
Kenneth Moreland
Sandia National Laboratories

Utkarsh Ayachit
Kitware, Inc.

Berk Geveci
Kitware, Inc.

Kwan-Liu Ma
University of California at Davis

Data Analysis at Extreme

Scheduler

Array Compact

Topology Reconstruction

D
ax Fram

ew
ork

Count
Worklet

Count
Worklet

Count
Worklet

Count
Worklet

Topology
Worklet

Topology
Worklet

Topology
Worklet

Topology
Worklet

template<typename ValueType>
class ThresholdClassify : public dax::exec::WorkletMapCell
{
public:
 typedef void ControlSignature(Topology,Field(Point), Field(Out));
 typedef _3 ExecutionSignature(_2);

 DAX_CONT_EXPORT
 ThresholdClassify(ValueType thresholdMin, ValueType thresholdMax)
 : ThresholdMin(thresholdMin), ThresholdMax(thresholdMax) { }

 template<typename CellTag> DAX_EXEC_EXPORT dax::Id operator()(
 const dax::exec::CellField<ValueType,CellTag> &values) const
 {
 ThresholdFunction<ValueType> threshold(this->ThresholdMin,
 this->ThresholdMax);
 dax::exec::VectorForEach(values, threshold);
 return threshold.valid;
 }
private:
 ValueType ThresholdMin;
 ValueType ThresholdMax;
};

class ThresholdTopology : public dax::exec::WorkletGenerateTopology
{
public:
 typedef void ControlSignature(Topology, Topology(Out));
 typedef void ExecutionSignature(Vertices(_1),Vertices(_2));

 template<typename InputCellTag, typename OutputCellTag>
 DAX_EXEC_EXPORT
 void operator()(const dax::exec::CellVertices<InputCellTag> &inVertices,
 dax::exec::CellVertices<OutputCellTag> &outVertices) const
 {
 outVertices.SetFromTuple(inVertices.GetAsTuple());
 }
};

// Run classify algorithm (determine how many cells are passed).
ClassifyResultType classificationArray;
scheduler.Invoke(dax::worklet::ThresholdClassify<dax::Scalar>(0.07, 1.0),
 grid,
 inArray,
 classificationArray);

// Build thresholded topology.
ScheduleGenerateTopologyType resolveTopology(classificationArray);
UnstructuredGridType outGrid;
scheduler.Invoke(resolveTopology, grid, outGrid);

// Compact scalar array to new topology.
ArrayHandleScalar outArray;
resolveTopology.CompactPointField(inArray, outArray);

The Dax Toolkit simpli�es the development of parallel visualizaiton algo-
rithms. Below is the Dax code that implements a threshold operation. Al-
gorithm implementations are encapsulated in worklets, which provide
�ne-grained parallelism and thread safety. The Dax Toolkit provides
schedulers that apply worklets to all elements in a mesh as well as
common and versitile communicative operations such as array compac-
tion and point merging. Despite the higher levels of abstraction and
generalized programming interface, the speed of Dax algorithms are
competitive with other “hand-coded” algorithms.

The transition to exascale machines represents a fundamental change in
computing architecture. E�cient computation on exascale machines re-
quires a massive amount of concurrent threads, at least 1000× more
concurrency than existing systems. Current visualization solutions
cannot support this extreme level of concurrency. Exascale systems re-
quire a new programming model and a fundamental change in how we
design fundamental algorithms. To address these issues, our project
builds the Data Analysis at Extreme (Dax) Toolkit.

This work was supported in full by the DOE O�ce of Science, Advanced
Scienti�c Computing Research, under award number 10-014707, pro-
gram manager Lucy Nowell.

This work was supported by the Director, O�ce of Advanced Scienti�c
Computing Research, O�ce of Science, of the U.S. Department of Energy
under Contract No. 12-015215, through the Scienti�c Discovery through
Advanced Computing (SciDAC) Institute of Scalable Data Management,
Analysis and Visualization.

Sandia National Laboratories is a multi-program laboratory managed
and operated by Sandia Corporation, a wholly owned subsidiary of Lock-
heed Martin Corporation, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.
SAND 2013-0401P

http://daxtoolkit.org

Trial

CP
U

 8
 C

or
e

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
PISTON Original

Dax
PISTON Modi�ed

Trial

G
PU

 E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14 PISTON Original

Dax

PISTON Modi�ed

Our end performance tests show both that our optimizations to the threshold algorithm are e�ec-
tive in providing e�cient parallel performance and that these optimizations can be hidden be-
neath a generic templated programming interface. In addition to demonstrating the base perfor-
mance of our code on many devices, we also compare to VTK and PISTON as good representations
of the state of the art. (The modi�ed PISTON is changed to make its output compatible with Dax.)

Trial
0

2

4

6

8

10

12

14

16

18

20

22

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

OpenMP 1 Core

TBB 1 Core
Serial STL

OpenMP 8 Core
TBB 8 Core

CUDA

VTK

Templated cell

tags specialize

for cell type.

Hazard-free access with lightweight containers.

Automatic point
merging is
 optional.

Cells extraced by
�eld threshold.

Contour with subse-
quent vertex welding,
coarsening, subdivi-
sion, and curvature
estimation

Simplicial subdivision with
quadratic smoothing

SAND2013-0930P

