e |

> @
SAND2012- 0142P

Supporting Integrated Data Services
A New Challenge for High-Performance Computing

Approved for Public Release: SAND2012-XXXXP

Invited Talk
Argonne National Laboratories

Jan, 2012

Ron Oldfield
Sandia National Laboratories

\
Z \

LABORATORY DIRECTED RESEARCH & DEVELOPMENT l I 5 E

\ _Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United San_dia
/ NAY Nessisstates Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. National
A “.¢ G2 B Laboratories
A5C

NEtwork-Scalable Service nterfacE

Some /O Issues for Exascale

« Storage systems are the slowest, most fragile, part of an HPC system
— Scaling to extreme client counts is challenging
— POSIX semantics gets in the way, ...

« Current usage models not appropriate for Petascale, much less Exascale
— Checkpoints are a HUGE concern for I/O...currently primary focus of FS

— App workflow uses storage as a communication conduit
« Simulate, store, analyze, store, refine, store, ... most of the data is transient

— High-level I/O libraries (e.g., HDF5, netCDF) have high overheads

« One way to reduce pressure on the FS is to inject processing nodes
1. Reduce the “effective” I/O cost through data staging
2. Reduce amount of data written to storage (integrated analysis, data services)
3. Present FS with fewer clients (IO forwarding)

We call this “Integrated Data Services”

: Sandia
G Nessie 5 National
2 GBS Laboratories

NEtwork-Scalable Service nterfacE

\
Z\ O
AsC

I/O Processing for Seismic Imaging

Our First Data Service (1996)

Migration
(compute nodes)
Frequency

Data

-4—

Salvo’s I/O Partition

— Partition of application processors
(used separate MPI Communicator for 1/O)
— Used for FFT, I/O cache, and interpolation

— Async I/O allowed overlap of I/O and

1/0 Partition
(compute nodes)

Time traces

@@

computation (pre-process next ste /O
p (pre-p P) - Nodes
Results 350 —
— +10% nodes led to +30% in performance ol 2 S /’
— Modeling 1/0 and compute costs helped find g 20 . a;__,ff"""'r /
the right balance of compute and 1/O nodes 5 2 12 . //
o B -
Contacts: Ron Oldfield, Curtis Ober gz"” i | P
{raoldfi,ccober}@sandia.gov g1s0f 0 40 8 120 180 200 e
E 100 [- -~
. T - £ £ ::-':gpénund
Oldfield, et al. Efficient parallel /O in seismic imaging. 50 _— V¥ ¥ Gompute Bound
The International Journal of High Performance Computing M - , , , , , , ,
Applications, 12(3), Fall 1998 % 20 w0 e D e a200 1400 1600 1800 2000
\ @ ﬁa?_dial
] e ationa
ra N1 xxonMobil Briefing June 32009 Laboratories

A GBS

NEtwork-Scalable Service nterfacE

A50C

ol

Everyone Jump on the Bandwagon...

« Past Efforts
— Active Storage/Networking (CMU, Duke, PNNL, Netezza,...)
— Armada (Dartmouth)
— DataCutter (Maryland, OSU)

« Current Efforts for HPC (no particular order)
— ADIOS/DataStager/PreDatA (Ga Tech, ORNL)
— DataSpaces (Rutgers)
— Glean (ANL)
— In-Situ Indexing (LBL)
— /O Delegation (NWU)
— ParaView co-processing
— Vislt remote vizualization

Sandia
4 National
Laboratories

NEtwork Scalable Service Interface (Nessie)

Part of Trilinos I/O Support (Trios)

Approach
)) Client Application
— Leverage available compute/service node (compute nodes) I/O Service
resources for |/O caching and data processing . (compute/service nodes) Lustre File

Raw Processed S stem
Application-Level 1/O Services . Data O vata | g%e
— PnetCDF staging service » jl>
— CTH real-time analysis . O Visualization
— SQL Proxy (for NGC) . Cache/aggregate Client
— Interactive sparse-matrix visualization (for NGC) fprocess NETEZZA
@' LexisNexis®

Nessie (NEtwork Scalable Service Interfack)
— Framework for developing data services
— Client and server libs, cmake macros, utilities -
— Originally developed for lightweight file systems

Nessie

NEwwork-Scalable Service Interfack

Currently in Trilinos Development Branch, release date in Jan/Feb 2012

: Sandia
G Nessie 5 National
2 B Laboratories

NEtwork-Scalable Service nterfacE

\
Z\ O
AsC

Some Details on Nessie

Designed for Bulk Data

Movement on HPC Platforms

« Goals of data-movement protocol

— Low stress on servers (assume order of
magnitude more clients than servers)

— Efficient use of network (avoid copies,
dropped messages, retransmissions, ...

* Features of Nessie

— Asynchronous, RPC-like API

— User low-level RDMA transports
» Portals, InfiniBand, Gemini

— Small requests

— Server-directed for bulk data
« Writes: pull from client
» Reads: push to client

Nessie
SPpeY

—> server-initiated
— client-initiated

Client Server

pinneaq

. write _

request |
request
l——-——

ok
/

request
queue

{ l ™
\ data
data buffers

Sandia
National
Laboratories

Example: A Simple Transfer Service

Trilinos/packages/trios/examples/xfer-service

. Client Application
« Used to test Nessie API o

— xfer_write_encode: client transfers data to
server through RPC args = <\|:>©

— xfer_write_rdma: server pulls raw data using O

RDMA get)

— xfer_read_encode: server transfers data to

Xfer-Service

/* Data structure to transfer x/

client through RPC result struct data_t {
— xfer_read_rdma: server transfers data to client E’;atmtﬂ‘(::ijval; ?j j: %iff :?
using RDMA put double double_val; /+ & bytes =/
» Used for performance evaluation)
— Test low-level network protocols /* Array of data structures x/

] typedef data_t data_array_t <>;
— Test overhead of XDR encoding

_ /* Arguments for zfer_write_encode x/
Tests async and sync performance struct xfer.write_encode_args
« Creating the Transfer Service N data-array-t array;
— Define the XDR data structs and APIl arguments ’
_ . /* Arguments for zfer_write_rdma */
Implement the client stubs struct xfer write_rdma. args {
— Implement the server int len;
b

ot o ationa
AR S 7 -
AsSC 2 Teor —= Laboratories

NEtwork-Scalable Service nterfacE

Transfer Service
Implementing the Client Stubs

» Interface between scientific app
and service

« Steps for client stub

— Initialize the remote method arguments,
in this case, it’s just the length of the
array

— Call the rpc function. The RPC function
includes method arguments (args), and
a pointer to the data available for
RDMA (buf)

« The RPC is asynchronous

— The client checks for completion by
calling nssi_wait(&req);

\

A50C

el wb 4 8

int xfer_write_rdma (
const nssi_service xsvc,
const data_array_-t xarr,
nssi_request xreq)

xfer_write_.rdma_args args;
int nbytes;

/% the only arg is size of array x/
args.len = arr—>data_array_-t_len;

/% the RDMA buffer x/

const data_-t xbuf=array—>data_array_-t_val;

/% size of the RDMA buffer x/
nbytes = args.lenxsizeof(data_t);

/* call the remote methods x/

nssi-call_rpc (sve, XFERPULL,
&args, (char *)buf, nbytes,
NULL, req);

Sandia
National
Laboratories

Transfer Service

Implementing the Server

* Implement server stubs const unsigned long request_id
— Using standard stub args const xfer_pull_args %args,
— For xfer write rdma_srvr, the const NNTI_buffer_t #res_addr)
server pulls data from client U const int len — args_slen:

* Implement server executable
Initialize Nessie

int xfer_write_rdma_srvr (
const NNTI_peer_t xcaller ,

const NNTI_buffer_.t xdata_addr,

int nbytes = lenxsizeof(data_t);

/x allocate space for the buffer x/
data_-t xbuf = (data-t *)malloc(nbytes);

/+* fetch the data from the client x/

nssi-get_data(caller , buf, nbytes, data_addr);

— Register server stubs/callbacks
— Start the server thread(S) rc = nssi_send_result (caller , request_id ,

/+ send the result to the

NSSI.OK, NULL, res_addr);

/+x free buffer x/
free (buf);

client =/

Sandia
National
Laboratories

e
Evaluating the Transfer Service

InfiniBand Interconnect

Comparison of Write Methods on RedSky

InfiniBand Interconnect

(o0}

3 S

oY —e— xfer—write—rdma T

xrer—-write—encode

©

o _| |
—_ Te} N~
l) ~-— '
@ o
= L
= <
2 8 - 2 o
c @)
S 8
o o
| -

c o
- S | e Dq-)
o Al
o - /' mmmmm ,____,\«—'——'_‘-/-f‘ L O

| - | - | | |
1 32 1024 32768 1048576

Bytes/Transfer

\ Nessi ﬁa?_dial
L) Nessie 10 ationa

At ‘“ i

F = Laboratories

Evaluating the Transfer Service

SeaStar Interconnect (Portals)

Comparison of Write Methods on RedStorm

Seastar Interconnect (Cray Portals)

3 - - 8
A —6— xfer—-write—-rdma T
-4 xfer—write—encode
©
o _|]
—_ Te] N
&) ~— X
@ S
S o
= < "6
> AN | | O
s 2 B O
o2 8
3 5
SN o
= - & d
) AD-OAANAADLLANA
o — - = = — O
[| | | |
1 32 1024 32768 1048576
Bytes/Transfer

\ Nessie ﬁa?.dia |
A ationa
AR S : .
ASC et = Laboratories

NEtwork-Scalable Service nterfacE

Gemini Interconnect

Evaluating the Transfer Service

Comparison of Write Methods on Cielo

Gemini Network

Throughput(MiB/s)
1000 1500 2000
| | |

500
|

—&—
-&

xfer—write—rdma
xfer—write—encode

o pL DAL AL ANA-LANA

Only 1/3 of peak...
we’re working on it!

\ Nessie
Z N\ O ” ;
AsC X

1024
Bytes/Transfer

12

I I
32768 1048576

)

Sandia
National
Laboratories

e
Evaluating the Transfer Service

SeaStar Interconnect (Portals)

NSSI Scaling Performance on Red Storm
SeaStar Network

e 0]

© 4 [S

N —e— 1 client Y .

4 clients A

Q -+ - 16 clients p
5 B 64 clients o
o - .
an)
: 5
4 < ‘.5
-} o | B
2 o ;3
] 3
9 o
N 8

c : - g8

0) c'd-)-dl’yo
o 4:'*:: :d»:ri- -kleu u-:az xﬁ,:e-L ﬂ;&,w*i_‘:’** -
32 1024 32768 1048576 33554432
Bytes/Transfer

\
Z\ O
AsC

: Sandia
LI Nessie 13 National
2 GBS Laboratories

NEtwork-Scalable Service nterfacE

Scalable I/O Services
NetCDF 1/0 Cache

M0t|vat|0n Client Application

(compute nodes) NetCDF Service

i i i ; te nod
— Synchronous I/O libraries require app to wait . (compute nodes)

Processed

until data is on storage device gg{f;g; Data
— Not enough cache on compute nodes to handle - @@
‘IO bursts” D
— NetCDF is basis of important I/O libs at Sandia Cachelaggregate System
(EXOd US) I0R Performance on Red Storm
- 2 Tt of s o sagm nodes
NetCDF Caching Service g [+ brearwcor

— Service aggregates/caches data
and pushes data to storage

— Async I/O allows overlap of I/0
and computation

Effective Throughput (GB/s)
20 30 40 50
|

10
1

Presented at PDSW’11

Processors

Sandia
60 Nessie 14 National
G 3 G Laboratories

NEtwork-Scalable Service nterfacE

\
Z\\ O
AsC

b

Data Service Applications
CTH Fragment Detection

Motivation In-Situ Fragment Detection

— Fragment detection process takes 30% of time- Client Application
step calculation

— Fragment tracking requires data from every time
step (too data intensive for post processing)

— Integrating detection software with CTH is Fragment
intrusive on developer : Data
CTH fragment detection service CTHMW
— Extra compute nodes provide in-line processing code
(overlap fragment detection with time step In-Transit Fragment Detection
calculation)

Client Application Fragment-Detection Service

— Only output fragments to storage (reduce 1/O)
— Non-intrusive ‘
* Looks like normal I/0 (pvspy interface) :> “
+ Can be configured out-of-band S:g . Fragment s

Data
Status and Ongoing Work
— Porting to Cielo CTH
— Comparison of in-situ and in-transit

\ \ ﬁa?_dlal
e ationa
e 15 -
AsC 'w Laboratories

NEtwork-Scalable Service nterfacE

ana yS|s
Server code
Client

b

> @

Data-Service Applications
SQL Service: Remote Access to Data Warehouse Appliances (DWA)

Analyst HPC System (Red Storm) DWA

SQL Service*

1 |
H 11 H ” S i N d
— Provides “bridge” between parallel apps %“{ (Gu,an:’,;’;:ba:’eizmces)| Netezza
[

High-Speed Network
(Portals)

and external DWA
— Runs on Red Storm network nodes

|

|

|

— Titan applications communicate with |
service through Portals :

|

|

I

LexisNexis

er
DBC DW

— External resources (Netezza)
communicate through standard
interfaces (e.g. ODBC over TCP/IP) Anywhere Tech Area 1 :

The SQL service enables an HPC
application to access a remote DWA

CSRI

Additional Modifications for Multilingual
— Tokenization support on Netezza (goal is to count unique words)
— Developed a custom UTF-8 words splitter for SPU (snippet processing unit)
— Allows parallel tokenization and counting at storage device

* Results of SQL access from parallel statistics code presented at CUG’2009.

Sandia
Slide 16 of 14 @ National
w Laboratories

NEtwork-Scalable Service nterfacE

\
Z\\ O
AsC

ol

Data-Services Application

Interactive Visualization for Multilingual Document Clustering

Compute Nodes
(Trilinos Code)

\ C{ T Nessie

Z\ <
AsC

Similarity

Matrix I

(3 2 RS

NEtwork-Scalable Service nterfacE

0000

Service Nodes
(VTK Service)

Titan
Visualization

=

Sandia
National
Laboratories

S0 What’s Missing?

« Two types of data services: application-level and system-level
— Some system-level services already exist (e.g., file services)
— The challenge is providing support for application-level services

* Scheduling: dynamic allocation, reconfiguration, and placement
— Balance workflow, reduce data movement, on-demand services
— The ability to control placement is important

8:1 ratio of application to staging nodes
2400 — .

2200 72(X Z x % % T

1800

1600

1400

RMA Get Bandwidth (MiB/s)

1200

1000 |- { {

800 L

I
10 100

\ N . Number of staging nodes ﬁan.dia I
SP Py 18 ationa

Z N S :

AsSC e ———— Laboratories

NEtwork-Scalable Service nterfacE

S0 What’s Missing?

* Programming models

— Standard API for inter-application communication (RDMA)
 Portals, InfiniBand, Gemini, ...
* MPI-2 has this... kind of. Not many implementations.

— Programming models for integrating analysis (co-processing)

— High-level libraries for developing/integrating services (CPU,
GPU, FPGA)

« Security models that support shared services
— Cray XEG6 doesn’t even support private services

Sandia
19 National
Laboratories

S0 What’s Missing?

Resilience

— Storage-efficient app resilience is still a problem after 20+
years of research

— Data services use memory for transient data, how do we
ensure resilience in such a model?

— We are exploring transaction-based methods

» Goal is to provide assurances in multiple protection
domains (e.g., the application, service 1, service 2,...)

» Lofstead can talk all about this...

20

)

Sandia
National _
Laboratories

Summary

« Data Services are coming!
— Nearly every Lab has their own approach (Nessie, Gleam, ADIOS, ...)

— Scheduling, programming models, security, and resilience need to better support data
services. Lots of work to do!

* Nessie provides an effective framework for developing services
— Client and server API, macros for XDR processing, utils for managing svcs
— Supports most HPC interconnects (Seastar, Gemini, InfiniBand)

« Trilinos provides a great research vehicle
— Common repository, testing support, broad distribution

« Trios Data Services Development Team (and current assignment)
— Ron Oldfield: PI, CTH data service, Nessie development
— Todd Kordenbrock: Nessie development, performance analysis
— Gerald Lofstead: PnetCDF/Exodus service, transaction-based resilience
— Craig Ulmer: Data-service APIs for accelerators (GPU, FPGA)
— Ron Minnich: Protocol performance evaluations, Nessie BG/P support

\ Nessi ﬁa?_dial

) i 21 ationa
ra ur: i .
AsSC 2 Teor —= Laboratories

NEtwork-Scalable Service nterfacE

Extra Slides

22

)

Sandia
National
Laboratories

ol

Trilinos 1/O Support (Trios)

* New Capability Area in Trilinos
— Copyright assertion granted Oct. 2011
* QObjectives
— 1/O Support for existing production codes
« Exodus, Nemesis, IOSS

— Vehicle for Open Source I/0 R&D
» Trios Data Services

* Benefits of Trilinos

— Well-defined software-engineering framework
— Broad distribution and access for I/O software developers
— Increased opportunity for co-design with application developers

and hardware vendors
Sandia
23 @ National
Laboratories

Trios Status Update

Copyright assertion granted!

Trilinos
packages
seacas trios
/ \\
libraries libraries services examples

SN S N

exodus i0ss nemeis nessie support netcdf-service pvspy-service xfer-service

|/O Software spans two packages: SEACAS, Trios

Sandia

\ Nessie .
) National
2\ v 24 :
ASC et = Laboratories

NEtwork-Scalable Service nterfacE

Trios Status Update

Trios Package

» Libraries
— Support (logger, timer, trace, ...)

— Nessie (Portals, InfiniBand, LUC, Gemini)

— CommSplitter (special for Cray XEG6)

« Data Services

— Transfer Service (example, tests,
performance)

— PnetCDF Staging Service
— PVSpy Service (CTH in-transit analysis)

 Planned Work

— Exodus staging service (like PnetCDF)
— Transaction-based resilience for services
— Accelerator-based services

A o
AsC

25

SEACAS Package

« 1/O Libraries (subpackages)

EXODUS I
NEMESIS
I0SS

* Planned Work

Eliminate “2-billion entities” problem

Native support for higher-order vector,
tensor, and quaternion data

Store model hierarchy/part in the Exodus
data model

Permit storing of transient data on the
parts and assemblies

Exodus Support for changing topologies
Parallel 1/0 support (netcdf4, PnetCDF)

C++ and Python support
Sandia
National
Laboratories

