
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Photos placed in horizontal position
with even amount of white space

 between photos and header Trilinos-­‐based	
 So/ware	
 for	
 	

Eigenanalysis	
 of	
 Graphs	

Erik	
 Boman,	
 Karen	
 Devine,	
 Richard	
 Lehoucq	
 and	
 Nicole	
 SlaBengren,	
 SNL	

David	
 Hysom	
 and	
 Andy	
 Yoo,	
 LLNL	

Unclassified

SAND2013-0978P

Overview	

§  Trilinos-­‐based	
 capability	
 for	
 finding	
 eigenvalues/eigenvectors	

of	
 very	
 large	
 graphs	

§  Improved	
 parallel	
 scalability	
 through	
 use	
 of	
 2D	
 matrix	
 distribuOon	

§  Able	
 to	
 analyze	
 problems	
 with	
 >	
 2B	
 verOces/edges	
 through	
 new	

Epetra64	
 capability	

§  Distributed-­‐memory	
 MPI-­‐based	
 results	
 today	

§  Cray	
 XMT	
 implementaOon	
 with	
 MEGRAPHS	
 also	
 completed	

Unclassified

Trilinos	
 ComputaOonal	
 	

Science	
 Toolkit	

§  Heroux	
 et	
 al.,	
 SNL	

§  Trilinos	
 CapabiliOes:	

§  Scalable	
 Linear	
 &	
 Eigen	
 Solvers	
 	
 	

§  DiscreOzaOons,	
 Meshes	
 &	
 Load	
 Balancing	

§  Nonlinear,	
 Transient	
 &	
 OpOmizaOon	
 Solvers	
 	

§  Scalable	
 I/O	

§  So/ware	
 Engineering	
 Technologies	
 &	
 IntegraOon	
 	

§  Trilinos	
 features:	

§  Block-­‐based	
 data	
 structures	
 and	
 algorithms	

§  Block-­‐based	
 linear	
 and	
 eigen	
 solvers	
 use	
 “mulOvector”	
 data	
 structures.	

§  Toolkit/package-­‐based	
 design	
 	

§  Packages	
 can	
 be	
 combined,	
 but	
 not	
 all	
 of	
 Trilinos	
 is	
 needed	
 to	
 get	
 work	
 done.	

§  In	
 this	
 project,	
 we	
 use	
 Trilinos’…	

§  Distributed	
 Matrix/Vector	
 classes	
 Epetra	

§  Eigensolver	
 package	
 Anasazi	

§  Linear	
 solver	
 package	
 Belos	

§  PrecondiOoning	
 package	
 Ifpack	

§  UOliOes	
 package	
 Teuchos	
 (e.g.,	
 communicators,	
 parameters,	
 ref-­‐counted	
 pointers)	

3	
 Unclassified

1D	
 and	
 2D	
 Matrix	
 distribuOons	

§  1D	
 matrix	
 distribuOon:	

§  EnOre	
 rows	
 (or	
 columns)	
 of	
 matrix	
 assigned	
 to	
 a	

processor	

§  Same	
 mapping	
 used	
 for	
 vectors	

§  Trilinos’	
 default	
 distribuOon	

§  2D	
 matrix	
 distribuOon:	

§  Block-­‐based	
 layout	
 of	
 matrix	
 within	
 processors	

§  Long	
 used	
 in	
 parallel	
 direct	
 solvers	

§  Yoo	
 et	
 al.	
 (SC’11)	
 demonstrated	
 benefit	
 over	
 1D	

layouts	
 for	
 eigensolves	
 on	
 scale-­‐free	
 graphs	

4	

1D row-wise matrix
distribution; 6 processes

2D matrix
distribution; 6 processes

Unclassified

Benefit	
 of	
 2D	
 Matrix	
 DistribuOon	

§  During	
 matrix-­‐vector	

mulOplicaOon,	
 communicaOon	

occurs	
 only	
 along	
 rows	
 or	

columns	
 of	
 processors.	

§  Expand	
 (verOcal):	
 	
 	

Vector	
 entries	
 xj	
 sent	
 	
 to	
 	

column	
 processors	
 to	
 compute	

local	
 product	
 yp	
 =	
 Ap	
 x	

§  Fold	
 (horizontal):	
 	
 	

Local	
 products	
 yp	
 summed	
 along	

row	
 processors;	
 y	
 =	
 Σyp	

§  In	
 1D,	
 fold	
 is	
 not	
 needed,	
 but	

expand	
 may	
 be	
 all-­‐to-­‐all.	

5	
 Unclassified

Benefit	
 of	
 2D	
 Matrix	
 DistribuOon	

§  During	
 matrix-­‐vector	

mulOplicaOon,	
 communicaOon	

occurs	
 only	
 along	
 rows	
 or	

columns	
 of	
 processors.	

§  Expand	
 (verOcal):	
 	
 	

Vector	
 entries	
 xj	
 sent	
 	
 to	
 	

column	
 processors	
 to	
 compute	

local	
 product	
 yp	
 =	
 Ap	
 x	

§  Fold	
 (horizontal):	
 	
 	

Local	
 products	
 yp	
 summed	
 along	

row	
 processors;	
 y	
 =	
 Σyp	

§  In	
 1D,	
 fold	
 is	
 not	
 needed,	
 but	

expand	
 may	
 be	
 all-­‐to-­‐all.	

6	
 Unclassified

Trilinos	
 Maps	

§  Maps	
 describe	
 the	

distribuOon	
 of	
 global	
 IDs	
 for	

rows/columns/vector	
 entries	

to	
 processors.	

§  Four	
 maps	
 needed	
 in	
 most	

general	
 case:	

§  Row	
 map	
 for	
 matrix	

§  Column	
 map	
 for	
 matrix	

§  Range	
 map	
 for	
 vector	

§  Domain	
 map	
 for	
 vector	

§  Part	
 of	
 Epetra	
 package	

7	

X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X

Rank 3 (Blue)
Row Map = {4, 5, 8}
Column Map = {4, 5, 6, 7}
Range/Domain Map = {4, 5}

Unclassified

1D	
 vs	
 2D	
 Strong	
 Scaling	
 Experiments	

§  Compare	
 Omes	
 for	
 matrix-­‐vector	
 mulOplicaOon	
 with	
 1D	
 and	
 2D	
 distribuOons	

§  Hera	
 cluster	
 at	
 LLNL	
 (AMD	
 quad-­‐core,	
 quad-­‐socket	
 Opteron	
 processors	

operaOng	
 at	
 2.2/2.3	
 GHz	
)	

§  Matrices	
 from	
 the	
 University	
 of	
 Florida	
 matrix	
 collecOon	

§  Symmetrized	
 and	
 largest	
 connected	
 component	
 extracted	

8	

Name Description Number of
Rows

Number of
Nonzeros

Hollywood-2009 Hollywood movie actor network
(Boldi, Rosa, Santini, Vigna)

1.1M 113M

Wikipedia-20070206 Links between wikipedia pages
(Gleich)

3.5M 85M

Ljournal-2008 LiveJournal social network
(Boldi, Rosa, Santini, Vigna)

5.6M 99M

Wb-edu Links between *.edu webpages
(Gleich)

8.9M 88M

Cit-Patents

Citation network among US
patents (Hall, Jaffe, Trajtenberg)

3.8M 33M

Unclassified

1D	
 vs	
 2D	
 Strong	
 Scaling	
 experiments	

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

(#&"

(#'"

)*++,-**." -/0/12./3" +4*5673+" -892.5" :/;9<3;27;="

9	

For each matrix:
 Blue = Trilinos 1D Matrix Distribution on 16, 64, 256, 1024 processors (left to right)
 Red = Trilinos 2D Matrix Distribution on 16, 64, 256, 1024 processors (left to right)
Times are normalized to the 1D 16-processor runtime for each matrix.

M
at

Ve
c

tim
e

no
rm

al
iz

ed
 to

 1
D

 1
6-

pr
oc

es
so

r t
im

e

Unclassified

Strong	
 Scaling:	
 	
 Larger	
 Graph	

§  TwiBer	
 graph:	
 	
 27M	
 verOces,	
 1B	
 nonzeros	
 (avg.	
 degree	
 36)	

§  Trilinos	
 1D	
 and	
 2D	
 matrix	
 distribuOon	

§  YMMA	
 2D	
 matrix	
 distribuOon	
 integrated	
 with	
 PETSc	
 (Yoo	
 et	
 al.,	
 SC’11)	

10	

0

0.5

1

1.5

2

2.5

3

64 128 256 512 1024 2048 4096

YMMA
Trilinos 1D
Trilinos 2D

Av
er

ag
e

tim
e

(in
 s

ec
on

ds
) f

or
 o

ne
 M

at
Ve

c

Number of Processors

Unclassified

0

0.2

0.4

0.6

0.8

1

1.2

64 128 256 512 1024 2048

se
co

nd
s

pe
r M

at
Ve

c

proessor count

Twitter 1G; Time per MatVec

Another	
 performance	
 trick	

§  On	
 input,	
 randomly	
 permute	
 matrix	
 rows/columns	

§  Eliminates	
 any	
 inherent	
 structure	
 in	
 input	
 file	
 (e.g.,	
 high	
 degree	
 nodes	
 first)	

§  Gives	
 beBer	
 balance	
 in	
 number	
 of	
 nonzeros	
 per	
 processor	
 for	
 1D	
 and	
 2D.	
 	

§  TwiBer	
 graph,	
 27M	
 rows,	
 1B	
 nonzeros	

11	

Number of Processors Number of Processors

0

10

20

30

40

50

60

70

80

90

100

64 128 256 512 1024 2048

M
ax

 #
no

nz
er

os
 /

A
vg

 #
no

nz
er

os

processor count

twitter 1G, Nonzeros/Processor Imbalance

1D
2D
1D_random
2D_random

M
ax

 #
no

nz
er

os
 /

Av
g

#n
on

ze
ro

s

Ti
m

e
(s

ec
on

ds
) p

er
 M

at
Ve

c

Imbalance (Maximum / Average)
in number of nonzeros per processor Matrix-Vector multiplication time

Weak	
 scaling	

§  PreferenOal	
 aBachment	
 graph	
 generator	
 (Yoo,	
 Henderson)	

§  100K	
 verOces	
 per	
 processor;	
 Average	
 degree	
 =	
 2	

§  Number	
 of	
 nonzeros	
 =	
 4	
 *	
 100K	
 *	
 number	
 of	
 processors	

§  No	
 randomizaOon	
 needed;	
 the	
 input	
 is	
 perfectly	
 balanced.	

12	

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

(#&"

(#'"

$"

)$" ($'" *($" $!%'"

+,-.-/01"(2"345,-6"
2-15,-7890/"

+,-.-/01"$2"345,-6"
2-15,-7890/"

Av
er

ag
e

tim
e

(in
 s

ec
on

ds
) f

or
 o

ne
 M

at
Ve

c

Number of Processors

Unclassified

Anasazi	
 Eigensolver	
 	

in	
 the	
 Trilinos	
 Solver	
 Toolkit	

§  Baker,	
 Hetmaniuk,	
 Lehoucq,	
 Thornquist;	
 ACM	
 TOMS	
 2009	

	

§  Block-­‐based	
 eigensolvers:	
 	
 	
 	
 Solves	
 AX	
 =	
 XΛ	
 or	
 AX	
 =	
 BXΛ	
 	

§  Reliably	
 determine	
 mulOple	
 and/or	
 clustered	
 eigenvalues	

§  Achieve	
 beBer	
 cache	
 locality	
 for	
 operator-­‐vector	
 products	

§  Example	
 applicaOons:	
 Modal/stability/bifurcaOon	
 analysis,	
 commute	
 Ome	

§  Four	
 eigensolvers:	

§  LOBPCG	
 Locally	
 OpOmal	
 Block	
 PrecondiOoned	
 Conjugate	
 Gradient	
 (Knyasev,	
 2002;	

Hetmaniuk	
 &	
 Lehoucq,	
 2006)	

§  Block	
 Krylov-­‐Schur	
 	
 (a	
 block	
 extension	
 of	
 Stewart,	
 2000)	

§  Block	
 Davidson	
 (Arbenz,	
 Hetmaniuk,	
 Lehoucq,	
 Tuminaro,	
 2005)	

§  IRTR	
 Implicit	
 Riemannian	
 Trust	
 Region	
 (Absil,	
 Baker,	
 Gallivan,	
 2006)	

§  So/ware	
 wriBen	
 in	
 templated	
 C++	

§  Distributed	
 with	
 Trilinos’	
 Epetra	
 and	
 Tpetra	
 matrix/vector	
 class	
 adapters	

§  Templated	
 interface	
 allows	
 use	
 of	
 alternate	
 matrix/vector	
 classes	
 (e.g.,	

Megraphs)	
 .	

Unclassified

Benefit	
 in	
 Anasazi	

§  Compare	
 2D	
 vs	
 1D	
 matrix	
 distribuOon	
 in	
 Anasazi	
 solve	

§  Use	
 Anasazi’s	
 Block	
 Krylov	
 Schur	
 method	
 to	
 find	
 ten	
 largest	

eigenvalues	
 of	
 the	
 normalized	
 Laplacian	
 matrix	
 (tol=0.0001)	

§  No	
 randomizaOon	
 used.	

	

14	

Matrix

Average solution
time (seconds) on

256 processors

Average solution
time (seconds) on
1024 processors

1D 2D 1D 2D
Hollywood-2009
(1.1M rows; 113M nonzeros)

107

20 58 13

Twitter
(27M rows; 1B nonzeros)

865 374 570 131

Unclassified

Epetra64	
 capability	

§  IniOal	
 Epetra	
 implementaOon	
 (1998)	
 used	
 “int”	
 as	
 data	
 type	

for	
 global	
 row/column	
 numbers	
 and	
 data	
 sizes.	

§  Limits	
 use	
 to	
 <	
 2B	
 rows/cols	
 and	
 <	
 2B	
 nonzeros	

§  Epetra64	
 (2012)	
 extension	
 to	
 Epetra	
 allows	
 (nearly)	
 same	

applicaOon	
 to	
 be	
 used	
 with	
 “long	
 long”	
 global	
 row/column	

numbers	
 and	
 data	
 sizes	

§  Enables	
 execuOon	
 for	
 problems	
 with	
 >	
 2B	
 rows/cols	
 and/or	
 >	
 2B	

nonzeros	

§  Overloaded	
 funcOons	
 take	
 “int”	
 or	
 “long	
 long”	
 arguments	
 to	
 create	

maps	
 with	
 appropriate	
 data	
 sizes.	

§  A	
 few	
 minor	
 interface	
 changes	
 needed	
 for	
 64-­‐bit	
 IDs.	

§  We	
 are	
 giving	
 Epetra64	
 its	
 first	
 big	
 work-­‐out.	

15	
 Unclassified

Epetra64	
 tesOng	
 in	
 progress	

§  Success	
 on	
 simple	
 generated	
 matrix	
 with	
 1B	
 rows,	
 3B	

nonzeros	
 (1D	
 and	
 2D).	

§  Biggest	
 challenge:	
 	
 Reading	
 in	
 a	
 large	
 matrix	
 in	
 a	
 Ome-­‐	
 and	

memory-­‐scalable	
 way.	

§  Currently	
 tracking	
 an	
 Epetra	
 performance	
 boBleneck	
 in	

construcOng	
 the	
 matrix.	

§  Suspect	
 it	
 is	
 due	
 to	
 load	
 imbalance,	
 as	
 it	
 goes	
 away	
 with	

randomizaOon	
 of	
 input.	

§  More	
 results	
 to	
 come…	

16	
 Unclassified

Our	
 Anasazi	
 TesOng	
 Plauorm	

§  Driver	
 program	
 for	
 tesOng/evaluaOng	
 various	
 eigensolvers,	
 parameters,	

inputs,	
 parallel	
 distribuOons,	
 scalability	

§  Enables	
 use	
 of	
 all	
 Anasazi	
 eigensolvers:	
 	
 BKS,	
 BD,	
 LOBPCG,	
 IRTR	

§  Uses	
 Trilinos’	
 IFPACK	
 precondiOoners:	
 	
 Jacobi,	
 SGS,	
 IC,	
 ILU,	
 KLU,	
 Support	
 tree	

§  Finds	
 smallest	
 or	
 largest	
 eigenvalues	
 and	
 corresponding	
 eigenvectors.	

§  Constructs	
 matrices	
 from	
 Matrix-­‐Market	
 input:	
 	
 	

§  Combinatorial	
 Laplacian 	
 	
 n	
 	
 Normalized	
 Laplacian	

§  Signless	
 Laplacian	
 	
 	
 n	
 	
 	
 	
 Adjacency	
 Matrix	

§  Creates	
 1D	
 and	
 2D	
 matrix	
 distribuOons.	

§  Runs	
 in	
 parallel	
 (distributed	
 memory	
 with	
 MPI)	
 or	
 serial.	

§  Similar	
 program	
 available	
 for	
 shared	
 memory	
 (e.g.,	
 XMT,	
 UV)	
 using	
 MEGRAPHS.	

§  OpOons	
 set	
 through	
 command-­‐line	
 arguments:	

§  anasazi.exe --file=big.mtx --use2D --matrix=Laplacian  

--normalize --nev=25 --tol=0.001 --method=LOBPCG"

17	
 Unclassified

