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Motivation

IDAES framework brings advanced modeling, optimization,
and analysis of energy and chemical process systems
• Equation-oriented modeling framework with suite of unit models supporting

separation of models and algorithm or solution approach

• Enables efficient composition, simulation, and optimization of process
systems through flexible python frameworks.
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Motivating example: Improve the efficiency and reliability of existing
coal-fired power plants while accelerating development of a broad
range of advanced fossil energy systems.

Challenge: Computational effort of some advanced analyses

Landscape of desktop and scientific computing
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Early 2010: Westmere

Early 2011: Sandy Bridge

Early 2012: Ivy Bridge

Mid 2013: Haswell

Mid 2014: Haswell refresh

Late 2014: Broadwell

Mid 2015: Skylake

Early 2017: Kaby Lake

Late 2017: Coffee Lake
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Large scale IDAES Application Needs and Capabilities in Pyomo

Solution of ensembles of problems
• Parameter sweeps

• Convergence reliability testing

• Global sensitivity analysis, UQ

Rapid solution of large flowsheets
• Parallel model evaluation, linear algebra

• Modular decomposition (units/tearing)

• (Planned summer 2018)
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Decomposition of structured problems
• Dynamic optimization

(structure from discretization of differential equations)

• Optimization under uncertainty
(structure from multi-scenario formulation)

• Parameter estimation
(structure from multiple data sets)
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Parallel execution through MPI (mpi4py)

• Parallel bounds tightening

• Convergence reliability evaluation

Parallel optimization under uncertainty

• PySP: Stochastic programming capability

• Progressive hedging (Pyro, bundling, etc.)

• Combined with other packages (Pyomo.DAE)

Suite of parallel interfaces in Pyomo

• In progress

• Exemplar algorithmic use cases (branch & bound,
PH, Schur-complement, uncertainty quant.)

• Testing existing python packages for usability,
parallel scalability, and general efficiency

• Pyro, mpi4py, celery, multiprocessing

• Synchronized (blocking) and asynchronous

Overview of Parallel Architectures and Performance

Single
Data

Multiple
Data

Single
Instruction

Multiple
Instruction

SISD
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Alternative architectures (e.g,
Graphics Processing Unit)

• Affordable -- 1000's cores
• Specialized compilers and

tools (CUDA, OpenCL)
• Several complexities and

limitations

Desktop Multi-core (M I M D)

• Affordable hardware
• Standard tools (threads/openMP)
• Fast communication (no network)

• Low # of cores (relatively)
• Bottleneck: Memory access/# CPU

HPC Cluster (MIMD)

• Distributed computing (networked)
• Standard tools (MPI)
• Scalable: 100-1000s of cores

• Bottlenecks: communication

I..)L Cloud

1

1

Serial Execution Time = 10 min

Parallel Time = 5.5 min

14-►I Parallel Time = 1.0 min

1
2 Processors
1.8 Times Speedup
-90% Efficiency

Infinite Processors
10 Times Speedup

1
Amdahl's Law soo=05

Decomposition Strategies for Parallel Solution of Structured Optimization Problems

Decomposition strategies allow for parallel solution through
iterative solution of smaller subproblems (with coordlnation)
• Example: Progressive Hedging

PH iteration 0:

Solve individual scenarios

1 
Initialize w

Fix variables

that have converged

Check convergence

PH iteration i
Solve weighted scenarios

L
4

Update w

- 1(x-x)ls? Done

min f (x) + wxx + p 211 x-x112

w, =wx+p (x - x)

min f
tf

L(x , y, dt
o

s.t. F x , y, = 0

x(to) = x0

, y, u)L < , y, u) < (x, y, u)U

Internal linear decomposition approaches start with a "host"
algorithm and parallelize the linear algebra
• Example: Schur-complement decomposition

Done Original NLP Converged?

Barrier NLP Converged?

Calculate Derivatives,
Residuals, etc.

Calculate Step
Direction

Perform Line Search

Reduce Barrier
Parameter

Structure in the optimization
problem induces structure in the
linear algebra

Parallelize all scale-dependent
operations
- Vector and matrix operations
- Model evaluation

Compared with problem-level
decomposition, implementation is
time consuming

Retain convergence properties of
serial algorithm

Parallel Performance xamples
Progressive hedging to parallelize parameter estimation on a
Bubbling Fluidized Bed (BFB) model
• 1D Spatial model, 3 regions (particle, cloud-wake, emulsion)
• (Lee and Miller, 2013, Ind. Eng. Chem. Res.)

I

Heat Transfer sok' inlet

Hydrodynamics

Gas Outlet

Surface Reaction

.

Solid Outlet

Gas Inlet

a h hW Time (s)

Actual 1.0 0.8 1500.0

PH (Serial) 0.9824 0.7850 1501.74 7050.85

PH (15 processors) 0.9824 0.7850 1501.74 610.98

PH (30 processors) 0.9824 0.7850 1501.74 459.10

Parallel timing for convergence evaluation tool in IDAES
• Solution of ensemble of simulations / optimizations for evaluation of

convergence reliability

• 40 CPU machine
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PySP for power grid planning problem (progressive hedging)
Contingency constrained two-stage optimization formulation

Case Name # Cont. PH lter Time (s)

case6ww 11 12 2 s

case57 79 21 12 s

case118 117 14 2m 3s

case300 322 8 2m 54s

case2383wp 2252 6 4m 50s

Implicit Schur-complement for Optimization Under Uncertainty
• Distillation system model: [Benallou, Seborg, and Mellichamp (1986)]

• 32 states, 96 scenarios, 32 proc.

Case # Vars.

1 1430550
2 2861100
3 4291650
4 5722200
5 7152750
6 8583300
7 10013850
8 11444400

# Coupling Vars.

150
300
450
600
750
900
1050
1200

FS-S
time(s)

10.3

ESC-S
time(s)
79.1

ESC-P
time(s)

2.6
10.8
32.1
70.3
90.5
160.5
218.0
286.6

PCGSC-S
time(s)
17.9

PCGSC-P
time(s) 
0.6
1.1
2.4
3.2
4.3
5.3
6.3
8.1

Kang, J., Word, D.P., and Laird, C.D., "An Interior-point Method for Efficient Solution of Block-structured NLP Problems
using an Implicit Schur-complement Decomposition", Computers and Chemical Engineering, vol 71, Dec. 2014, pp 563-573.

Contact: Carl D. Laird, cdlaird@sandia.gov
Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither

the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or
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