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template<typename ValueType>
class ThresholdClassify : public dax::exec::WorkletMapCell
{
public:
  typedef void ControlSignature(Topology,Field(Point), Field(Out));
  typedef _3 ExecutionSignature(_2);

  DAX_CONT_EXPORT
  ThresholdClassify(ValueType thresholdMin, ValueType thresholdMax)
    : ThresholdMin(thresholdMin), ThresholdMax(thresholdMax) {  }

  template<typename CellTag>  DAX_EXEC_EXPORT  dax::Id operator()(
      const dax::exec::CellField<ValueType,CellTag> &values) const
  {
    ThresholdFunction<ValueType> threshold(this->ThresholdMin,
                                           this->ThresholdMax);
    dax::exec::VectorForEach(values, threshold);
    return threshold.valid;
  }
private:
  ValueType ThresholdMin;
  ValueType ThresholdMax;
};

class ThresholdTopology : public dax::exec::WorkletGenerateTopology
{
public:
  typedef void ControlSignature(Topology, Topology(Out));
  typedef void ExecutionSignature(Vertices(_1),Vertices(_2));

  template<typename InputCellTag, typename OutputCellTag>
  DAX_EXEC_EXPORT
  void operator()(const dax::exec::CellVertices<InputCellTag> &inVertices,
                  dax::exec::CellVertices<OutputCellTag> &outVertices) const
  {
    outVertices.SetFromTuple(inVertices.GetAsTuple());
  }
};

// Run classify algorithm (determine how many cells are passed).
ClassifyResultType classificationArray;
scheduler.Invoke(dax::worklet::ThresholdClassify<dax::Scalar>(0.07, 1.0),
                 grid,
                 inArray,
                 classificationArray);

// Build thresholded topology.
ScheduleGenerateTopologyType resolveTopology(classificationArray);
UnstructuredGridType outGrid;
scheduler.Invoke(resolveTopology, grid, outGrid);

// Compact scalar array to new topology.
ArrayHandleScalar outArray;
resolveTopology.CompactPointField(inArray, outArray);

The Dax Toolkit simpli�es the development of parallel visualizaiton algo-
rithms. Below is the Dax code that implements a threshold operation. Al-
gorithm implementations are encapsulated in worklets, which provide 
�ne-grained parallelism and thread safety.  The Dax Toolkit provides 
schedulers that apply worklets to all elements in a mesh as well as 
common and versitile communicative operations such as array compac-
tion and point merging. Despite the higher levels of abstraction and 
generalized programming interface, the speed of Dax algorithms are 
competitive with other “hand-coded” algorithms.

The transition to exascale machines represents a fundamental change in 
computing architecture. E�cient computation on exascale machines re-
quires a massive amount of concurrent threads, at least 1000× more 
concurrency than existing systems. Current visualization solutions 
cannot support this extreme level of concurrency. Exascale systems re-
quire a new programming model and a fundamental change in how we 
design fundamental algorithms. To address these issues, our project 
builds the Data Analysis at Extreme (Dax) Toolkit.
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Our end performance tests show both that our optimizations to the threshold algorithm are e�ec-
tive in providing e�cient parallel performance and that these optimizations can be hidden be-
neath a generic templated programming interface.  In addition to demonstrating the base perfor-
mance of our code on many devices, we also compare to VTK and PISTON as good representations 
of the state of the art.  (The modi�ed PISTON is changed to make its output compatible with Dax.)
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Templated cell 

tags specialize 

for cell type.

Hazard-free access with lightweight containers.

Automatic point 
merging is
 optional.

Cells extraced by 
�eld threshold.

Contour with subse-
quent vertex welding, 
coarsening, subdivi-
sion, and curvature 
estimation

Simplicial subdivision with 
quadratic smoothing
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