

International Development of a Distributed Energy Resource Test Platform for Electrical and Interoperability Certification

Jay Johnson,¹ Alexandre Prieur,² Nayeem Ninad,² Estefan Apablaza-Arancibia,² Dave Turcotte,² Roland Bründlinger,³ Changhee Cho,⁴ R. Sudhir Kumar,⁵ Jeykishan Kumar,⁵ Jun Hashimoto,⁶ Maurizio Verga,⁷ Julio Braslavsky,⁸ Tim Moore,⁸ José Luis Silva Farias,⁹ José Gerardo Montoya Tena,⁹ Franz Baumgartner,¹⁰ and Bob Fox¹¹

¹Sandia National Laboratories, Albuquerque, NM, 87185, USA

²CanmetENERGY, Natural Resources Canada, Varennes, QC, J3X 1S6, Canada

³Austrian Institute of Technology, Vienna, 1220, Austria

⁴Korea Electrotechnology Research Institute, Changwon, 51543, Korea

⁵Central Power Research Institute, Bangalore, 560080, India

⁶Fukushima Renewable Energy Institute, AIST, Koriyama, 963-0298, Japan

⁷Ricerca sul Sistema Energetico S.P.A., Milano, 20134, Italy

⁸Commonwealth Scientific and Industrial Research Organisation, Newcastle, NSW, 2300, Australia

⁹Instituto Nacional de Electricidad y Energías Limpias, Cuernavaca, 62490, México

¹⁰Zurich University of Applied Sciences, Winterthur, 8400, Switzerland

¹¹SunSpec Alliance, San Jose, CA, 95117, USA

Abstract — Several international research laboratories are collaborating under a Smart Grid International Research Facility Network (SIRFN) project to develop certification procedures for advanced distributed energy resources (DER). To effectively evaluate interoperability and grid-support functionality in DER equipment, test permutations across the full range of modes and parameters are required. It is impractical to complete these experiments manually so the project team is working to develop a software tool, associated abstraction layers, and hardware drivers to execute the experiments autonomously using the same open-source test logic. This software can then be programmed to complete interoperable DER certification experiments at DER vendor facilities, certification laboratories, or research institutions. By sharing the codebase with all institutions, barriers to adoption steadily decrease. Test results for volt-var, fixed power factor, and frequency-watt functions from multiple laboratories are presented and compared.

Index Terms — interoperability, grid-support functions, certification protocols, DER testing, smart grid

I. INTRODUCTION

In the last decade, grid codes around the world have been changing to require photovoltaic systems and other distributed energy resources (DER) to provide grid services through autonomous and commanded control functions [1]-[3]. These functions provide grid operators with methods to provide voltage regulation [4], bulk system services [5], power system visibility [6], and other grid services [7]—thereby, increasing the renewable energy hosting capacity of the power system. As these new requirements go into place, there is growing need to evaluate the functionality of these devices to the electrical requirements and verify the communications capabilities provide the desired behavior [8].

The Smart Grid International Research Facility Network (SIRFN) operates as an International Energy Association (IEA) International Smart Grid Action Network (ISGAN) research program with multiple research areas. One of the research programs is focused on the development and evaluations of interoperable DER certification protocols. The ultimate goal of the effort is to enable greater penetrations of renewables by accelerating the adoption of smart grid converter technologies. Technical challenges that prevent greater deployment of renewable technologies can be mitigated with advanced DER technologies, but DER vendors will not interconnect products with these capabilities unless grid code requirements exist. In many cases, the equipment being installed already has the hardware and software components required to provide this functionality—because it is required in other jurisdictions—but it is disabled because these functions are disallowed or not required. Therefore, in cases where SIRFN laboratories are operating in regions without DER grid-support requirements or certification protocols (such as in Mexico or India), executing interoperability DER experiments can help (a) advise DER interconnection and communication requirements by demonstrating DER grid-support capabilities and (b) accelerate the development of certification procedures by rapidly iterating and exercising draft test sequences.

Previously, the team developed test protocols for the IEC 61850-90-7 functions [9]-[10] and test protocols for energy storage systems [11]. Experimental results from these protocols as well as national requirements—i.e., the US DER certification protocol, UL 1741 [12]—have been presented for residential and commercial scale devices [8], [13] and a 34.5

kW smart grid converter deployed in a controller hardware-in-the-loop environment [10], [14]. To execute these experiments, each research laboratory developed their own DER testbeds with unique data acquisition systems and test equipment (PV simulators, grid simulators, etc.). Differences in the results between laboratories highlighted the need to have a common set of test logic that would be executed the same way at all the labs. This would minimize the human element in the experiments; although some variance will inherently exist in the results due to differences in test equipment, data acquisition systems, and the devices under test.

In 2014, the SunSpec Alliance and Sandia began a joint project to automate the test protocols by creating a software tool, called the SunSpec System Validation Platform, which orchestrated test sequences by communicating to data acquisition systems, power equipment, and devices under test [15]. Ultimately, the ability to fully automate steady-state test sequences was developed [16] and the capability to work with other lab equipment over a range of protocols and media was created using abstraction layers and device drivers [17]. This tool remains in development but as the open-source repository of test code and device drivers grows (see [18]), new laboratories come up to speed much quicker. Gradually, more SIRFN laboratories have become interested in participating in the project and contributing to the SVP development.

This manuscript describes the SIRFN collaboration, SVP development, and presents test results generated from multiple laboratories using the same test scripts. The results show the benefits with working within an open community, the speed and consistency of the SVP, and the reactive and active power grid-support function capabilities of PV inverters.

II. SYSTEM VALIDATION PLATFORM

The SVP is designed to communicate to laboratory equipment and the device under test, as shown in Fig. 1. Python scripts are developed with user-defined parameters. The parameters define the test sequence by:

- selecting which portion of the test sequence should be executed,
- setting the power, voltage, current, etc. levels for the test based on the EUT ratings, and
- configuring battery simulators, data acquisition systems (DAS), equipment under test (EUT), grid simulators, PV or DC simulators, hardware-in-the-loop systems, and resistive, capacitive or inductive load banks.

Abstraction layers are employed to select equipment drivers for a given laboratory testbed—basically, the same script command (e.g., ‘set PV power to 100% of nominal’) will issue different device commands over a user-selected protocol and communication media, depending on the selected driver parameters. A representation of the abstraction layers pointing to specific devices is shown in Fig. 2.

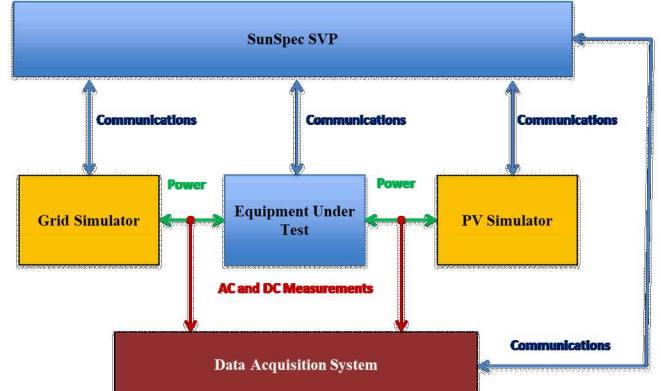


Fig. 1. SVP interaction with laboratory equipment.

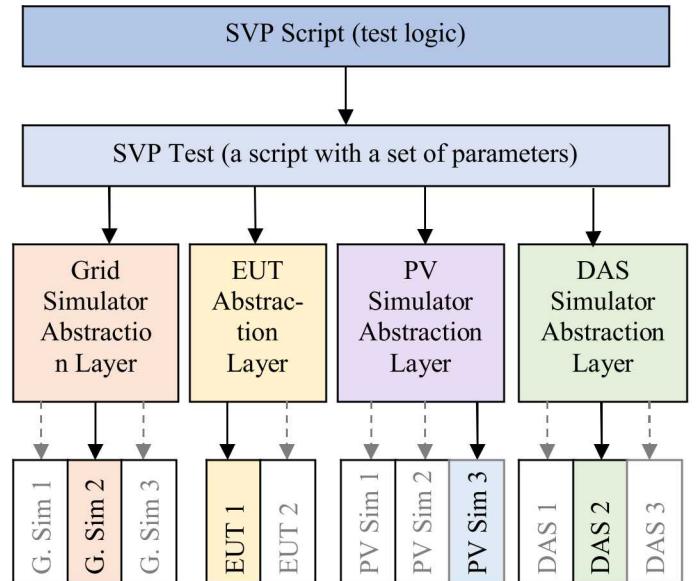


Fig. 2. SVP interaction with laboratory equipment.

III. EXPERIMENTAL RESULTS

The final paper will present results from the SIRFN labs conducting experiments with the SVP to evaluate DER interoperable grid-support functions (e.g., volt-var, fixed power factor, and frequency-watt functions) using the UL 1741 Supplement A certification protocol. Detailed comparisons of the results and any issues with the SVP scripts and drivers will be documented. For reference, prior examples of SIRFN results and comparisons are presented in [2] and [3].

ACKNOWLEDGEMENTS

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. Sandia

National Laboratories' contributions to this work is supported by the U.S. Department of Energy Office of International Affairs.

CanmetENERGY is a federal research laboratory in Canada. Financial support for this work was provided by Natural Resources Canada through the Energy Innovation Program (EIP) of Government of Canada.

REFERENCES

- [1] R. Bründlinger "European Codes & Guidelines for the Application of Advanced Grid Support Functions of Inverters", Sandia EPRI 2014 PV Systems Symposium - PV Distribution System Modeling Workshop, Santa Clara, CA, USA, DOI: 10.13140/2.1.4808.8964
- [2] J. Johnson, R. Bründlinger, C. Urrego, R. Alonso, "Collaborative Development of Automated Advanced Interoperability Certification Test Protocols for PV Smart Grid Integration," EU PVSEC, Amsterdam, Netherlands, 22-26 Sept 2014.
- [3] D. Rosewater, J. Johnson, M. Verga, R. Lazzari, C. Messner, R. Bründlinger, K. Johannes, J. Hashimoto, K. Otani, International Development of Energy Storage Interoperability Test Protocols for Renewable Energy Integration, EU PVSEC, Hamburg, Germany, 14-18 Sept 2015.
- [4] M. Juamperez, G. Yang, S.B., Kjær, Voltage Regulation in LV Grids by Coordinated Volt-Var Control Strategies, J. Mod. Power Syst. Clean Energy, Vol. 2, No. 4, pp. 319-328, Dec. 2014.
- [5] J. Johnson, J. Neely, J. Delhotal, M. Lave, "Photovoltaic Frequency-Watt Curve Design for Frequency Regulation and Fast Contingency Reserves," IEEE Journal of Photovoltaics, vol. 6, no. 6, pp. 1611-1618, Nov. 2016.
- [6] A. Konkar, Enphase Energy: Visibility and Value at the Feeder Level, CPUC Distribution Resources Plan (DRP) Workshop II, January 8, 2015.
- [7] B. Seal, Common Functions for Smart Inverters: 4th Edition, EPRI Report 3002008217, 28-Dec-2016.
- [8] J. Johnson, R. Ablinger, R. Bruendlinger, B. Fox, J. Flicker, "Interconnection Standard Grid-Support Function Evaluations using an Automated Hardware-in-the-Loop Testbed," Journal of Photovoltaics, 2018 (forthcoming).
- [9] J. Johnson S. Gonzalez, M.E. Ralph, A. Ellis, and R. Broderick, "Test Protocols for Advanced Inverter Interoperability Functions – Main Document," Sandia Technical Report SAND2013- 9880, Nov. 2013.
- [10] J. Johnson S. Gonzalez, M.E. Ralph, A. Ellis, and R. Broderick, "Test Protocols for Advanced Inverter Interoperability Functions – Appendices," Sandia Technical Report SAND2013- 9875, Nov. 2013.
- [11] M. Verga, R. Lazzari, J. Johnson, D. Rosewater, C. Messner, J. Hashimoto, SIRFN Draft Test Protocols for Advanced Battery Energy Storage System Interoperability Functions, ISGAN Annex #5 Discussion Paper, 2016.
- [12] Underwriters Laboratories 1741 Ed. 2, "Inverters, Converters, Controllers and Interconnection System Equipment for use with Distributed Energy Resources," 2010.
- [13] J. Johnson, R. Bründlinger, C. Urrego, R. Alonso, "Collaborative Development of Automated Advanced Interoperability Certification Test Protocols for PV Smart Grid Integration," EU PVSEC, Amsterdam, Netherlands, 22-26 Sept, 2014.
- [14] J. Johnson, R. Ablinger, R. Bruendlinger, B. Fox, J. Flicker, "Design and Evaluation of SunSpec-Compliant Smart Grid Controller with an Automated Hardware-in-the-Loop Testbed," Technology and Economics of Smart Grids and Sustainable Energy, vol. 2, no. 16, Dec. 2017. DOI: 10.1007/s40866-017-0032-7
- [15] J. Johnson, B. Fox, "Automating the Sandia Advanced Interoperability Test Protocols," 40th IEEE PVSC, Denver, CO, 8-13 June, 2014.
- [16] J. Hernandez-Alvidrez, J. Johnson, "Parametric PV Grid-Support Function Characterization for Simulation Environments," IEEE PVSC, Washington, DC, 25-30 June, 2017.
- [17] SunSpec System Validation Platform, SunSpec Alliance Users Guide, Version 1.0, 2015.
- [18] Github, SunSpec SVP Directories, accessed 15 Jan, 2018, URL: https://github.com/sunspec/svp_directories