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Abstract — Several international research laboratories are
collaborating under a Smart Grid International Research
Facility Network (SIRFN) project to develop certification
procedures for advanced distributed energy resources (DER). To
effectively  evaluate interoperability and  grid-support
functionality in DER equipment, test permutations across the full
range of modes and parameters are required. It is impractical to
complete these experiments manually so the project team is
working to develop a software tool, associated abstraction layers,
and hardware drivers to execute the experiments autonomously
using the same open-source test logic. This software can then be
programmed to complete interoperable DER certification
experiments at DER vendor facilities, certification laboratories,
or research institutions. By sharing the codebase with all
institutions, barriers to adoption steadily decrease. To
demonstrate the approach, Underwriters Laboratories 1741
Supplement A volt-var and specified power factor test results
from multiple laboratories are presented and compared.

Index Terms — interoperability, grid-support functions, certi-
fication protocols, DER testing, smart grid

1. INTRODUCTION

In the last decade, grid codes around the world have been
changing to require photovoltaic systems and other distributed
energy resources (DER) to provide grid services through
autonomous and commanded control functions [1]-[3]. These
functions provide grid operators with methods to provide
voltage regulation [4], bulk system services [5], power system
visibility [6], and other grid services [7]—thereby, increasing
the renewable energy hosting capacity of the power system.
As these new requirements go into place, there is growing
need to evaluate the functionality of these devices to the

electrical requirements and verify the communications
capabilities provide the desired behavior [8].

The Smart Grid International Research Facility Network
(SIRFN) operates as an International Energy Association
(IEA) International Smart Grid Action Network (ISGAN)
research program with multiple research areas. One of the
research programs is focused on the development and
evaluations of interoperable DER certification protocols. The
ultimate goal of the effort is to enable greater penetrations of
renewables by accelerating the adoption of smart grid
converter technologies. Technical challenges that prevent
greater deployment of renewable technologies can be
mitigated with advanced DER technologies, but DER vendors
will not interconnect products with these capabilities unless
grid code requirements exist. In many cases, equipment being
installed already have the hardware and software components
required to provide this functionality—because it is required
in other jurisdictions—but it is disabled because these
functions are disallowed or not required. Therefore, in cases
where SIRFN laboratories are operating in regions without
DER grid-support requirements or certification protocols
(such as in Mexico or India), executing interoperability DER
experiments can help (a) advise DER interconnection and
communication requirements by demonstrating DER grid-
support capabilities and (b) accelerate the development of
certification procedures by rapidly iterating and exercising
draft test sequences.

Previously, the team developed test protocols for the IEC
61850-90-7 functions [9]-[10] and test protocols for energy
storage systems [11]. Experimental results from these
protocols as well as national requirements—i.e., the US DER
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certification protocol, UL 1741 [12]—have been presented for
residential and commercial scale devices [8], [13] and a 34.5
kW smart grid converter deployed in a controller hardware-in-
the-loop environment [10], [14]. To execute these
experiments, each research laboratory developed their own
DER testbeds with unique data acquisition systems and test
equipment (PV simulators, grid simulators, etc.). Differences
in the results between laboratories highlighted the need to
have a common set of test logic that would be executed in the
same way at all the labs. This would minimize the human
element in the experiments; although some variance will
inherently exist in the results due to differences in test
equipment, data acquisition systems, and the devices under
test.

In 2014, the SunSpec Alliance and Sandia began a joint
project to automate the test protocols by creating a software
tool, called the SunSpec System Validation Platform (SVP),
which orchestrated test sequences by communicating to data
acquisition systems, power equipment, and devices under test
[15]. Ultimately, the ability to full automate steady-state test
sequences were developed [16] and the capability to work
with other lab equipment over a range of protocols and media
was created using abstraction layers and device drivers [17].
This tool remains in development but as the open-source
repository of test code and device drivers grows (see [18]),
new laboratories come up to speed much quicker. Gradually,
more SIRFN laboratories have become interested in
participating in the project and contributing to the SVP
development.

This paper describes the SIRFN collaboration, SVP
development, and presents test results generated from multiple
laboratories using the same test scripts. The results show the
benefits of working within an open community, the speed and
consistency of the SVP, and the reactive and active power
grid-support function capabilities of PV inverters.

II. SYSTEM VALIDATION PLATFORM

The SVP was developed under a Cooperative Research and
Development Agreement (CRADA) between Sandia National
Laboratories and the SunSpec Alliance to autonomously
orchestrate interconnection and interoperability certification
protocols. The SVP completes these evaluations by
communicating to laboratory equipment and equipment under
test (EUT), as shown in Fig. 1. Python scripts are developed
with user-defined parameters that are exposed to the user
through a graphical user interface (GUI). The user-selected
parameters define the test sequence by:

e selecting which types of tests should be executed,

e setting the power, voltage, current, etc. levels based on

the EUT ratings, and

e configuring battery simulators, data acquisition systems

(DASs), equipment under test (EUT), grid simulators,
PV or DC simulators, hardware-in-the-loop systems,
and resistive, capacitive or inductive load banks.

Abstraction layers are employed to select equipment drivers
for a given laboratory testbed—i.e., the same script logic
(e.g., ‘set grid voltage to 0.97 pu’) will send device-specific
commands over the appropriate communication protocol
and media. A representation of the abstraction layers
pointing to specific devices is shown in Fig. 2. By
architecting the SVP in this manner, the test scripts are
completely portable to any power system testing laboratory
in the world. In the rare cases, that equipment does not
include communication interfaces, the user is prompted to
make the appropriate change to the test equipment or EUT.
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Fig. 2. SVP code structure.

A screenshot of the SVP is shown in Fig. 3. One or more SVP
Directories can be imported into the system, such as
“E:\UL1741 SA” shown in Fig. 3. Within the directory, there
are five subdirectories:
1. Lib: the library of abstraction layers and device drivers
that communicates to the equipment.
2. Scripts: the python code that represents the test logic



3. Tests: the set of parameters for a given script (e.g.,
values in the right pane of Fig. 3)
4. Suites: a collection of multiple tests or other suites that
will execute sequentially
5. Results: the log and results from a test or suite
Except for the Lib subdirectory, everything is exposed to the
user in the GUI. As shown in Fig. 3, the suites (blue) contain a
collection of tests (green) and/or other suites; available scripts
(orange) for VV and SPF are shown; and the results directory
(gray) displays the results of an experiment where the
“PF+VV for Typhoon HIL” suite was executed. Importantly,
the SVP collects, saves, and plots time-domain data, as well as
generating a summary of the test results and assembling all
this data into an excel sheet for additional post-processing or
inspection. Detailed pass/fail criteria are applied to each
measurement and saved with the data.
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Fig. 3. Screenshot of the SVP with parameters for the specified
power factor test shown in the right pane.

III. EXPERIMENTAL RESULTS

Experiments were conducted with the SVP to evaluate
DER interoperable grid-support functions (e.g., volt-var, fixed
power factor) using the UL 1741 Supplement A certification

protocol. Each SIRFN laboratory has different testing
facilities, EUTs, and is at a different stage of SVP integration.
Many of the laboratories only have a portion of the laboratory
equipment connected to the SVP and cannot conduct fully-
automated experiments yet. For this reason, results from a
subset of the laboratories are presented here.

Sandia conducted experiments at the Distributed Energy
Technologies Laboratory (DETL) in Albuquerque, NM, USA
on a 3.0 kW split-phase solar inverter and on the 34.5 kW
three-phase AIT Smart Grid Converter (ASGC) connected to a
controller hardware-in-the-loop (CHIL). Details of the testing
configuration for the 3.0 kW inverter are provided in [13] and
[15] and details of the CHIL setup are in [8] and [14]. AIT
conducted experiments using the ASGC system using this
same configuration in Vienna.

The experiments at CanmetENERGY were performed at
the inverter test facility (INVERT) in Varennes, QC, Canada
on a 10 kW three-phase solar inverter. The EUT can operate in
both active and reactive power priority mode and has a
maximum reactive power capability of 53% of its nameplate
rating. The architecture of test facility is similar to Fig. 1
which is equipped with 60 kW Ametek TerraSAS PV
simulator and 120 kVA Ametek grid simulator. The test
results were acquired with ZES Zimmer LMG670 data
acquisition system.

CSIRO evaluated the power factor functionality of a 15.0
kW three-phase solar inverter at the Renewable Energy
Integration Facility (REIF) lab. The SVP was connected to a
Ametek ETS600X PV simulator, Elspec Blackbox data
acquisition system, and the EUT. To evaluate the inverter, the
device was connected to 5 kW of simulated PV from the
Ametek TerraSAS and a 2 kW string of actual PV to ensure
the inverter remained operational because the inverter would
trip when connected to the solar simulator alone.

FREA conducted VV experiments on a 50 kW battery
energy storage system with a 16.5 kWh Super Charge Ion
Battery (SCiB) Li-ion battery using 500 kVA SanRex grid
simulator and a Yokogawa WT3000 data acquisition system.
The volt-var experiments were completed with zero active
power.

A. Specified Power Factor (SPF) Results

Per UL 1741 SA, the SPF tests may be conducted with
active or reactive power priority modes and consist of three
repetitions of changing the EUT PF from unity to PFminind,
PFmid,inds PFmincap, and PFmidcap, at power levels of 20% Prated,
100% Prated, and between 33-66% Prareq, Where:

Prated is the EUT output power rating

PFmin,ind is the minimum inductive (underexcited) PF

PFmmid;ina is the middle of the EUT inductive range

PFmin,cap 1S the minimum capacitive (overexcited) PF

PFmid,cap s the middle of the EUT capacitive range
The SVP records, saves, and plots the time response of the
EUT as the PF is changed from unity to the target power
factor. After the manufacturer’s specified settling time, the
displacement factor is measured and the EUT response is
evaluated for compliance by verifying the power factor is



within the manufacturer’s stated accuracy. The evaluation data
is saved to a separate summary file. Using the PF and apparent
power summary data, easy-to-visualize results were plotted for
each of the devices on a P-Q plane.

As shown in Fig. 4(A), the results from the 34.5 kW
ASGC system are quite accurate, with the unity power factor
measurements all lying within 0.8% of nameplate power of the
Q = 0 line and the PF measurements mostly falling within
+0.02 PF of the target, as indicated by the pass/fail boundary.
The CHIL experiments at AIT used a different ASGC
firmware and CHIL configuration. Results in Fig. 4(D) show
the device accurately produced the specified PFs. However, it
did not consistently produce Praca power at unity PF, possibly
from the oversized PV system used for the experiments; and,
when the available PV power was adjusted at the start of each
test, an overcurrent fault was experienced by the EUT which
generated one result at the origin while the EUT reconnected.

In comparison of the accurate ASGC, the 3.0 kW system
at Sandia experienced a negative reactive power bias of
roughly -360 var at Preq) that shifted all the results downward.

Specified Power Factor

g

Specified Power Factor

This is likely due to the control software not compensating for
the AC output filter of the inverter. This effect was previously
characterized in more detail in [16]. It is also worth noting this
is a legacy system that is no longer sold by the manufacturer.

The reactive power from the 10 kW system at
CanmetENERGY was quite accurate for the reactive power
priority PF experiments shown in Fig. 4(C). In the case of the
active power priority experiments in Fig. 4(F), the equipment
did not reach the +0.85 PF targets for the 100% Prateq test cases
because this would have curtailed EUT active power. Instead
the EUT only transitioned to approximately 0.93 or -0.93 PF
and remained there. The EUT output active power is limited to
92-93% of its rating during 100% Praeq Operation. Therefore,
even with active power priority the EUT achieves PFyq target
values at 100% Praeqd. Lastly, in the case of the CSIRO results,
since the EUT was powered by both a PV simulator and an
uncontrollable 2 kW PV string, the active power settings were
not set to precisely 20%, 50% and 100%, but rather three
different Prasing levels.

While the range of results are expansive, it is important to
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note the same test logic was used to produce all the data. The
SVP architecture allows for use in a range of environments
(different data acquisition systems, grid simulator, and PV
simulators) and EUTs (different topologies, nameplate ratings,
ranges of adjustability, and manufacturer specified
accuracies).

B. Volt-Var (VV) Results

The volt-var tests for UL 1741 SA are extensive. First, the
EUT is tested to either active or reactive power priority. Then
three VV curves are programmed into the EUT and the
reactive power is measured at three or more points along each
of the five segments of the VV curve. These measurements are
taken increasing and decreasing the voltage three times at
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100% Praed, five times at between 50% and 95% Praeq, and
three times at 20% Pred. For each power priority mode, a
minimum of 990 reactive power measurements are taken and
validated to be within the manufacturer’s specified reactive
power accuracy, while accounting for the manufacturer’s
specified voltage accuracy.

Volt-var results were collected on multiple DER devices
as shown in Fig. 5. The ASGC appears to incorrectly measure
the grid voltage slightly (~0.5 V) because the VV points are
shifted to the right in Fig. 5(A) and (B), although some of this
inaccuracy could be from the CHIL system as well. Since, the
manufacturer’s specified accuracy of voltage was set to 1 V,
the EUT passes the test for the 2" (“average”) VV curve. This
was not the case for the 1% (“most aggressive”) VV curve
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Fig. 5. Volt-var results for multiple DER EUTs collected using the same SVP script at multiple laboratories.



because at high voltages the EUT is unable to sink 100% of its
reactive power capacity. In the case of the 3 kW single-phase
device in Fig. 5(C), the same shift in the reactive power from
the PF experiments is seen.

Fig 5(D)-(I) are the results from a single device in
reactive and active power priority modes for the three volt-var
curves. This EUT remains within the passing band, except for
the 100% Praeq experiments for the “most aggressive” curve in
Fig. 5(G), where the active power priority mode does not
allow the EUT to reach the nameplate reactive power. In the
case of active power priority UL 1741 SA ambiguously states
the EUT must remain within the “manufacturer stated Q(V)
characteristic,” so it is likely this would be a passing test result
at any Nationally Recognized Testing Laboratory (NRTL).

IV. CONCLUSIONS

Certification testing of DER equipment is necessary to
verify power equipment interconnected to power systems
around the world operate as intended. New grid codes in many
countries now include advanced grid-support functions.
Research laboratories in the Smart Grid International Research
Facility Network (SIRFN) are working to create a common
testing platform to quickly and accurately assess the
communications and electrical performance of solar inverters,
battery energy storage systems, and other DER to these grid
codes. The device drivers, abstraction layers, and scripts are
made publicly available on GitHub [18] to accelerate
development and adoption. Results presented here
demonstrate the portability of the scripts and SVP library to
function in multiple laboratory environments. To date, the
focus has been on creating the test scripts for UL 1741 SA, but
the group plans to generate a range of test scripts for national
and international requirements, and other test protocols like
the ISGAN BESS test protocols [11] and Sandia IEC 61850-
90-7 test protocols [9-10] in the future.
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