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I Gas Has a Huge Effect on the Speed of Sound
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The "hot chocolate" effect.

Navy submarine near Prudhoe Bay, Alaska

• 2018: The Naval Arctic Strategy now includes "blue water operations," such

as anti-submarine warfare, mine warfare, etc., requiring accurate navigation

and sonar performance.

• The Arctic seafloor is more prone to contain gas than non-Arctic regions.

• Current SONAR algorithms do not consider gas in sediments.



3 I Predicting the Gas Phase is Complicated

Why can't we just add gas to the SONAR algorithms and fix the problem?
• Methane gas can occur as dissolved, free gas, or as solid (gas hydrate):
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4  Predicting the Gas Phase is Complicated
Regions of submarine permafrost perturb the temperature profile. .
• A non-trivial thermal model is needed
• Need to model temperature, thus we need: p, Cp, K, 0,
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I The Arctic is a Data-Sparse Region

•
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6 I The Arctic is a Data-Sparse Region
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7 If it's so important, why doesn't the Navy collect more data?

USNS Pathfinder oceanographic survey ship

rulm mmmmm ar-

Sea ice makes operations difficult!

We are stuck with data sparsity in

the Arctic for the time being.

6 Navy survey ships operating 365 days/yr

• 
fv A60k/day

• current focus is in W. Pacific



.1 Geospatial Machine Learning
The first ever prediction/map of Arctic
seafloor porosity, using geospatial machine
learning at the Naval Research Lab (2015).

 A
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Seafloor Porosity (%)

Martin et al. (2015)

,

Interpolation is ill-suited if data is sparse

NRL is beginning to specialize in geospatial
machine learning:

uses everything we know about the seafloor
to make intelligent predictions

predictions are based on the proximity in
multi-dimensional, geologic predictor space,
rather than solely using geospatial proximity

e.g., bathymetry, distance from shore, surrogate pairs

relationship between predictors and the
predictand need not be known a priori

current algorithms include K-Nearest
Neighbor (KNN), Random Forests, etc.

predictors are validated (feature selection)
via 10-fold validation method

geologically similar areas outside the Arctic
contribute to prediction within the Arctic



We Propose a Novel Integration of Geospatial
9  Machine Learning and Thermodynamic Modeling

7
GML-predicted
continuous
fields of
seafloor

parameters

4
I

Geo-acoustic
properties can be

i_.cletermined knowing
the likelihood of

encountering gas for
SONAR performance

Thermodynamic modeling
to determine gas phase which
uses GML-predicted seafloor

parameters:
porosity, thermal conductivity,
sediment type, heat capacity,
organic carbon content, etc.

Geo-mechanical
properties can be

determined knowing the
likelihood of

encountering gas for
mine warfare

I

1



We Propose a Novel Integration of Geospatial
10  Machine Learning and Thermodynamic Modeling
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1 1 Resulting in Probabilistic Maps
For any Navy-relevant quantity:
• speed of sound, seafloor bearing strength, etc.

These maps will provide the best calculated estimates of
continuous seafloor properties to date.

...........

areas with high
uncertainty tell us
where we need

more data



I Focus on National Security
Defense (US Navy)

• Arctic is a new theater of operations for
the Navy (now includes blue water ops
such as anti-submarine and mine warfare)

• The probabilistic maps of shallow
sediment properties can improve sonar
performance, guide mine placement

• Most reliable form of environmental 
input to tactical decision aids 

Nuclear Treaty Compliance
Detection & Monitoring

ocean bottom
seismometer

• The seafloor presents a vast area for the
placement of ocean bottom seismometers

• Requires accurate models of tomographic
structure describing the transmission of
seismic waves

• The probabilistic maps of shallow sediment
properties can help constrain shallow
tomography models



J Project Plan & Milestones

FY19:

Q3,

Q4

FY2O:

FY2O:

FY21:

Q4

Black text = SNL tasks; Blue text = NRL tasks

• Develop the theoretical physical relationships
and required seafloor parameters for
thermodynamic (TD), methanogenesis (M),
geomechanical (GM), geoacoustic (GA), and
tomographic (TG) calculations.

Theoretical groundwork for TD, M, GM,
and GA calculations is established.

The required data (seafloor parameters)
for use in GML is defined.

No-go: If theoretical groundwork
cannot be established (unlikely).

• Gather and enter required data into NRL GPSM
software framework (gridded datasets).

• Explore a range of GML algorithms (including
surrogate-pairs) to optimize for level of data
sparsity.

• Conduct feature selection for GML predictors
that maximize correlations with predictands.

• Numerically implement the theoretical physical
models and equations for TD, M, GM, GA, and
TG calculations.

• Demonstrate validation of GML algorithm using
10-fold validation technique.

• Numerical implementation of physical models is
complete.

• Integrate the GML predicted fields with physical
modeling to produce probabilistic maps for
geoacoustic and geomechanical properties, and
tomography.

• Demonstrate the impact of gas on geoacoustic
parameters used for SONAR performance, mine
warfare tactical decision aids.

• Complete the required final SAND report.

Data is obtained and ready for use within
the GML software framework.

Most promising GML algorithms for the
Arctic are identified for further pursuit.

The selected GML algorithms are fully
optimized for Arctic data sparsity and
desired predictands.

A common software framework is chosen
for physical model implementation.

The chosen GML methodology is validated
for Arctic data.

Physical models are numerically
implemented in a single software
framework.

The GML methodology and physical
models can produce reliable, probabilistic
maps of Navy-relevant quantities.

Project outcome has a demonstrated
relevance to national security issues.

A new capability is documented and
citable for future, follow-on work.

No-go: Time consuming — data
assimilation may not represent all
available data.

Coordinate numerical
implementation of physical models
using a single software framework to
minimize data passing.

No-go: Poor quality, or untrustworthy
data

No-go: If validation of the optimized
GML methodology fails.

No-go: If physical model
implementation fails.

Uncertainty may be so large, as to
cause resulting maps to be
inconclusive.

No-go: If probabilistic maps do not
show relevance to national security
issues.

Publications on annual progress can
aid writing the final report.
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1 Benefits and Impact at Sandia

Establishes a new collaboration with
the Naval Research Laboratory

fail 1 8,1 ;VII
La bora t ories

Potential follow-on funding
from DoD or DOE

Future collaborations
funded under ONR

Expands the Geoscience Research
Foundation's portfolio into oceanography

Supports the growth of Sandia's Arctic
Science and Security Initiative



1 Back-up Slides



Shallowest gas occurrence is often not where you
would predict from bulk thermodynamics (10s of
meters shallower)
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This is due to pore size effects, which allow gas and
methane to coexist in pores of different size
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How can we predict
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