
Semiconductor lights, III-N material system

LED model

Efficiency droop: intrinsic or extrinic?

Bandstructure influences on InGaN
light-emitting diode efficiency

Thanks to:
Sandia’s Energy Frontier Research Center (EFRC)
DOE, Basic Energy Sciences
Sonderforschungsbereich (SFB) 787  

Weng Chow, Sandia National Labs.

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary
of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration
under Contract DE-AC04-94AL85000.

SAND2012-1225P



Krames et al, J. Display Technology 3, 1551 (2007)

Wide bandgap Group-III Nitrides

Important applications: visible and ultraviolet lasers and LEDs

Strong quantum-confined Stark effect Significant excitation 
dependences in 
transition energies 
and matrix elements

Interesting physics:

Strong many-body interaction



Krames et al, J. Display Technology 3, 1551 (2007)
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Motivations for a more detailed model
Variation in Auger coefficient from 
IQE curve fitting with ABC model
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Carrier density dependent 
band structure changes
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+ Coulomb interaction

Hamiltonian

Hiesenberg Picture
Light-matter 
interaction

Mean-field

Coulomb 
interaction

Mean-field

Correlations

Approach

Single-particle energies Light-matter interaction

Spontaneous 
emission

Carrier capture 
and escape



Model

Similar for holes

IEEE JQE 38 402, 2002 (for QW); IEEE JQE 41 495, 2005 (for QD); APL 97, 121105, 2010 (for InGaN LEDs)

e or h



Model

e or h

Spontaneous emission (>ns)

Similar for holes

Carrier injection

IEEE JQE 38 402, 2002 (for QW); IEEE JQE 41 495, 2005 (for QD); APL 97, 121105, 2010 (for InGaN LEDs)



Model

e or h

Spontaneous emission (>ns)

e-ee-p

Carrier-phonon (<1ps)

Similar for holes

Carrier-carrier (100fs)

e-e

Carrier injection

IEEE JQE 38 402, 2002 (for QW); IEEE JQE 41 495, 2005 (for QD); APL 97, 121105, 2010 (for InGaN LEDs)



4nm In0.2Ga0.8N/6nmGaN, TL = 300K, γc-c = 5x1013s-1, γc-p = 1013s-1, A = 10-7s-1, C = 0
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4nm In0.2Ga0.8N/6nmGaN, TL = 300K, γc-c = 5x1013s-1, γc-p = 1013s-1, A = 10-7s-1, C = 0
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4nm In0.2Ga0.8N/6nmGaN, TL = 300K, γc-c = 5x1013s-1, γc-p = 1013s-1, A = 10-7s-1, C = 0
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4nm In0.2Ga0.8N/6nmGaN, TL = 300K, γc-c = 5x1013s-1, γc-p = 1013s-1, A = 10-7s-1, C = 0

No Auger!
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4nm In0.2Ga0.8N/6nmGaN, TL = 300K, γc-c = 5x1013s-1, γc-p = 1013s-1, A = 10-7s-1, C = 0
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SRH (linear) + bandstructure          N3 loss!



4nm In0.2Ga0.8N/6nmGaN, TL = 300K, γc-c = 5x1013s-1, γc-c = 1013s-1, A = Ab = 10-7s-1
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• Auger loss prevents recovery of IQE
• Required coefficient 

--- smaller than ABC model estimation
--- consistent with microscopic calculations
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IQE

IQ
E

Current density

T1

T2

T3

∼5A/cm2

Droop

Intrinsic

Auger

Screening of 
piezoelectric field

Extrinsic

Localization

Current leakage

Defect loss

Can fit experiment with :

? ?

Summary

Talk --- describes k-resolve carrier population model

--- systematic description of above effects at microscopic level

--- droop can arise from --- screening of QCSE

--- localization of SRH losses

--- Auger loss (with small necessary C)





4nm In0.2Ga0.8N/6nmGaN
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Carrier population relaxation

IEEE JQE 42, 292 (2006)

Quantum kinetic calculation (Our) Rate equation approximation
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Internal quantum efficiency



4nm In0.2Ga0.8N/6nmGaN, TL = 300K, γc-c = 5x1013s-1, γc-c = 1013s-1, A = 10-7s-1, C = 0
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4nm In0.2Ga0.8N/6nmGaN, TL = 300K, γc-c = 5x1013s-1, γc-c = 1013s-1, A = 10-7s-1, C = 0
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4nm In0.2Ga0.8N/6nmGaN, TL = 300K, γc-c = 5x1013s-1, γc-c = 1013s-1, A = 10-7s-1, C = 0
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4nm In0.2Ga0.8N/6nmGaN, TL = 300K, γc-c = 5x1013s-1, γc-c = 1013s-1, A = 10-7s-1, C = 0

No Auger!
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WWC, Optics Express 19, 21818, 2011



Optical 
field

LATTICE Electron-
hole plasma

Light-
matter

Band
structure

Injection 
current

Carrier capture 
and escape

Next step:
Model/Expt comparison
(esp. IQE vs. J and T)

Present model

k-resolved LED model



Efficiency droop is observed under a wide range of experimental conditions –
involving different LED emitting wavelengths, polar versus non polar 
substrates, with or without electron blocking layers, etc

It is possible that the differences in observed droop behavior (involving 
different LED emitting wavelengths, polar versus non polar substrates, with or 
without electron blocking layers, etc.) arise from differences in the relative 
importance of various mechanisms. 


