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Outline

• Overview of Bioanalytical Imaging for BEID

• Project highlight:

“Visualizing TLR4 Distributions at the Plasma 
Membrane with Nanoscale Resolution”

• Conclusions & Future vision 



Research Focus

 Advanced spectroscopy

 Innovative imaging technologies

 Chemometric data analysis tools
− Multidisciplinary

− Cell biology, immunology, and microbiology 

− Biodefense and Bioenergy

http://bio.sandia.gov/people/timlin.html

Unraveling Spatial-Temporal Relationships in 
Complex Multicomponent Biological Systems at 

Multiple Scales

http://bio.sandia.gov/people/timlin.html


It’s No Secret … Space and Time are 
Important in Cell Response

vvvvvv

T= 0

T= 1

T= 2

Changes occur on multiple scales

• Individual molecules
• Subcellular organelles
• Cell populations

Stochasticity of response is important

• Space
• Time
• Population diversity

Multiplexed measurements are key

• Temporal efficiency
• Interactions



SNL Imaging Technologies are Well-
Matched to These Questions 

Hyperspectral Fluorescence Imaging
-Confocal
-Line scan
-Multi-photon
-Lifetime

Vibrational Spectroscopic Imaging

TIRF Microscopy

Multivariate Image Analysis

Image Correlation, Particle Tracking

Super Resolution Microscopy

Single-molecule Imaging
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Spectral resolution provides 
chemical/molecular specificity, 

enables multiplexing

Davis, RW, et. al. Microscopy & Microanalysis, 2010, 16:4, 478-487. 
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Carroll-Portillo, A, et. al. Journal of Immunology, 2010, 
184:3, 1328-1338.
Spendier, K, et. al.  Biophysical Journal, 2010, 99:388-
397. 

IgEDY520

GFP-Actin

Excellent temporal resolution, 
and membrane specificity 
permits investigations of  

dynamic receptor behavior
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Multiple bioanalytical imaging 
modalities elucidate membrane 

trafficking, uptake, and ultimate fate 
of nanoparticles within cells



SNL Imaging Technologies are Well-
Matched to These Questions 

Hyperspectral Fluorescence Imaging
-Confocal
-Line scan
-Multi-photon
-Lifetime

Vibrational Spectroscopic Imaging

TIRF Microscopy

Multivariate Image Analysis

Image Correlation, Particle Tracking

Super Resolution Microscopy

Single-molecule Imaging

1, 135-145 (November 2001)

• Important element in mammalian 
innate immunity

• LPS recognition by TLR4 is aided by 
accessory proteins

• Different chemotypes of LPS generate 
distinct immune responses

TLRs:  Important in 
Pathogenesis, Biodefense



Chemotypes of LPS Exhibit Differential 
Immune Response

Differential immune 
response observed is not 
fully understood.

• LPS from E. coli binds 
& produces an immune 
response

• LPS from Y. pestis
(plague @ 37 °) binds, 
but does not

Triantafilou, J Cell Sci 2002
Triantafilou, J Cell Sci 2004
Triantafilou, Biochem J 2004
Netea, Trend Immunol 2002
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Receptor Clustering Can be Necessary in 
Immune Response

• Domains act as assembly areas 

• Aggregation of receptors often 
follows activation/ligand binding

• Bulk assays have suggested 
that TLR4 molecules aggregate 
in lipids rafts within the cell 
membrane after LPS binding*

*Triantafilou, et. al, Biochem. J. 381(Pt 2): 527–536
Image Courtesy of Tim Ratto, Lawrence Livermore 

National Labs

• Visualization at the single cell 
level has been limited by optical 
diffraction

Optical super-resolution gives us a way to differentiate 
TLR4 clustering at a much finer scale than conventional 

imaging.



Stochastic Optical Reconstruction 
Microscopy (STORM)

• The Abbe resolution limit can 
effectively be broken if the fluorophors 
in a sample can be imaged 
independently from each other.

• Assuming <1 fluorophor per 
diffraction-limited area, it’s position 
can be determined with nanometer 
precision.

• In STORM, this means incorporating 
stochastic “photoswitching”

• Photoswitching for organic dyes can 
occur in buffer containing small thiol 
(i.e. BME) and oxygen scavenging 
system.  (dSTORM)

diffraction-limited spot 
size (~300 nm)

Rust, et. al, Nat. Meth.  3: 793 - 796 (2006)



• Mouse macrophage cells (P388D1) 
incubated with 100nM E. coli or Y. 
pestis-derived LPS for 30 min at 
37°C and formaldehyde fixed.  

• LPS are labeled with Alexa Fluor 
647-hydrazide via linkage with core-
polysaccharide

• TLR4 receptors visualized via 10

antibodies labeled with Atto532

• Cells imaged in O2-scavenging 
buffer containing β-mercaptothiol

LPS-Alexa647 (30min, 37°C)

Fix 4% formaldehyde

TLR4 mAbs-Atto532 (60min, RT)

Fix 4% formaldehyde

Mount & Image

Experimental Design



Multicolor STORM Setup

• Four excitation ’s (405, 488, 532, 633nm), variable angle
• Simultaneous dual-color emission
• Capable of >50fps over 30µm x 30µm FOV

Andor Ixon EM-
CCD Camera

TIRF Objective

Olympus IX70 Inverted 
Microscope

OptoSplit® Image 
Splitter

double 
dichroic mirror

fluorescence

dichroic550/20nm BP

665LP
excitation

633nm
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• Receptor reorganization
• Nanoparticle-membrane interactions, uptake

− Engineered NPs
− Natural NPs - Viral trafficking

Unique capabilities: 

Advantageous in: 



Fluorophor Localization

• Single fluorophors with minimum SNR are identified in each frame

• Local area fitted to 2-D Gaussian surface as ~PSF (using a novel 
algorithm that accounts for detector noise)

• Maximum of that surface is most likely position of the fluorophor

• Typically, location fit uncertainty 40-60nm

• Process repeated over 1k-10k frames to build STORM image

Fit peak 
to Gaussian

(x0 , y0) = (-61±31nm , 44±23nm)      

Uncertainty ~ 1/√N  
(SNR)



TLR4 Clustering is Specific

TIRF images = diffraction limited STORM image = 8-10-fold increase in resolution

E. coli LPS Y. pestis LPSFlagellin

376  53 nm 480  120 nm515  70 nm



p = 0.0024 (N = 10 cells)

• Ripley’s K-analysis indicates 
that E. coli LPS induces 
significant clustering over 
negative control (flagellin)

• Suggests that pestis induces 
less clustering, but not 
significant

•• TLR4TLR4--LPS complex?LPS complex?

TLR4 Cluster Analysis



• Dual-color STORM 
imaging

– TLR4 – Atto532

– LPS –
AlexaFluor647

• Image registration via 
multi-dye  PS beads 
(average error 
~50nm)

• Perform cluster 
analysis on co-
localized points

Colocalization of TLR4 & LPS
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• Significantly less co-localization of Y. pestis LPS with TLR4 
compared to E. coli LPS

• Significantly smaller Y. pestis LPS-TLR4 clusters than E. coli LPS-
TLR4 clusters

Y. pestis LPS is less Efficient at 
Recruiting TLR4 into Clustered Domains

p = 0.0069 p = 0.0310
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Conclusions



Future Vision - Multidimensional 
Bioanalytics 

vvvvvv

T= 0

T= 1

T= 2

Changes occur on multiple scales

• Individual molecules
• Subcellular organelles
• Cell populations

Stochasticity of response is important

• Space
• Time
• Population diversity

Multiplexed measurements are key

• Temporal efficiency
• Interactions
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