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2 ‘ Gas Has a Huge Effect on the Speed of Sound
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e 2018: The Naval Arctic Strategy now includes “blue water operations,” such
as anti-submarine warfare, mine warfare, etc., requiring accurate navigation

and sonar performance.

e The Arctic seafloor is more prone to contain gas than non-Arctic regions.
e Current SONAR algorithms do not consider gas in sediments.




, | Predicting the Gas Phase is Complicated

Why can’t we just add gas to the SONAR algorithms and fix the problem?
* Methane gas can occur as dissolved, free gas, or as solid (gas hydrate):

We need to know:
temperature (assume a
typical geotherm)
pressure (assume its
hydrostatic)
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. | Predicting the Gas Phase is Complicated

Regions of submarine permafrost perturb the temperature profile. . .
A non-trivial thermal model is needed

* Need to model temperature, thus we need: p, Co K, B,

DEPTH (km)
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The Arctic is a Data-Sparse Region

" examples of
individual studies
for methane gas
hydrate stability
and/or submarine

permafrost
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The Arcticis a Data-Sparse Region
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2 | Ifit’s so important, why doesn’t the Navy collect more data? |

USNS Pathfinder oceanographic survey ship
. ; 6 Navy survey ships operating 365 days/yr

s I « ~$60k/day
4 * current focus is in W. Pacific

o L e

Sea ice makes operations difficult!

We are stuck with data sparsity in
the Arctic for the time being.




.| Geospatial Machine Learning

The first ever prediction/map of Arctic
seafloor porosity, using geospatial machine
learning at the Naval Research Lab (2015).
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Martin et al. (2015)

* Interpolation is ill-suited if data is sparse

* NRLis beginning to specialize in geospatial
machine learning:

uses everything we know about the seafloor
to make intelligent predictions

predictions are based on the proximity in
multi-dimensional, geologic predictor space,
rather than solely using geospatial proximity

* e.g., bathymetry, distance from shore, surrogate pairs

relationship between predictors and the
predictand need not be known a priori

current algorithms include K-Nearest
Neighbor (KNN), Random Forests, etc.

predictors are validated (feature selection)
via 10-fold validation method

geologically similar areas outside the Arctic
contribute to prediction within the Arctic




We Propose a Novel Integration of Geospatial
s | Machine Learning and Thermodynamic Modeling

GML-predicted
continuous

fields of

seafloor
parameters

Thermodynamic modeling
to determine gas phase which
uses GML-predicted seafloor

parameters:
porosity, thermal conductivity,
sediment type, heat capacity,
organic carbon content, etc.

Geo-acoustic
properties can be
determined knowing
the likelihood of
encountering gas for
SONAR performance

Geo-mechanical
properties can be
determined knowing the
likelihood of
encountering gas for
mine warfare




We Propose a Novel Integrati

on of Geospatial

| Machine Learning and Thermodynamic Modeling

GML-predicted
continuous
fields of
seafloor
parameters

Thermodynamic modeling
to determine gas phase which
uses GML-predicted seafloor

parameters:
porosity, thermal conductivity,

+ uncertainty f

sediment type, heat capacity,
\ organic carbon content, etc.

Geo-acoustic
properties can be
determined knowing
the likelihood of
encountering gas for
SONAR performance

&) uncertainty propagates into predictions ‘

Geo-mechanical
properties can be
determined knowing the
likelihood of
encountering gas for
mine warfare




1‘ Resulting in Probabilistic Maps

For any Navy-relevant quantity:
* speed of sound, seafloor bearing strength, etc. ‘

These maps will provide the best calculated estimates of
continuous seafloor properties to date. \

areas with high
uncertainty tell us
where we need
more data




;‘ Focus on National Security

Defense (US Navy)

* Arcticis a new theater of operations for
the Navy (now includes blue water ops
such as anti-submarine and mine warfare)

* The probabilistic maps of shallow
sediment properties can improve sonar
performance, guide mine placement

* Most reliable form of environmental
input to tactical decision aids

Nuclear Treaty Compliance
Detection & Monitoring

ocean bottom
seismometer

The seafloor presents a vast area for the
placement of ocean bottom seismometers
Requires accurate models of tomographic
structure describing the transmission of

seismic waves

The probabilistic maps of shallow sediment
properties can help constrain shallow

tomography models




;‘ Project Plan & Milestones

Black text = SNL tasks; Blue text = NRL tasks

Activities & Milestones

Develop the theoretical physical relationships
and required seafloor parameters for
thermodynamic (TD), methanogenesis (M),
geomechanical (GM), geoacoustic (GA), and
tomographic (TG) calculations.

Gather and enter required data into NRL GPSM
software framework (gridded datasets).

Explore a range of GML algorithms (including
surrogate-pairs) to optimize for level of data
sparsity.

Conduct feature selection for GML predictors
that maximize correlations with predictands.

Numerically implement the theoretical physical
models and equations for TD, M, GM, GA, and
TG calculations.

Demonstrate validation of GML algorithm using
10-fold validation technique.

Numerical implementation of physical models is
complete.

Integrate the GML predicted fields with physical
modeling to produce probabilistic maps for
geoacoustic and geomechanical properties, and
tomography.

Demonstrate the impact of gas on geoacoustic
parameters used for SONAR performance, mine
warfare tactical decision aids.

Complete the required final SAND report.

Measurable Outcomes
Theoretical groundwork for TD, M, GM,
and GA calculations is established.

The required data (seafloor parameters)
for use in GML is defined.

Data is obtained and ready for use within
the GML software framework.

Most promising GML algorithms for the
Arctic are identified for further pursuit.

The selected GML algorithms are fully
optimized for Arctic data sparsity and
desired predictands.

A common software framework is chosen
for physical model implementation.

The chosen GML methodology is validated
for Arctic data.

Physical models are numerically
implemented in a single software
framework.

The GML methodology and physical
models can produce reliable, probabilistic
maps of Navy-relevant quantities.

Project outcome has a demonstrated
relevance to national security issues.

A new capability is documented and
citable for future, follow-on work.

Risk Mitigation/No-go Pts.
No-go: If theoretical groundwork
cannot be established (unlikely).

No-go: Time consuming — data
assimilation may not represent all
available data.

Coordinate numerical
implementation of physical models
using a single software framework to
minimize data passing.

No-go: Poor quality, or untrustworthy
data

No-go: If validation of the optimized
GML methodology fails.

No-go: If physical model
implementation fails.

Uncertainty may be so large, as to
cause resulting maps to be
inconclusive.

No-go: If probabilistic maps do not
show relevance to national security
issues.

Publications on annual progress can
aid writing the final report.




1‘ Budget and Team
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Ken Sale
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FY19 FY20 FY21

8844 0.25 0.25 0.25 Principal Investigator; Thermodynamic sediment modeling

8614 0.15 0.15 0.15 Biogenic methanogenesis model development

8343 0.15 0.15 0.15 Seismology, detection/monitoring, national security

8864 0.15 0.15 0.15 Geomechanics, pore scale phenomena

NRL see see see Naval Research Laboratory collaborator, machine learning, geoacoustics
below below below

uT - see AA see AA see AA  UT-Austin Academic Alliance collaborator, sediment physics and gas

(AA) budget budget budget  hydrate stability zone expert




J Benefits and Impact at Sandia

o Establishes a new collaboration with
the Naval Research Laboratory

o Potential follow-on funding
from DoD or DOE

o Future collaborations
funded under ONR

o Expands the Geoscience Research
Foundation’s portfolio into oceanography

o Supports the growth of Sandia’s Arctic
Science and Security Initiative




é‘ Back-up Slides




Shallowest gas occurrence is often not where you

would predict from bulk thermodynamics (10s of Hugh Daigle —
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How can we predict

Blake Ridge example; Liu and Flemings (2011) this behavior in Expected range
l Arctic sediments? of pore size
; distributions
This is due to pore size effects, which allow gas and from random
methane to coexist in pores of different size grain packs

Predict
changes
Sensitivity to during
P, T changes / burial
on seasonal
to decadal
time scales




