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IDAES framework brings advanced modeling, optimization,

and analysis of energy and chemical process systems

= Equation-oriented modeling framework with suite of unit models supporting
separation of models and algorithm or solution approach

= Enables efficient composition, simulation, and optimization of process
systems through flexible python frameworks.
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Motivating example: Improve the efficiency and reliability of existing
coal-fired power plants while accelerating development of a broad
range of advanced fossil energy systems.

Challenge: Computational effort of some advanced analyses

Landscape of desktop and scientific computing
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Tick Early 2010: Westmere

32 nm .
Tock Early 2011: Sandy Bridge Perfprmance 'mlDrOl\/@mem
N PSE applications

Tick Early 2012: lvy Bridge
Tock Mid 2013: Haswell
Mid 2014: Haswell refresh

50% Hardware
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i 50% Algorithms

Tick Late 2014: Broadwell Continued performance
Tock Mid 2015: Skylake iImprovement demands

Early 2017: Kaby Lake nigr-etisiency
parallel algorithms
Late 2017: Coffee Lake
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Large-scale IDAES Application Needs and Capabilities in Pyomo

Solution of ensembles of problems
= Parameter sweeps
= Convergence reliability testing
= Global sensitivity analysis, UQ
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Rapid solution of large flowsheets A B

Pressure (psi)

= Parallel model evaluation, linear algebra
= Modular decomposition (units/tearing)

=  (Planned summer 2018)

Decomposition of structured problems

=  Dynamic optimization

Parallel execution through MPI (mpi4py)
Parallel bounds tightening
Convergence reliability evaluation

Parallel optimization under uncertainty
PySP: Stochastic programming capability
Progressive hedging (Pyro, bundling, etc.)

m} " - =  Combined with other packages (Pyomo.DAE)
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. = In progress

(structure from discretization of differential equations)

=  Optimization under uncertainty
(structure from multi-scenario formulation)

=  Pgrameter estimation
(structure from multiple data sets)
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Data Data

Single SISD SIMD
Instruction

Multiple MISD MIMD
Instruction

Alternative architectures (e.qg,
Graphics Processing Unit)

Affordable -- 1000’s cores
Specialized compilers and
tools (CUDA, OpenCL)

Several complexities and
limitations

Desktop Multi-core (MIMD) HPC Cluster (MIMD)

» Affordable hardware

Standard tools (threads/openMP)
Fast communication (no network)

Low # of cores (relatively)
Bottleneck: Memory access/# CPU

Distributed computing (networked)
Standard tools (MPI)
Scalable: 100-1000s of cores

Bottlenecks: communication
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Exemplar algorithmic use cases (branch & bound,
PH, Schur-complement, uncertainty quant.)

Testing existing python packages for usability,
parallel scalability, and general efficiency

Pyro, mpidpy, celery, multiprocessing
Synchronized (blocking) and asynchronous

|<— Serial Execution Time = 10 min —»I

|<— Parallel Time = 5.5 min —>|

|<—>| Parallel Time = 1.0 min

2 Processors
1.8 Times Speedup
~90% Efficiency

Infinite Processors
10 Times Speedup
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Decomposition Strategies for Parallel Solution of Structured Optimization Problems

Decomposition strategies allow for parallel solution through
iterative solution of smaller subproblems (with coordination)
=  Example: Progressive Hedging

PH iteration O:
Solve individual scenarios

w, = p(x—x)

1

Fix variables
that have converged

Solve weighted scenarios

Update w W =W, +p(x—x—)
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Internal linear decomposition approaches start with a “host”
algorithm and parallelize the linear algebra

=  Example: Schur-complement decomposition

Initialize
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Original NLP Converged?

_ ty
Check convergence —|(x—x)|<&e?—> Done Hgn/t L(z,y,u) dt
0

s.t. F(&,z,y,u) =0

PH iteration i min f(x)+w.x+p/ 2] x—x| z(to) = xo

(z,y,u)" < (z,y,u) < (z,y,u)?

Barrier NLP Converged?

Calculate Derivatives,
Residuals, etc.

= Calculate Step
- Direction
|
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Perform Line Search

Reduce Bartier
Parameter

Structure in the optimization
problem induces structure in the
linear algebra

Parallelize all scale-dependent
operations

- Vector and matrix operations
- Model evaluation

Compared with problem-level
decomposition, implementation is
time consuming

Retain convergence properties of
serial algorithm

W, WestVn”giniaUniversity

Parallel Performance Examples

Progressive hedging to parallelize parameter estimation on a
Bubbling Fluidized Bed (BFB) model

= 1D Spatial model, 3 regions (particle, cloud-wake, emulsion)
= (Lee and Miller, 2013, Ind. Eng. Chem. Res.)

Gas Outlet
C, a, h,, Time (s)
Heat Transfer Solid Inlet . Actual 1.0 0.8 1500.0 -
. Surface Reaction

° s o
Ghihi}@: PH (Serial) 0.9824 0.7850 1501.74  7050.85

PH (15 processors) 0.9824 0.7850 1501.74 610.98

Solid Outlet

PH (30 processors) 0.9824 0.7850 1501.74 459.10

Parallel timing for convergence evaluation tool in IDAES

= Solution of ensemble of simulations / optimizations for evaluation of
convergence reliability

= 40 CPU machine
Speedup (4 process baseline)
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PySP for power grid planning problem (progressive hedging)

= (Contingency constrained two-stage optimization formulation

Case Name #Cont. PHlter Time (s)

casebww 11 12 2s
cased’ 79 21 12's
case118 117 14 2m 3s
case300 322 8 2m 54s
case2383wp 2252 6 4m 50s

Implicit Schur-complement for Optimization Under Uncertainty
= Distillation system model: [Benallou, Seborg, and Mellichamp (1986)]
= 32 states, 96 scenarios, 32 proc.

@_, . FS-S ESC-S ESC-P PCGSC-S PCGSC-P
Case o Yam. g Goupling Vara. time(s) time(s) time(s)  time(s) time(s)
| 1 1430550 150 10.3 79.1 2.6 17.9 0.6
2 2861100 300 - 10.8 - 1.1
Feed 3 4291650 450 - - 32.1 - 2.4
4 5722200 600 - - 70.3 - 3.2
) 7152750 750 - - 90.5 - 4.3
. 6 8583300 900 - - 160.5 - 5.3
\Ii 7 10013850 1050 - - 218.0 - 6.3
&l—’ 8 11444400 1200 . . 286.6 . 8.1
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