Sandia National Laboratories

The transition to exascale machines represents a fundamental change in
computing architecture. Efficient computation on exascale machines re-
quires a massive amount of concurrent threads, at least 1000x more
concurrency than existing systems. Current visualization solutions
cannot support this extreme level of concurrency. Exascale systems re-
guire a new programming model and a fundamental change in how we
design fundamental algorithms. To address these issues, our project
builds the Data Analysis at Extreme (Dax) Toolkit.

// Run classify algorithm (determine how many cells are passed).

ClassifyResultType classificationArray;

scheduler.Invoke(dax: :worklet::ThresholdClassify<dax::Scalar>(0.07, 1.90),
grid,

Kenneth Moreland Utkarsh Ayachit Berk Geveci

Kitware, Inc.

-+ Data Analysis at Extreme

Kitware, Inc.

The Dax Toolkit simplifies the development of parallel visualizaiton algo-
rithms. Below is the Dax code that implements a threshold operation. Al-
gorithm implementations are encapsulated in worklets, which provide
fine-grained parallelism and thread safety. The Dax Toolkit provides
schedulers that apply worklets to all elements in a mesh as well as
common and versitile communicative operations such as array compac-
tion and point merging. Despite the higher levels of abstraction and
generalized programming interface, the speed of Dax algorithms are
competitive with other“hand-coded” algorithmes.

inArray,
classificationArray);

// Build thresholded topology.

ScheduleGenerateTopologyType resolveTopology(classificationArray);
UnstructuredGridType outGrid;
scheduler.Invoke(resolveTopology, grid, outGrid);

Automatic point
merging IS
op‘rional.

// Compact scalar array to new topology.
ArrayHandleScalar outArray;
resolveTopology.CompactPointField(inArray, outArray);

template<typename ValueType>
class ThresholdClassify : public dax::exec: :WorkletMapCell

1
public:

typedef void ControlSignature(Topology,Field(Point), Field(Out));
typedef 3 ExecutionSignature(2);

DAX_CONT_EXPORT
ThresholdClassify(ValueType thresholdMin, ValueType thresholdMax)
: ThresholdMin(thresholdMin), ThresholdMax(thresholdMax) { }

template<typename CellTag> DAX EXEC _EXPORT dax::Id operator()(
const dax::exec::CellField<ValueType,CellTag> &values) const

Simplicial subdivision with
guadratic smoothing

Scheduler

-Avie‘*"“‘ Loty 5 5

& ST =) ‘E“mrﬂl/w

*ﬁﬁ'ﬁ%ﬁ%ﬁ"ﬂ‘;ﬁﬁﬂ
o

IS R

Worklet

A

\V NN
NAVAVAVATAY=" !
TAVAVAVE S
AVAYET

NAZ
Vs

A

AVAVar AVAVr,
VAV VoA AV

N
AV
VAY

A
VAV
AV

\

N7

[e}
KIS
-

e'l
h é‘

{ Array Compact
ThresholdFunction<ValueType> threshold(this->ThresholdMin, liqupd,
this->ThresholdMax); ACces ‘ffee p
dax: :exec: :VectorForkach(values, threshold); /igh_’_ S.WI'I'h QHE
return threshold.valid; cont V!/elgh-,.
} Q/ner.s

private:
ValueType ThresholdMin;
ValueType ThresholdMax;

}s
class ThresholdTopology

{

public:
typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Vertices(1),Vertices(2));

: public dax::exec::WorkletGenerateTopology

template<typename InputCellTag, typename OutputCellTag>

DAX_EXEC_EXPORT

void operator()(const dax::exec::CellVertices<InputCellTag> &inVertices,
dax::exec::CellVertices<OutputCellTag> &outVertices) const

{
outVertices.SetFromTuple(inVertices.GetAsTuple());

}
s

Topology
Worklet

Topology
Worklet

YJoMmawel{ xeq

Topology
Worklet

[[e]e]e][0]s)Y,
Worklet

Topology Reconstruction

Kwan-Liu Ma
University of California at Davis ey or canroris

W Kitware @
UCDAVIS

@ Sandia National Laboratories

22

“ A
. /\/\ - VTK

§§
c
16 S
A v
2)
o14)
9 £
Vo N— —
w12 OpenMP 1 Core, ¢
c 9
iém - TBB1Core 32
S Serial STL| %
38 v
% S
L 6 0 0)
D
‘ (R
4\ -

OpenMP 8 Core

N\—
2 TBB 8 Core
0 CUDA

Trial

1.1

1.0

O
e

o
o

O
N

o
o

0.5

0.4

0.3

0.2

0.1

0.0

| PISTON Original

http://daxtoolkit.org

SAND2013- 0930P

S U.S. DEPARTMENT OF

A

\
&
|
<

S

TYRA L =3
Il A’ R

3

National Nuclear Security Administration

0.14 PISTON Original

Dax
PISTON Modified

0.12

PISTON Modified
Dax

0.10

0.08

GPU Execution Time (Seconds)
o
(@)

©
o
=

0.02

0.00

Trial Trial

Our end performance tests show both that our optimizations to the threshold algorithm are effec-
tive in providing efficient parallel performance and that these optimizations can be hidden be-
neath a generic templated programming interface. In addition to demonstrating the base perfor-
mance of our code on many devices, we also compare to VTK and PISTON as good representations

. "‘

e
"l’

v

Cells extraced by

field threshold.

of the state of the art. (The modified PISTON is changed to make its output compatible with Dax.)

guent vertex welding,
coarsening, subdivi-
sion, and curvature
estimation

This work was supported in full by the DOE Office of Science, Advanced
Scientific Computing Research, under award number 10-014707, pro-
gram manager Lucy Nowell.

This work was supported by the Director, Office of Advanced Scientific
Computing Research, Office of Science, of the U.S. Department of Energy
under Contract No. 12-015215, through the Scientific Discovery through
Advanced Computing (SciDAC) Institute of Scalable Data Management,
Analysis and Visualization.

Sandia National Laboratories is a multi-program laboratory managed
and operated by Sandia Corporation, a wholly owned subsidiary of Lock-
heed Martin Corporation, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.
SAND 2013-0401P

