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= Status of the US program
= R&D needs




US Inventory: Commercial SNF

Commercial Spent Nuclear Fuel (SNF)

* |n temporary storage at 75 reactor
sites in 33 states

e US pools have reached capacity limits
and utilities have implemented dry
storage

* Some facilities have shutdown and all
that remains is “stranded” fuel at
independent spent fuel storage
installations (ISFSIs)
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Slide content courtesy of Peter Swift, SNL



US Inventory: DOE-Managed SNF & HLW

DOE-managed SNF and High-Level Radioactive Waste (HLW)

* |n temporary storage at 5 sites in 5 states

DOE-Managed HLW DOE-Managed SNF
~20,000 total canisters (projected) ~2,458 Metric Tons

Hanford
~2,130 MTHM

Defense: ~2,102 MTHM
Non-Defense: ~27 MTHM

Hanford
~9,700 Canisters (Projected)

Idaho
~280 MTMM
Defense: ~36 MTHM
Non-Defense: ~246 MTHM

West Valley
275 Canisters (2010)

MTHM - Metric Tons Heavy Metal

Other Domestic Sites
~2 MTHM
Defense: <1 MTHM
Non-Defense: ~2 MTHM

Idaho
~3,590-5,090 Canisters (Projected)

HLW at West Valley is
owned by New York State.

L

Fort St Vrain, CO

Non-Defense: ~15 —*
MTHM

Savannah River
Savannah River

~30 MTHM
~2,900 Canisters (2010) TOTAL Defense: ~10 MTHM
~6,300 Canisters (Total Projected) o -~
TOTAL ~2,458 MTHM Non-Defense: ~19 MTHM
~3,175 Canisters (2010) Defense: ~2,149 MTHM
~19,865-21,365 Canisters (Total Projected) Non-Defense: ~309 MTHM
Canisters — HLW Canisters for Disposal 3,500 DOE Canisters

Source: Marcinowski, F., “Overview of DOE’s Spent Nuclear Fuel and
High-Level Waste,” presentation to the Blue Ribbon Commission on
America’s Nuclear Future, March 25, 2010, Washington DC.

Slide content courtesy of Peter Swift, SNL
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US Projections of SNF and HLW

Projected Inventory of Spent Nuclear Fuel

Projected Volumes of
SNF and HLW in 2048
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commercial SNF in existing
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canisters

Approx. 80,150 MTHM (metric tons heavy metal) of SNF in storage in the US today
= 25,400 MTHM in dry storage at reactor sites, in approximately 2,080 cask/canister systems
Approx. 2,200 MTHM of SNF generated nationwide each year

= Approximately 160 new dry storage canisters are loaded each year in the US

Slide content courtesy of Peter Swift, SNL
————



Deep Geologic Disposal of SNF and HLW in US
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“Geological disposal remains the
only long-term solution available.” ) {

National Research Council, 2001

* Yucca Mountain Project (suspended) |
e Several possible host rocks in US SR
e Volcanic Tuff
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US DOE Office of Nuclear Energy ) e,

= Spent Fuel and Waste Science and Technology (SFWST)
= R&D Campaign (2010 -2017)
=  Mission
= To identify alternatives and conduct scientific research and technology

development to enable storage, transportation and disposal of used nuclear fuel
and wastes generated by existing and future nuclear fuel cycles

=  Mission work

= Storage and transportation R&D

= Dry casks, pools, extended storage,
container degradation, resilience

= Disposal R&D
= Crystalline disposal R&D
= Argillite disposal R&D
= Salt disposal R&D
= Deep borehole R&D (no longer pursuing)

= Generic disposal system analysis
= International R&D
= Dual-purpose canisters (DPCs)




US DOE Disposal R&D ) B

= National labs doing R&D relevant to crystalline:

= Argonne (ANL), Lawrence Berkeley (LBNL), Lawrence Livermore (LLNL),
Los Alamos (LANL), Pacific Northwest (PNNL), Sandia (SNL)

PFLOTRAN- Pressure Salution LANL Lagrangian Transport Simulation

Time: 1000 Years

Na. K
water content

ANL, PNNL LBNL

Thermodynamic Data




US Multinational Project Participation (@&,

= DECOVALEX Project (Development of coupled models and their validation against experiments)
= Process model comparison for data collected at underground research laboratories (URLs)

= Colloid Formation and Migration (CFM) Project
=  Grimsel Test Site (GTS), Switzerland (crystalline)

= FEBEX Dismantling Project — Grimsel Test Site (GTS)

= Engineered barrier system (EBS) materials evolution after 18 years
of heating

= Mont Terri Project — Mont Terri URL, Switzerland (clay)
= Thermal-hydrologic-mechanical (THM) behavior of EBS materials

= SKB Task Forces — Aspé Hard Rock Laboratory (HRL)

= Flow and transport of solutes, EBS behavior

=  GREET — Mizunami URL, Japan (crystalline)

=  Groundwater recovery experiment

= KAERI Underground Research Tunnel (KURT)

=  Republic of Korea (crystalline), hydrogeological properties

= HotBENT — Grimsel Test Site (GTS)

= Heater tests with different EBS materials and temperatures

= NEA/OECD
= Thermochemical Database Project, Salt Club, Clay Club, Crystalline Club




US Bi-Lateral Collaborations

= US - Republic of Korea
= KURT — KAERI Underground Research Tunnel
= JFCS —Joint Fuel Cycle Study

= US - German Salt Collaboration
=  Salt THM behavior

= US - Sweden COSC Collaboration (ICDP)

= Crystalline rock hydrogeologic characterization

= US-China
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2017 U.S./German Workshop on Salt Repository
Research, Design, and Operation

ICdp I INTERNATIOMNAL

, CONTINENTAL SCIENTIFIC
DRILLING PROGRAM

= BCNECAP — Bilateral Civil Nuclear Energy Cooperative Action Plan

= Memorandum of Understanding

= DOE - Spain (ENRESA) ap———ire

= DOE - France (ANDRA)
= DOE - Japan (JNEAP) TR

= DOE - Belgium




Crystalline Rock in US ) i,

» Locations of
outcrops and
near-surface
sub-crops

« Extent of
past
glaciation

Glaciation Extent
e | imit of Wisconsin glaciation - granite on slope < 1 degree

ms | jmit of pre-Wisconsin glaciation - granite on slope > 1 degree AT o M- L -

Wang et al. (2014, Figure 2-13)




Crystalline Rock Characterization R&D @ .

" Fracture flow, transport, fracture properties, water composition
= KAERI Underground Research Tunnel (KURT)
= Colloid Formation and Migration (CFM) Project (Grimsel)
= Groundwater Flow and Transport of Solutes (GWFTS) (Aspd)

= DECOVALEX
= Bedrichov Tunnel fracture flow & transport, Czech Republic, DECOVALEX-2015

~| = Groundwater recovery experiment (GREET), Mizunami URL, DECOVALEX-2019

Bedrichov Tunnel




Crystalline EBS Process R&D ) e,

= EBS material evolution, coupled THMC*
processes, transport through EBS
= Reactive transport from waste form to host rock

= Compilation of steel corrosion rate data, Eh-pH N AP
dependency g
= Material alteration, heater tests, swelling, re-
saturation, gas generation
* FEBEX dismantling project (Grimsel)
Full-scale emplacement heater test (Mont Terri)
DECOVALEX
= SKB Task Force (Aspd)
" HotBENT (Grimsel)
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* THMC = thermal-hydrologic-mechanical-chemical



Crystalline Repository Design R&D M.

= Drift spacing, waste inventory, waste package (WP) material,
WP placement, WP heat, buffer/backfill, seals, DPCs

Backfill

Buffer Layer

Bentonite

Waste Package
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Safety Assessment — Crystalline ) .

= GDSA Framework — Geologic disposal safety assessment framework
for probabilistic performance assessment (PA)

= QOpen source, massively parallel, freely available (pa.sandia.gov)

GDSA Framework

Input

Parameters ]

Uncertainty
Sampling and

database

Parameter l

> Sensitivity Analysis

)> DAKOTA
\Q

\

Computational Support
Pre-/Post- Visualization
Processing I”Par aView
Pacate Visuskzasion Apphcation
@ python ‘

=/

¥ ]

/
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Safety Assessment — Crystalline ) .,

= Advanced FEP (Features, Events, and
Processes) Database/Matrix
= Adapt to crystalline; screen (include/exclude)

= GDSA Framework Simulations
= Coupled THMC processes, dose calculation
= Uncertainty quantification

= Probabilistic sensitivity analysis

Dose at Well

== Deterministic

= Mean
== Median
= q=5%
=+ q=95%
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Data Challenges — Crystalline ) e,

= Host rock characterization

= Fractures — networks, density, distributions, connectivity, properties,
evolution over time

= Groundwater — composition, age
= Sorption
= Colloids
= EBS and near field
= Damaged rock zone (DRZ) — extent, fracture properties
= THMC evolution of the near field (buffer, backfill)
= Waste package corrosion rates
= Cladding performance, waste form degradation

= Sorption
= Colloids




Design Questions — Crystalline .

= Repository design criteria
= Limits on fractures, fracture flow, earthquakes

= E.g., emplacement rejection criteria for boreholes/drift segments based
on fractures encountered during excavation

= Peak temperature limits
= Repository layout
= Drift/WP spacing
= WP placement (in-drift, in-floor, horizontal boreholes)

= Materials

= WP materials
= Buffer/backfill
= Sealing (DRZ, drifts, shafts)




Modeling Challenges — Crystalline @&

" Process modeling

Fracture and matrix flow, water and heat
= Honor observed fractures and fracture distributions

THMC evolution of the near field (buffer, backfill, DRZ)
= Re-saturation of repository horizon, material evolution, fracture evolution

Waste package corrosion, failure, and performance after failure
In-package chemistry, cladding performance, waste form degradation

Radionuclide transport
= Advection, dispersion, sorption, colloids, precipitation/dissolution

* |nclude/improve process models in PA code (GDSA Framework)

To improve simulation of coupled processes

= Simulate crystalline repository designs using PA code

To assess uncertainties, identify important FEPs, and direct
future R&D
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