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Geomechanics Research Plans )

= Reconsideration of Mechanisms for Room Closure at WIPP
= Experimental Investigation: TP 17-02
= Analytical Investigation: AP-178

= Update of the WIPP Constitutive Model for Intact Salt

= Experimental Investigations: conducted in Germany and the US
= Modeling Investigation: AP-179

= Mechanical Behavior of Bedding Plane Interfaces
= Experimental Investigation: TP 17-03
= Analytical Investigation: in preparation

= Granular Salt Reconsolidation
= Experimental Investigation: TP 17-04
= Analytical Investigation: in preparation




Geomechanics Research Plans th) e

= Waste Constitutive Model
= Experimental Investigation: TP 08-01
= Analytical Investigation: AP-180




Improvements to Creep Closure Modeling




History of WIPP Creep Closure Modeling @ &=..

In the 1980’s, creep closure models calibrated against
laboratory experiments under-predicted closure by roughly 3X.
= Elastic stiffness reduced by 12.5X.

= Munson et al. (1989) tuned the geomechanical model to match
Room D’s closure.
= Six different changes to the model, including neglecting anhydrite layers.

= Further research into creep closure came to a halt in early
1990’s.

= Interest in creep closure reignited recently by US/German Joint
Projects on Salt Geomechanics.




Room D Simulation Setup )
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Room D Simulations
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Laboratory Creep Tests ) S,
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Laboratory Creep Tests ) S,
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Laboratory Creep Tests
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Creep Model Calibrations B
Steady State Rate Transient Limit
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Creep Model Calibrations
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Creep Model Calibrations
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Room D Simulations )
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Numerical Algorithm Improvement )
(AP-179)

E . — Old MD model
i " — New MD model
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Scherzinger, W. M. 2017. A return mapping algorithm for isotropic and anisotropic
plasticity models using a line search method. Computer Methods in Applied Mechanics
and Engineering, 317, 526-553. (Modified)




Room D Simulations (AP-178)
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Room D Simulations (AP-178)
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Future Research Topics ()}

Initial transient closure
= Core extracted from drifts are not virgin.

Simulation domain size
= 50 m away from the room is not sufficient.

Anhydrite model
= Marker Bed 139 is too strong.

Simulation robustness
= Many simulations fail to converge due to contact interactions

= Behavior of bedding plane interfaces
= Discussed in the next section...




Mechanical Behavior of
Bedding Plane Interfaces




Examples of Interface Sliding and Separation (@ &=.

Interface Sliding

_ ] | Interface Separation




Research Plan ) S,

= |Laboratory Experiments (TP 17-03)

= Extraction Sites
= Salt/Potash mines in the Permian Basin
= WIPP drifts

= Samples
= 10 cm cubes or 10 cm diameter cylinders
= Various bedding plane constituents

= Tests
= Direct shear machine and/or triaxial cell tests
= Tensile strength

= Modeling
= Construct constitutive model(s) with Joint Project WEIMOS

* [n-Situ Experiment
= ~1 m cube to quantify size effects
= Validate models against in-situ test.
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Damage and Fractures




Research Plan =

= |[aboratory Experiments
= Joint Project lll measurements of dilatancy and strength boundaries
= Joint Project WEIMOS currently measuring healing behavior
= Replicate open room closure on laboratory scale (TP 17-02)

= Modeling

= Update Munson-Dawson model to capture damage and fracture (AP-
179)

= Validate against lab experiments and field observations (AP-178)




Typical Fracture Pattern at Lower Horizon

Schematic Fracture Pattern at Lower Horizon
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Examples of Damage and Fracture of




Typical Fracture Pattern at Upper Horizon @&.

Schematic Fracture Pattern at Upper Horizon
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= Controlled structural-level experiments

= |Improve understanding of failure processes
= Upper vs. lower horizon
= Discrete blocks vs. “deck of cards”
= Evolution from rectangular to circular
= Stabilization opening or slow down creep

= Validation of damage & failure portion of
MD model




Impact of Room Shape

Rectangle (2 to 1)

= Rough estimate of impact of

fracturing and discrete events

Square

= Fracturing changes the room
shape
= Three room shapes simulated
» Long, slender, rooms (plane strain)

= Same initial room area Circle




Effect of Room Shape on Creep Closure
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Healing, Reconsolidation, and Permeability




Permeability and Porosity i)

= Porosity: ¢ fraction of void space (0.1% — 40%)

= Permeability: k fluid flux due to driving force (>10 orders mag.)
» k sensitive to pathways, ¢ is not (i.e., dead-end porosity)
» k sensitive to fracture & grain surfaces, ¢ is not

= Permeability as a function of porosity k(¢)
» k(¢) different for granular, fractured, and “open channel” media
= Granular materials k(¢) is simple down to low porosity
= DRZ fracture k more pressure-sensitive than granular (David et al. 1994)
* k(¢) relationships fit to data apply only to narrow ¢ range

= No one k(¢) valid for all parts of repository




DRZ Fracture Closure and Healing

= Not all porosity is equal

= k(¢) observed in salt 1013 5
) ] 1 Stormont & Daemen,
= Reconsolidating granular (blue) o 1 ‘:‘: — o8
* Fractured accumulating damage (tan) 11aa r6mpa | O 1/,/
= Cases behave differently P |
= Neither follows monomial power law é 1016 | @3
= Possible explanations g .1 i
= Concave-up (granular): g - 159
= Multiple length scales L |
= Both granular & fracture ¢ 1019+ A “-3,%
= Concave-down (fracture): . A
= Mixture of “effective” and “ineffective” ¢ 10-2*;&001- uom nm o

porosity (0 - 1)




Permeability is Scale Dependent ) S,

= k in fractured rocks

= Entirely from fractures mﬂ;’aboratw ; .‘in situ @
* Fractures are fractally distributed “Em i o . BE
= k is scale dependent 210"} | m
= Lowest k observed in small samples :m’ W )

= Highest k in regional numerical models = Ekl ol }
= Minimum k increases with scale mi P e i
105 pD

= Core-scale k << model k 1-10 em  1-100 m  0.1-1 km  1-100 km

Scale of Measurement

= ¢ not really scale dependent




Permeability and Porosity in Lab ) S,

N Sen et al, 1990

= Granular salt reconsolidation controlled by: 1«

= Applied effective stress ‘i" "1, .
= Temperature o ”‘? Lo
= Moisture content 2 0 LY O
= Physical composition (grain size & mineral) N _7}:_ .-:'
= k = a¢™ typical, but few data ¢ < 5% R
= Other data useful for predicting k f N
= Tortuosity, specific surface area (X)) f T ; o
= Capillary pressures, pore-scale imaging bl s % o _-,1._0;1_.
= Geophysics: Nuclear Magnetic Resonance (T;) e, zr f
= Closure of DRZ fractures e J !
» Fractures favorably aligned with stress state will close ’ e T
= Exponential k(o) oo ol P :52 03
orosity

= Closure of open spaces
= Rubble/debris in open space may behave like porous media at late time




Research Plan =

= Reconsolidation of granular salt (TP 17-04)
= Some overlap with research program in Germany (Krohn et al. 2017)

= SNL will focus on complimentary aspects:

= Explore characterization of other porous media metrics:
— Tortuosity (i.e., formation factor)
— Characteristic length scales (i.e., air-entry pressure, Hg-injection)
— Modern pore-scale imaging (micro-CT, serial sectioning)

= Control effects of composition on results (grain size + mineralogical)
= Leverage WIPP samples from UNM NEUP project (Stormont et al. 2017)

= Low porosity difficult to measure volumetrically in lab

= Two-phase flow in salt
= Few relevant datasets (i.e., mostly for table salt)
= Dissolution/precipitation complicates interpretation and test design
» Hard to isolate flow problem from creeping, dissolving & precipitating
* k and ¢ estimation from pore-scale imaging

Kréhn, K.-P., D. Stihrenberg, M. Jobmann, U. Heemann, O. Czaikowski, K. Wieczorek, C. Mdller, C.-L. Zhang, H. Moog, S. Schirmer & L. Friedenberg, 2017. Mechanical And Hydraulic
Behavior of Compacting Crushed Salt Backfill at Low Porosities, REPOPERM 2. GRS-450, Braunschweig, Germany: Gesellschaft fir Anlagenund Reaktorsicherheit.

Stormont, J., B. Lampe, M. Mills, L. Paneru, T. Lynn & A. Piya, 2017. Improving the Understanding of the Coupled Thermal-Mechanical-Hydrologic Behavior of Consolidating Granular Salt.
Nuclear Energy University Partnership Fuel Cycle Research and Development, Project 13-4834.



Summary




Summary ) .,

= |Improved the scientific basis behind the creep closure
modeling

= Bedding plane interface work is in-progress

= Damage and fracture research is restarting
= Updates to the Munson-Dawson model
= Validate against lab scale open room closure experiments

= Healing, reconsolidation, and permeability research

* Probe at porosity-—permeability relationships on lab scale using novel
measurement techniques




Extra Slides




Creep Closure Simulation Setup ) .,
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Modeling Permeability and Porosity ) i,

Changes in porosity from geomechanical model
= Volumetric strain — porosity change
= “Drained” poroelastic response

Fluid pressure hydrofracs or slows room closure
= Fluid pressure reduces effective stress
= “Undrained” poroelastic response

Reality is between these end members
» Coupled thermal-hydro-mechanical model (difficult)

Permeability and porosity change during life of repository
Reconsolidation of granular salt

Hydrofracture from high fluid pressure

Closure of DRZ fractures

Creep closure of open spaces




Fallen Block and Roof Gap Shapes
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Equivalent Stress Measure (AP-179) ) 2=
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Direct Shear Test Setup (TP 17-03) ) =
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Carnallite on Salt Direct Shear Results &=,
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Estimation of Disturbed Rock Zone ) oo,
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