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The transition to exascale machines represents a fundamental change in
computing architecture. Efficient computation on exascale machines re-
quires a massive amount of concurrent threads, at least 1000x more
concurrency than existing systems. Current visualization solutions
cannot support this extreme level of concurrency. Exascale systems re-
guire a new programming model and a fundamental change in how we
design fundamental algorithms. To address these issues, our project
builds the Data Analysis at Extreme (Dax) Toolkit.

// Run classify algorithm (determine how many cells are passed).

ClassifyResultType classificationArray;

scheduler.Invoke(dax: :worklet::ThresholdClassify<dax::Scalar>(0.07, 1.90),
grid,
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The Dax Toolkit simplifies the development of parallel visualizaiton algo-
rithms. Below is the Dax code that implements a threshold operation. Al-
gorithm implementations are encapsulated in worklets, which provide
fine-grained parallelism and thread safety. The Dax Toolkit provides
schedulers that apply worklets to all elements in a mesh as well as
common and versitile communicative operations such as array compac-
tion and point merging. Despite the higher levels of abstraction and
generalized programming interface, the speed of Dax algorithms are
competitive with other“hand-coded” algorithmes.

inArray,
classificationArray);

// Build thresholded topology.

ScheduleGenerateTopologyType resolveTopology(classificationArray);
UnstructuredGridType outGrid;
scheduler.Invoke(resolveTopology, grid, outGrid);

Automatic point
merging IS
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// Compact scalar array to new topology.
ArrayHandleScalar outArray;
resolveTopology.CompactPointField(inArray, outArray);

template<typename ValueType>
class ThresholdClassify : public dax::exec: :WorkletMapCell

1
public:

typedef void ControlSignature(Topology,Field(Point), Field(Out));
typedef 3 ExecutionSignature( 2);

DAX_CONT_EXPORT
ThresholdClassify(ValueType thresholdMin, ValueType thresholdMax)
: ThresholdMin(thresholdMin), ThresholdMax(thresholdMax) { }

template<typename CellTag> DAX EXEC _EXPORT dax::Id operator()(
const dax::exec::CellField<ValueType,CellTag> &values) const
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ThresholdFunction<ValueType> threshold(this->ThresholdMin, liqupd,
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private:
ValueType ThresholdMin;
ValueType ThresholdMax;

}s
class ThresholdTopology

{

public:
typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Vertices( 1),Vertices( 2));

: public dax::exec::WorkletGenerateTopology

template<typename InputCellTag, typename OutputCellTag>

DAX_EXEC_EXPORT

void operator()(const dax::exec::CellVertices<InputCellTag> &inVertices,
dax::exec::CellVertices<OutputCellTag> &outVertices) const

{
outVertices.SetFromTuple(inVertices.GetAsTuple());

}
s
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Our end performance tests show both that our optimizations to the threshold algorithm are effec-
tive in providing efficient parallel performance and that these optimizations can be hidden be-
neath a generic templated programming interface. In addition to demonstrating the base perfor-
mance of our code on many devices, we also compare to VTK and PISTON as good representations
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of the state of the art. (The modified PISTON is changed to make its output compatible with Dax.)

guent vertex welding,
coarsening, subdivi-
sion, and curvature
estimation

This work was supported in full by the DOE Office of Science, Advanced
Scientific Computing Research, under award number 10-014707, pro-
gram manager Lucy Nowell.

This work was supported by the Director, Office of Advanced Scientific
Computing Research, Office of Science, of the U.S. Department of Energy
under Contract No. 12-015215, through the Scientific Discovery through
Advanced Computing (SciDAC) Institute of Scalable Data Management,
Analysis and Visualization.

Sandia National Laboratories is a multi-program laboratory managed
and operated by Sandia Corporation, a wholly owned subsidiary of Lock-
heed Martin Corporation, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.
SAND 2013-0401P



