different font when they are used in a Power API specific context
for clarification.

need to see a portion of the system description hierarchy,
the node that it is executing on and below, while a system
administrator probably has a need to interact with the entire
system. Navigation functionality is provided by the Power
API to traverse the system description hierarchy as desired.
The Power API specification is roughly organized
into common core functionality, i.e. a superset of basic
functionality that is potentially useful to any Role, and
more specific high-level interfaces. The specification also
recognizes commonality for high-level functionality among
a sub-set of the Roles covered. Common core functionality
covers a wide range of measurement and control functionality
using an attribute interface where setting an attribute is
equivalent to control and getting an attribute equates to
measurement. Attributes are associated with individual
objects (the objects that comprise the system description)
so individual instrumentation points can be measured or
controlled (if supported by hardware). For example, Power is
an available attribute in the Power API specification and can
be associated with any object that has the ability to provide
a power measurement, direct or derrived. Frequency is an
example of an attribute that is available to set (control) and or
get (measure or more accurately retrieve). While is it probably
clear that the Frequency attribute was inspired by processors,
there is no reason that it could not be associated with any
current or future object type that provides an interface to set
or get its frequency. The attribute interfaces included in the
specification also allow for interaction with multiple objects
with a single call or multiple attributes of a single or multiple
objects. The specification also contains the concept of groups.
A group is a collection of one or more objects. Operating
on a group is a convenience and efficiency mechanism
supported by most of the capabilities in the specification,
e.g. the attribute interface operates on a group to get or set
an attribute, or attributes, on a group of one or more objects.
Statistics are useful for most if not all Roles that interact
with an HPC platform. The Power API includes statistics
interfaces as part of the core functionality that allow for
the real-time or historic collection of statistics like average,
minimum, maximum and standard deviation, for example.
The specification also includes a metadata interface that
allows the user of an implementation of the Power API
to get important information regarding the measurement
and control interfaces that are present on that particular
system. Metadata is specific to an object attribute pair. This
is significant, for example, since one sensor may provide
less accurate information than another. It should be noted
that most aspects of the Power API are extensible, in fact
the specification was designed to allow for the evolution of
the specification itself and for an individual implementation
to extend beyond capabilities specified when desired.
When deciding which areas of the Power API would
be implemented as part of the Trinity NRE, the existing
Cray management infrastructure was examined to determine

prime areas of collaboration.

III. CRAY SYSTEMS MANAGEMENT INFRASTRUCTURE

To facilitate goals of Reliability, Availability, and
Serviceability (RAS), Cray HPC systems dating from the
XT-series systems to the current XC-series systems utilize
a separate, out-of-band management network in addition to
the in-band high-speed network used by compute resources.
Over this out-of-band network, a head node known as the
System Management Workstation (SMW) is connected in
a tree structure descending to embedded cabinet controllers
(CCs) and from CCs to embedded blade controllers (BCs).
This, along with the software that it supports, is known as
the Hardware Supervisory System (HSS). HSS orchestrates
power, booting, environmental monitoring, hardware health
monitoring and logging, and response to hardware failures
among other RAS-focused duties.

For power monitoring and management, Cray XC-series
systems leverage the HSS infrastructure to:

o Monitor and store node-, blade-, and cabinet-level

power, energy, and environmental telemetry,

« Set power “knobs” on sets of nodes including P- and
C-states and setting power caps,

« Enable in-band monitoring on compute nodes using the
PM counters interface,

e Support queries of historical power, energy, and
enviromental telemetry coupled with job and
application data with a powerful PostgreSQL-based,
time-series database, and

« Provide a backend system to support a RESTful interface
for platform and power monitoring and control.

In the following two sections, we will overview the

database and the RESTful interface for monitoring and
control.

A. Power Management Database Overview

The Power Management Database (PMDB) is a round-
robin, time-series database implemented leveraging Post-
greSQL alongside Cray-custom software [3]. The PMDB was
first released with SMW 7.0.UP02 in March 2013. Broadly,
it stores node-, blade- and cabinet-level power and energy
telemetry, job- and APID-level information and timings, and
System Environmental Data Collections (SEDC) data, includ-
ing thermals and hardware health data. Power and energy
telemetry is captured system-wide by default at 1 Hz (i.e., one
observation per second), but for a subset of the system, this
frequency can be increased to 5 Hz. SEDC has long been part
of the HSS infrastructure, existing prior to Cray’s power man-
agement efforts but, targeting narrower hardware debugging
use cases, had previously only been available in flatfile-form.

Because storage is unfortunately a finite resource, the
PMDB is necessarily a round-robin database. That is, once
a defined storage threshold is exceeded, the oldest data are
dropped to make room for the newest data. These thresholds

are defined on a per-table basis using an SMW-resident
utility called xtpmdbconfig. Customers may use the xtpmd
hooks interface to execute commands on rotation of old
data, such as archiving the old data to a remote server [4].

B. Cray Advanced Platform Monitoring and Control

With an eye toward allowing workload managers to
actively manage power and node configuration, Cray released
the Cray Advanced Platform Monitoring Control (CAPMC)
with SMW 7.2.UP02 and CLE 5.2.UP02 in the fall of 2014.
With CAPMC, a remote (and authenticated) user may control
the system by booting and shutting down nodes, setting P-
and C-states (i.e., frequency and sleep-state limits), setting
power caps. etc. This remote user may also monitor the
system, by getting node state information, energy statistics
about sets of nodes, system- and cabinet-power information,
etc. The CAPMC infrastructure implements a RESTful
interface using nginx in one of its common deployment roles.
It provides encryption and user authorization capabilities to
an independent, application-specific server. In this case, that
application-specific server is called xtremoted, a Cray-specific
daemon residing on the SMW. This provides bridge between
the external world and HSS using industry-standard security.

A full description of CAPMC functions and its API is
documented in [5]. Some technical and use-case details
about CAPMC are given in [6].

IV. TRINITY NRE

The decision of which area of the Power API to focus on
involved many considerations. A complete implementation of
the Power API would likely require more time and funding
than available for the Trinity APM project. Since the team
had to be more selective, we focused on high priority areas
that aligned well with capabilities that appeared in Cray’s
roadmap in the Trinity time-frame, even if these capabilities
required modification or acceleration to meet our combined
goals. We also considered areas of the existing Cray systems
management infrastructure that we could leverage and align
with, see Section III.

An important System for the purposes of this paper (and
the Trinity Power NRE project) is the Monitor and Control
system. The Monitor and Control system encapsulates
the concepts of systems management or RAS systems
(Reliability, Availability and Serviceability). Cray has
been introducing measurement and control capabilities
important for this topic for a number of years. Cray’s Power
Management Database (PMDB) is a collection point for a
wide range of power and energy related information, along
with data important to correlate this information with jobs
that are and have executed on the platform (see Section III-A).
Exposing the information contained in the PMDB to the
Admin Role is the first focus area of the Trinity APM NRE
collaboration with Cray that will be covered in Section IV-A.

The second area of focus for the ACES/Cray collaboration
is a compute node implementation. The Systems (Figure 1)
relative to this area are Hardware and Operating System.
In general, the focus is exposing power and energy relevant
measurement and control knobs to Roles such as the
Application and the Resource Manager. The compute node
implementation is covered in Section IV-B.

The third focus area is power aware scheduling, a very
broad topic. Adaptive and ACES are actively working
towards finalizing the goals for this project. In Section IV-C
we will discuss some of the use cases that we hope to enable
with this effort and some of the capabilities implemented as
part of the ACES/Cray collaboration that will be exercised.

A. Power Management Database Implementation

Cray has recently introduced a capability to retain historic
information related to power and energy called the Power
Management Database (PMDB). See section III for a descrip-
tion of the PMDB and type of information retained in the
database. One of most important aspects in any effort to mod-
ify a characteristic is to first understand the current condition
of that characteristic. Trying to affect power on an HPC plat-
form is no different. Cray’s PMDB provides a repository of in-
formation that allows a user (some Power API Ro1le) to mine
power and energy relevant data (measure). The Role that
Cray is initially implementing to interface with the PMDB
(essentially part of the Monitor and Control System) is the
systems administrator (Admin) Role. As mentioned previ-
ously, a system administrator typically has the need to under-
stand the entire HPC system. In the PMDB implementation,
the Admin Role will have a view of the entire HPC platform.

While the initial versions of the Power API were specified
in the C language, systems administrators more commonly
use scripting or interpretive languages to do their jobs. Python
was selected due to its popularity for Roles like system
administrators (Admin) and Resource Managers, for example.
The PMDB implementation will include most of the core
functionality of the specification. This includes the attribute
interface which allow the user of the Power API to get (mea-
sure) information about specific objects or groups of objects.
For example, the administrator may desire to get a point in
time power measurement from a node (object) or a group of
nodes (group of objects). Possibly more useful would be to
monitor the energy use of a node or group of nodes. Using the
attribute interface the administrator could request the energy
reading from a node or nodes, wait a period of time and repeat
the call to determine the energy used by that node or group of
nodes over that period of time. Note the specification states
that the time-stamp related to the sample returned be tempo-
rally as near as possible to when the sample was measured.

These low-level interfaces, while useful, are probably not
as powerful when interacting with a database as they are
at lower levels, like interfacing in real-time directly with
the hardware. The PMDB implementation will additionally

include the historic statistics interface of the Power APL
This interface will allow the user to obtain information like
the minimum and/or maximum of a power reading across
a number of nodes (all of the nodes assigned to a particular
job) over a period of time. The average power of the same
group of nodes could be requested.

Probably the most common interaction with a data-base is
generating a report. While the Power API specification has
the beginnings of some high-level interfaces for this purpose,
Cray and ACES are in the process of defining a flexible
report interface that will enable the user to request reports
for a range of information available in the PMDB. This
information will contain job and system related information
that the Power API does not currently address but is clearly
closely related and necessary for many reasons. For example,
Cray is working with ACES to develop two Python report
programs that produce text output. The first uses some
combination of job ID, application ID, and user ID as input
to generate report output that includes data that are of general
interest to the systems administrator (Admin) Role. These
data include: job ID, application ID, user ID, total energy,
start time, end time, and node count. Verbose detailed data for
this type of report may include per-node power and energy
statistics. The second report type will deliver useful system-
and cabinet-level power and energy information, perhaps
over a 24-hour window. This report will include data targeted
for data-center managers and site planning personnel. It will
include statistics like daily and hourly minimum, average,
median, and maximum power usage for each compute cabinet.
Recall that the PMDB information is stored round-robin and
information expires dependent on space available. Generating
reports withing the bounds of data expiration is one way
to retain important information on a more permanent basis.

An important value already realized by the ACES/Cray
collaboration on the Trinity APM NRE is the improvement of
the Power API specification. Cray has been instrumental in
vetting the Power API from the implementation perspective.
In the short time we have been collaboration we have
discovered multiple opportunities for improvement that have
been included in the latest three point releases of the Power
API specification. The Python implementation of the Power
API, when complete, will be included in the Power API
specification as the first alternative language binding. We
anticipate release later in 2016.

B. Compute Node Implementation

Any effort to understand (measure) or control power
and energy for HPC platforms almost necessarily considers
node level measurement and control. Early (and on-going)
research in this area focused on the potential of manipulating
CPU frequencies to reduce power or energy use, for example.
For HPC, this is complicated by the need to maintain
performance, or minimally affect it. ACES and Cray consider
this area of focus to be of great importance in demonstrating

and investigating advanced capabilities. Cray will be
delivering a C based compute node implementation of the
Power API as part of the Trinity APM NRE project. While
we cannot cover every capability that will be implemented
we will discuss some common and high value characteristics
of the implementation in this section.

The Roles that will be initially developed are the
Application and Resource Manger Roles. While these
Roles could potentially have different needs from the
perspective of how much of the system description is exposed
upon initialization, the initial efforts will limit exposure to the
node level, and below, to both Roles. As the collaboration
proceeds an expansion of the use cases addressed related
to the Resource Manager Role may be considered.

As with the Python PMDB implementation, the core
functionality of the Power API will be implemented as part
of this effort. For the compute node implementation, the
core functionality has the potential of being of great value.
For example, obtaining power or energy information for
the node, or specific component of the node like the CPU,
is something that any power-aware application or resource
manager would require. The attribute interface (part of
the core functionality) allows the user (the Application or
Resource Manager Role in this case) to obtain point in time
power samples or energy over a given time period. With the
exception of energy, measurement attributes, like power, are
individual point in time samples. The user will have access
to attributes representing power, temperature, frequency, and
power cap, for example. The specification requires that the
time-stamp returned with any sample accurately represents
the time the sample was measured. In the case of energy,
power over a period of time, two or more calls using the
attribute interface are required. For example, an application
that is interested in the energy used over a certain phase can
make a call using the attribute interface to get the energy at
the beginning of the phase. This value will typically be an
accumulator with an associated time-stamp. At the end of
the phase being examined the application can make a second
call. In the typical use case, the energy over the period of
time between the first and second call is represented by the
difference between the first and second values returned.

One of the primary additions to typical production function-
ality that will be enabled by this effort is the ability to control
CPU frequency from a user space process. This capability
opens up a wide range of potential use cases. Currently,
Cray, through the CAPMC interface enables the user (via
the Resource Manager) to set CPU P-states that will remain
constant through the life of the job execution. Through the
Power API implementation, the ability to dynamically change
CPU frequency will be exposed to user space processes. This
will enable more granular dynamic control during the entire
application execution. A power-aware application could, for
example, run at a lower frequency P-state when it is in a
communication phase. Figure 3 shows that lower frequency

P-states can be used with little to no performance impact
during communication phases [7] (given the network supports
offloaded processing of network packets). While on-loaded
networking solutions see significant impact from P-state
changes, as the CPU is used to process network traffic, such
systems can still benefit from P-state changes if applications
use small messages that are latency sensitive as shown in
Figure 4. These P-state changes allow significant power
savings from a node perspective and in some cases may
minimally impact application performance, making power
saving P-states feasible to exploit for some applications.
Capabilities like dynamic frequency/P-state and C-state
control, implemented on the compute node can be made
available to the Resource manager and/or the Application.
The compute node implementation will also include the
statistics interface. In this case the real-time interfaces will
be implemented (recall that the historic interfaces are being
implemented to interact with the PMDB (see Section IV-A)).
The user will be able to create statistics objects that represent
a tuple of object, attribute and statistic that they wish to
collect. Statistics objects can be started, polled while active
and stopped to mine the particular time range of interest. The
statistics interface is a very powerful tool that can leverage
lower level telemetry capabilities like those provided by
Crays HSS (see Section III). For a complete description of
the interface capabilities see the Power API specification.
The Power API specification contains the concept of
application hints. The idea behind this is that the application
best understands what it is doing at any point in time, or
will be doing at some point in the future. While there are
many open questions in implementing this type of capability,
this is one of the areas that ACES and Cray are interested in
investigating as part of this collaboration. Given the capability
of dynamically controlling CPU frequency is available, the
application is in a good position to provide hints regarding
how some underlying layer might manage the CPU, or
other components, to obtain an optimal balance between
performance and power efficiency. Some of the hints available
to the user via the high-level application interface are:
serial, parallel, compute, and communicate?. As previously
described we have shown potential power savings when using
lower CPU P-states during an application communication
phase (Figure 3). The application hints interface would be a
convenient way for the application to communicate this to an
intelligent run-time layer. Once the communication phase is
complete, the application could again hint that it is about to
enter a compute intensive region, for example. As applications
adapt to evolving node architectures it has become increas-
ingly important to exploit parallelism to take advantage of
larger numbers of cores or accelerators. However, portions of
current, and likely future, applications still have serial phases.
If the application can provide hints that indicate a serial

2For a complete list please refer to the Power API specification.

versus a parallel phase, the run-time could potentially deliver
both greater performance and power efficiency. For example,
when an application is entering a serial phase an intelligent
run time could proactively shut down cores that will not be
in use, enabling the core executing the serial portion of the
application to run at the highest frequency available. This
could result in greater performance for the application (serial
phase is accelerated) while potentially saving power (cores
not in use are put in a minimal power state). Once the serial
phase is complete, the application can hint the end of the
phase by sending the default hint or some other hint that
could help optimize performance, power or both. The use
case that was just described suggests that the application
will provide appropriate hints. It is also possible that another
layer, like the Message Passing Interface (MPI) layer, could
send similar hints. This would allow this type of optimization
without requiring modification of the application.

Offload Stream Bandwidth (Put) With Power

25000 140
. 130
2 20000 =Pt 120
= 10
= 15000 - =t T T 100 &
5 e ot i i R w41 O 90 2
10000
3 SEEimcTa 80 &
@ 5000 [E3TE R e 70
""" g 60
¢ B &706‘1@6‘«3 0106‘16’6‘750
% R/
6RO Y LT 5:{_?",1_7,1_6‘(%_0‘5,\?_@4_@&
Message Size (bytes)
1.4GHz —— 3.4GHz —— 2.4 GHz power —--~
1.9GHz — 3.8GHz —— 2.9 GHz power ==--
24GHz —— 1.4 GHz power ---- 3.4 GHz power ----
29GHz —— 1.9 GHz power -—-- 3.8 GHz power —-=--~-
Figure 3. Offloaded network traffic stream bandwidth with varying CPU
frequencies
Onload Bi-directional Ping-Pong Latency With Power
500
__ 400
1] —
2 3
> 300 \\u_-;
o
g 200 5
“ o
100
<4 62 S & &) >
R A ECRR AS AN
Message Size (bytes)
1.4GHz —— 3.4GHz 2.4 GHz power -~
1.9GHz —— 3.8GHz 2.9 GHz power ==---
24GHz —— 1.4 GHz power —=--- 3.4 GHz power ----
29GHz —— 1.9 GHz power ---- 3.8 GHz power ----
Figure 4. Onloaded network traffic stream latency with varying CPU
frequencies

C. Power Aware Scheduling

ACES recently began a collaboration with Adaptive
Computing as part of the Trinity APM NRE project. We will
only discuss this briefly since we are in the very early stages
of this work. Power ramp control, the ability to control

the rate at which the system increases its power use, is
being implemented by Cray as part of the compute node
implementation (see Section IV-B) Trinity APM NRE. ACES
will be working with Adaptive computing to develop, test and
implement this capability which is controlled by the resource
manager through the CAPMC interface and will leverage
the Power API interface on each compute node. One of the
challenges we see in the future is very large swings in power
draw for our largest platforms. While this may not present a
problem for the facility in the Trinity time-frame, it is likely
to for the next ACES ATS platform, Crossroads. Refining
this capability on Trinity will allow ACES to be prepared
for platforms that can experience multiple megawatt swings
in power in very short periods of time. Likewise, managing
platform power within pre-determined, or pre-negotiated
lower and upper limits can prove to be a huge cost savings for
the facility. Using more or less of the pre-negotiated power
results in much higher costs for a facility. Similar to the
power ramping effort, ACES will be working with Adaptive
to exploit capabilities that Cray will expose, developed as part
of the ACES/Cray Trinity APM NRE, to operate the platform
within pre-determined upper and lower bounds, even bounds
that differ throughout the day. In addition, we will be working
with adaptive to execute individual applications within
power constraints to maximize the science output within
a given platform power constraint. The combination of the
ACES/Adaptive and ACES/Cray collaborations should result
in power-aware scheduling and management capabilities that
have never been possible on a leader-ship class HPC platform.

D. Power Capping

Related to power-aware scheduling, we have begun to ex-
plore the use of power capping as a mechanism for enforcing
power budgeting decisions made by the workload manager.
Cray’s CAPMC infrastructure enables workload managers to
set a desired power budget for each compute node in the sys-
tem, which is then enforced by firmware running on each com-
pute node. For example, a workload manager may decide to
power cap a given job’s compute nodes to 200 W of the max-
imum 400 W per node and shift the 200 W difference else-
where in the system where it can be better utilized. Our initial
finding is that while node-level power capping on Trinity is
effective at maintaining the desired average power usage over
multi-second time windows, the scalability of some work-
loads is significantly impacted by the performance variability
introduced by the power capping mechanism [8]. As an ex-
ample, Figure 5 shows the performance of the CTH and S3D
applications running under a 230 W per-node power cap set-
ting on Mutrino, a small-scale Trinity testbed at Sandia. CTH
performance behaves as expected, with performance degrad-
ing gracefully under the power cap. S3D, on the other hand,
experiences significant performance degradation with scale
when running at the default Turbo-On p-state (2.3 GHz base
with dynamic scaling up to 3.6 GHz). In this case it is better

to run S3D at a fixed 1.8 GHz p-state because it results in av-
erage power usage being below the 230 W cap, which avoids
the power capping mechanism from being triggered. We are
currently working to better understand this behavior and find
ways to mitigate it, as well as examining how node-level
power capping affects power usage at the facility level [9].

V. RELATED WORK

Power measurement/monitoring APIs have been developed
in the past. Most of these APIs are device specific, such
as Powermon [10] and Powerpack [11]. Also, more recent
out-of-band measurement devices have had specific targeted
APIs, like Powerlnsight [12] and WattProf [13]. Out-of-
band measurement devices have provided fine-grained
measurement and control via their device APIs, and
have allowed remote measurement to occur, such as the
Powerlnsight [12] specific piapi. Such APIs allow for
collection from their respective devices in an efficient manner,
and as such are used in the Power API implementation
through device-specific plugins. In addition to external or
dedicated monitoring devices, some hardware has built in
power/energy monitoring and management functionality.
Measurement directly from Running Average Power Limit
(RAPL) control mechanisms on Intel processors have been
introduced through MSR-safe [14]. Such user-level access to
machine specific registers (MSRs) is critical to allow in-band
energy measurement. The Power API provides similar
functionality and can utilize mechanisms like MSR-safe
as plugins to allow for user-level access to privileged
information. Cray’s CAPMC allows for power monitoring
and control capabilities on Cray systems, it is a RESTful
interface that uses JSON for issuing and interpreting
commands [3], [6], [15]. Another RESTful JSON interface
named Redfish [16] can be used for management of
generic cloud infrastructures and provides basic support for
managing power reserouces in a cloud environment. HP’s
iLO [17] is a proprietary out-of-band interface for taking
measurements, including power/energy on HP clusters.

Global Energy Optimization (GEO) is a energy
optimization framework developed by Intel [18]. It manages
job power bounds in a cluster while also attempting to
increase performance by tuning the power consumption of
systems involved in a job. GEO has a scalable collection
mechanism that is based on MPI communication for
individual job measurement collection. Unlike the Power
API, GEO’s external interfaces are not proposed as a
standard [18], though they are open-source.

PAPI [19] is an example of a high-level, portable API
for performance monitoring that seeks to solve similar
problems to the PowerAPI, but in the performance realm
instead of power. Scalable measurement collection for
performance-related data is available in tools like the
Lightweight Distributed Metric Service (LDMS) [20]. Many
scalable collection tools use overlay networks to aggregate

0.17

Turbo-On

]

Timesteps Per Second

0.09 : ‘ ‘ : :

1 2 4 8 16 32 64 96
Scale (# Nodes)

(a) CTH Performance with 230 W Power Cap

Figure 5.

data such as MRNet [21]. Large scale collection of data
using methods like these has also been applied to other
performance and correctness data collection like the Stack
Trace Analysis Tool (STAT) [22].

VI. CONCLUSIONS AND FUTURE WORK

We are in the beginning phases of the Trinity NRE collab-
orations with both Cray and Adaptive. The ultimate goal of
this work is to deliver measurement and control capabilities
that form the basis of all use cases related to power and
energy for HPC systems. With both the Cray and Adaptive
efforts ACES has also strived to provide these capabilities
using platform independent interfaces (documented in the
Power API specification). ACES intends to use many of
these capabilities on the production Trinity platform. We also
intend to use the capabilities exposed as part of both NRE
collaborations to research emerging use cases to determine
how best to maximize productivity on Trinity (and follow
on platforms) given power and energy constraints.

ACKNOWLEDGMENT

The authors would like to thank the Trinity and Cray
project leadership, Doug Doerfler, Manuel Vigil and Scott
Hemmert (ACES) and Tim Ingebritson (Cray) for supporting
our efforts on this project and having the vision to support
this important area of collaboration. Jonathan Woodring from
Los Alamos Laboratory provided some much needed Python
expertise for the ACES team. The Cray team responsible
for the implementations described in this paper are: Steve
Martin, Dave Rush, Matthew Kappel, Josh Williams, Leo
Maurer, Sam Watters, Rick Ward, Jim Robanske, Elwira
Karwowski, Greg Koprowski, Larry Babb and Paul Falde,
some of whom are also recognized as authors. The funding
for this project was provided by the Department of Energy
Nuclear Security Administration Advanced Simulation and
Computing Program.

Gridpoints Per Second

6000

Turbo-On ——

5500

5000 -

4500 ¢

4000

3500 r

3000

2500 : ‘ . : .
1 2 4 8 16 32 64 96
Scale (# Nodes)
(b) S3D Performance with 230 W Power Cap

CTH and S3D application scalability when running under a node-level power cap.

REFERENCES

[1] J. H. Laros III, , S. M. Kelly, S. Hammond, R. Elmore, and
K. Munch, “Power/energy use cases for high performance
computing,” Sandia National Laboratories, Tech. Rep.
SAND2013-10789, 2013.

[2] J. H. Laros III, D. DeBonis, R. Grant, S. M. Kelly,

M. Levenhagen, S. Olivier, and K. Pedretti, “High

performance computing-power application programming

interface specification version 1.0,” Sandia National

Laboratories, Tech. Rep. SAND2014-17061, 2014.

S. Martin and M. Kappel, “Cray XC30 power monitoring
and management,” Proceedings of CUG, 2014.

“Monitoring and managing power consumption on
the Cray XC system,” 2015. [Online]. Available:
http://docs.cray.com/books/S-0043-7204/S-0043-7204.pdf
[5] “CAPMC API documentation release 1.1,” 2015. [Online].
Available: http://docs.cray.com/books/S-2553-11/S-2553-11.
pdf

[6] S. Martin, D. Rush, and M. Kappel, “Cray advanced platform
monitoring and control (CAPMC),” Proceedings of CUG,
2015.

[7] M. G. Dosanjh, R. E. Grant, P. G. Bridges, and R. Brightwell,
“Re-evaluating network onload vs. offload for the many-core
era,” in 2015 IEEE International Conference on Cluster
Computing (CLUSTER). 1EEE, 2015, pp. 342-350.

[8] K. Pedretti, S. L. Olivier, K. B. Ferreira, G. Shipman, and
W. Shu, “Early experiences with node-level power capping
on the cray xc40 platform,” in Proceedings of the 3rd
International Workshop on Energy Efficient Supercomputing
(E25C), 2015.

[9] J. Brandt, D. DeBonis, A. Gentile, J. Lujan, C. Martin,
D. Martinez, S. Olivier, K. Pedretti, N. Taerat, and R. Velarde,
“Enabling advanced operational analysis through multi-
subsystem data integration on trinity,” Proceedings of the
Cray User Group (CUG), 2015.

(10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

[22]

D. Bedard, M. Y. Lim, R. Fowler, and A. Porterfield,
“Powermon: Fine-grained and integrated power monitoring for
commodity computer systems,” in Proceedings of the IEEE
Region 3 Southeast Conference 2010 (SoutheastCon). 1EEE,
2010, pp. 479-484.

R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. W.
Cameron, “Powerpack: Energy profiling and analysis of high-
performance systems and applications,” IEEE Transactions on
Parallel and Distributed Systems, vol. 21, no. 5, pp. 658-671,
2010.

J. H. Laros, P. Pokorny, and D. DeBonis, “Powerlnsight
- a commodity power measurement capability,” in 2013
International Green Computing Conference (IGCC). 1EEE,
2013, pp. 1-6.

M. Rashti, G. Sabin, D. Vansickle, and B. Norris, “WattProf:
A flexible platform for fine-grained HPC power profiling,”
in International Conference on Cluster Computing. 1EEE,
2015, pp. 698-705.

K. Shoga, B. Rountree, M. Schulz, and J. Shafer, “Whitelisting
MSRs with msr-safe,” in 3rd Workshop on Extreme-Scale
Programming Tools, 2014.

A. Hart, H. Richardson, J. Doleschal, T. Ilsche, M. Bielert,
and M. Kappel, “User-level power monitoring and application
performance on Cray XC30 supercomputers,” Proceedings
of the Cray User Group (CUG), 2014.

D. M. T. Force, “Redfish - simple, modern and secure
management for multi-vendor cloud and web-based
infrastructures,” SPMF, Tech. Rep., 2015. [Online]. Available:
https://www.dmtf.org/sites/default/files/standards/documents/
RedfishTechNote.pdf

A. R. White, “Methods and apparatus for diagnosing and
correcting faults in computers by a support agent at a remote
location,” Apr. 2 2002, uS Patent 6,367,035.

”»

J. Eastep, “An overview of GEO (global energy optimization),
2015. [Online]. Available: https://eehpcwg.llnl.gov/documents/
webinars/systems/120915_eastep-geo.pdf

S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci,
“A scalable cross-platform infrastructure for application perfor-
mance tuning using hardware counters,” in Supercomputing,
ACM/IEEE 2000 Conference. 1EEE, 2000, pp. 42-42.

A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop,
A. Gentile, S. Monk, N. Naksinehaboon, J. Ogden et al., “The
lightweight distributed metric service: a scalable infrastructure
for continuous monitoring of large scale computing systems
and applications,” in Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis. 1EEE Press, 2014, pp. 154-165.

P. C. Roth, D. C. Arnold, and B. P. Miller, “Mrnet: A
software-based multicast/reduction network for scalable
tools,” in Proceedings of the 2003 ACM/IEEE conference on
Supercomputing. ACM, 2003, p. 21.

D. C. Amold, D. H. Ahn, B. R. De Supinski, G. L. Lee, B. P.
Miller, and M. Schulz, “Stack trace analysis for large scale
debugging,” in Parallel and Distributed Processing Symposium,
2007. IPDPS 2007. IEEE International. 1EEE, 2007, pp. 1-10.

