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This paper presents an approach for representing functions of discrete variables, and their products, using

logarithmic numbers of binary variables. Given a univariate function whose domain consists of n distinct

values, it begins by employing a base-2 expansion to express the function in terms of the ceiling of log2n binary

and n continuous variables, using linear restrictions to equate the functional values with the possible binary

realizations. The representation of the product of such a function with a nonnegative variable is handled via

an appropriate scaling of the linear restrictions. Products of m functions are treated in an inductive manner

from i = 2 to m, where each step i uses such a scaling to express the product of function i and a nonnegative

variable denoting a translated version of the product of functions 1 through i−1 as a newly-defined variable.

The resulting representations, both in terms of one function and many, are important for reformulating

general discrete variables as binary, and also for linearizing mixed-integer generalized geometric and discrete

nonlinear programs, where it is desired to economize on the number of binary variables. The approach

provides insight into, improves upon, and subsumes related linearization methods for products of functions

of discrete variables.
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1. Introduction

Consider a discrete variable x that can realize values in the finite set S = {θ1, θ2, . . . , θn}. It is well

known that x can be expressed in terms of n binary variables λT = (λ1, λ2, . . . , λn) as

x=
n∑

j=1

θjλj, λ∈Λ, (1)

where
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Λ≡

{
λ∈Rn :

n∑
j=1

λj = 1, λj binary for j = 1, . . . , n

}
. (2)

Moreover, given that x is an integer with θj = θj−1 + 1 for j = 2, . . . , n, then x can be alternately

defined as in Watters (1967) by

x= θ1 +

dlog2ne∑
k=1

2k−1uk, x≤ θn, uk binary for k= 1, . . . , dlog2ne. (3)

Of course, if dlog2ne = log2n, then the inequality x ≤ θn of (3) is not needed. (Throughout this

paper, we find it convenient to denote sums from 1 to n using the index j and sums from 1 to

dlog2ne using the index k.)

An obvious difference between (1) and (3) is that the former requires n binary variables whereas

the latter uses only dlog2ne . In this study, we represent functions of discrete variables in terms of

logarithmic numbers of binary variables, and use these representations to linearize products of such

functions. A recent work of Li and Lu (2009) has contributed two such linearizations by defining

auxiliary continuous variables and linear constraints. The methods vary in their construction. This

raises the following two-part question. Given a discrete variable x that can realize values in some

arbitrary set S having |S|= n, how can x be most economically represented, and how can such a

representation be used to linearize products of discrete functions?

We use a simple observation relative to the unit hypercube to address this question so as to

efficiently represent x and any associated function f(x), and ultimately to represent products of

such functions. As a consequence, we are able to improve upon the contributions of Li and Lu

(2009) relative to the linearization of monomial terms of discrete variables, as well as to mixed-

integer generalized geometric programs. This paper is in the spirit of work in Vielma and Nemhauser

(2011), which presents an interesting study on the use of logarithmic numbers of binary variables

to model disjunctive constraints, focusing on SOS1 and SOS2 type restrictions.

Applications for functions of discrete variables naturally arise in a broad range of fields, including

environmentally benign solvent design (Sinha et al. 1999), molecular design of freon alterna-

tives (Sahinidis and Tawarmalani 2000), pooling problems for chemical and wastewater treatment
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(Meyer and Floudas 2006), optimization of heat exchange networks (Bergamini et al. 2007),

nonconvex portfolio optimization (Kallrath 2003), and digital circuit optimization (Boyd et al.

2005), to name a few. The paper by Floudas and Gounaris (2009) gives an excellent overview of

recent advances and applications for a variety of problems involving functions of discrete variables.

Applications also arise involving products of discrete variables, or functions thereof. For example,

Harjunkoski et al. (1999) study trim loss minimization in the paper-converting industry when

slicing large paper spools into smaller output pieces to meet customer specifications. Here, non-

negative integer variables are used to represent the number of times a particular cutting pattern is

selected, as well as the number of each type output that is produced by a specific cutting pattern.

Products of these variables represent the total numbers of outputs, and ensure customer demands

are met.

2. Base-2 Representations of Discrete Variables and Functions

In this section, we represent a discrete variable x ∈ S = {θ1, θ2, . . . , θn} in terms of dlog2ne binary

variables, n nonnegative continuous variables, and dlog2ne + 1 linear equality restrictions. The

representation is then shown to extend to functions of this variable, as well as to the product

of any such function with a nonnegative variable. The study relies on the following elementary

observation, stated without proof due to its simplicity.

Observation

Given any positive integer p, a binary vector u ∈Rp can be represented as a convex combination

of a select subset of n≤ 2p distinct extreme points of the unit hypercube in Rp if and only if the

vector u is itself one of the selected extreme points, with a single convex multiplier equaling 1,

and the remaining n− 1 multipliers equaling 0.

For our purposes, a useful implementation of this observation is the following. Consider any

n distinct extreme points vj, j ∈ {1, . . . , n}, of the unit hypercube in Rdlog2ne. For simplicity, we
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henceforth define these extreme points so that vector vj ∈ Rdlog2ne is the base-2 expansion of the

number j− 1, where entry i corresponds to the value 2i−1. Let λ∈Rn serve as convex multipliers

of these points vj. Then the observation gives us, with p= dlog2ne, that λ ∈ Λ of (2) if and only

if there exists a vector u∈Rdlog2ne so that (u,λ)∈Λ′, where

Λ′ ≡

{
(u,λ)∈Rdlog2ne×Rn :

n∑
j=1

λj = 1,
n∑

j=1

vjλj =u, u binary, λ≥ 0

}
. (4)

Consequently, (4) provides a mechanism for replacing the restrictions λ ∈ Λ of (2) in n binary

variables with (u,λ) ∈ Λ′ in dlog2ne binary variables. This gives us that x described in (1) and

(2) can be expressed with dlog2ne binary variables u, n nonnegative continuous variables λ, and

dlog2ne+ 1 equality constraints from (4) in λ and u as

x=
n∑

j=1

θjλj, (u,λ)∈Λ′. (5)

The region Λ′ of (4) possesses an interesting property, and provides insight into related sets.

From a polyhedral perspective, Λ′ is locally ideal in that the polytope obtained by removing the

u binary restrictions has u (and λ) binary at all extreme points. This is readily seen since the

set defined by
∑n

j=1 λj = 1 and λ ≥ 0 has each extreme point having a single λj equaling 1 and

the rest equaling 0, and since the constraints
∑n

j=1 vjλj = u consequently serve only to fix u to

some binary vj. Λ′ also relates to a form found in Vielma and Nemhauser (2011), and used in

the context of piecewise linear models within Vielma et al. (2010b). This set, which Vielma et al.

(2010b) show to be locally ideal, is

Λ′′ ≡


(u,λ)∈Rdlog2ne×Rn :

n∑
j=1

λj = 1,
n∑

j=1

vjλj ≤u,
n∑

j=1

(1−vj)λj ≤ 1−u, u binary, λ≥ 0

 .

Subtracting
∑n

j=1 λj = 1 from each constraint in
∑n

j=1(1−vj)λj ≤ 1−u gives us that
∑n

j=1 vjλj ≥

u so that Λ′ of (4) and Λ′′ are equivalent, alternately establishing Λ′ as locally ideal. Notably, Λ′

can be viewed as an improvement over Λ′′ as it contains around half the number of constraints.

(The paper of Vielma and Nemhauser (2011) has the equality of Λ′′ relaxed to ≤, but a similar
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ideal argument holds for the inequality case. The equality version is considered in Vielma et al.

(2010b).)

It is instructive to note cases of S for which (5) can be reduced to the size of (3), and contain

no λ variables. Define the (dlog2ne+ 1)× n matrix V whose jth column is given by
[

1
vj

]
so that

the equations of Λ′ can be written as

V λ=
[
1
u

]
. (6)

Suppose that the vector θT = (θ1, θ2, . . . , θn) can be written as a linear combination of the rows of

V using multipliers αT ≡ (α0, α1, . . . , αdlog2ne) so that αTV = θT . Then (5) simplifies to

x= α0 +

dlog2ne∑
k=1

αkuk, u binary, (u,λ)∈Λ′. (7)

Since x in (7) is described entirely in terms of u, the variables λ simply ensure that the u vector

is a column vj corresponding to the binary expansion of some integer between 0 and n− 1. Then

(7) can be rewritten as

x= α0 +

dlog2ne∑
k=1

αkuk,

dlog2ne∑
k=1

2k−1uk ≤ n− 1, u binary. (8)

Using logic similar to that for (3), if dlog2ne= log2n, then the inequality of (8) is unnecessary. In

this case, the polytope obtained by relaxing u binary to 0≤ u≤ 1 can be readily shown to have

u binary at all extreme points, and thus to be locally ideal. But when dlog2ne> log2n, the locally

ideal property is not preserved in the simplification step from (7) to (8), as demonstrated in the

example below. However, regardless of the value of n, for those special instances where x is integer

with θj = θj−1 + 1 for j = 2, . . . , n, we have α0 = θ1 and αk = 2k−1 for k = 1, . . . , dlog2ne , reducing

(8) to (3).

EXAMPLE 1. Let x∈ S ≡ {2,3,5,7,8} so that n= 5, dlog2ne= 3, and θ= (2,3,5,7,8)T . Arranging

the vectors (1,vj)
T as the columns of V, we obtain that (5) can be written as

x= 2λ1 + 3λ2 + 5λ3 + 7λ4 + 8λ5, (u,λ)∈Λ′
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where

Λ′ =

(u,λ)∈R3×R5 : V λ=

 1 1 1 1 1
0 1 0 1 0
0 0 1 1 0
0 0 0 0 1



λ1

λ2

λ3

λ4

λ5

=

 1
u1

u2

u3

 , u binary, λ≥ 0

 .

There exists no α with αTV = θT and hence the λ variables cannot be removed. If, however,

S = {2,3,5,6,8}, then αTV = θT for αT = (2,1,3,6) and we can obtain (8) with

x= 2 +u1 + 3u2 + 6u3, u1 + 2u2 + 4u3 ≤ 4, u binary.

For this latter case, since dlog25e > log25, the inequality is needed and the representation is not

locally ideal, with (x,u1, u2, u3) = ( 15
2
,1,1, 1

4
) an extreme point to the relaxation that does not have

u binary.

Now, observe that (5) can be extended to express any function f(x) of the discrete variable x, as

well as the product of x and/or any such f(x) with a nonnegative variable κ, in terms of the same

dlog2ne binary variables u. Relative to the function f(x), define a variable, say y, and include the

linear equation

y=
n∑

j=1

f(θj)λj (9)

in (5). This equation forces y to equal f(x) for binary u. The products xκ and f(x)κ for nonnegative

κ rely on a modification of (4). Suppose that each restriction in Λ′ (exclusive of u binary) is

multiplied by the nonnegative κ to obtain the system Γ(κ) below, where we use variables γ to

denote the scaled λ.

Γ(κ)≡

{
(u,γ)∈Rdlog2ne×Rn :

n∑
j=1

γj = κ,
n∑

j=1

vjγj =uκ, u binary, γ ≥ 0

}
(10)

Then, since (10) is a scaling of the equations in (4), we have for any nonnegative realization of κ

that the expressions
∑n

j=1 θjγj and
∑n

j=1 f(θj)γj, which are scaled versions of that found in (5)

and (9) respectively, will equal the products xκ and yκ.

A drawback of (10) is that dlog2ne of the equations contain quadratic terms, as found in the

vector uκ. These terms can be linearized via a procedure of Glover (1975) that replaces uκ with a
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vector of continuous variables w, and enforces w=uκ using the 4 dlog2ne inequalities below. Here

κ− and κ+ are lower and upper bounds on the permissible values of κ, and 1 represents a vector

of ones in Rdlog2ne.

κ−u≤w≤ κ+u and κ1−κ+(1−u)≤w≤ κ1− (1−u)κ− (11)

For each k ∈ {1, . . . , dlog2ne}, if uk = 0, the left-hand inequalities enforce wk = 0 and the right-

hand inequalities are redundant, while if uk = 1, the right-hand inequalities enforce wk = κ and the

left-hand inequalities are redundant.

We denote the linearized version of Γ(κ) where w is substituted in (10) for uκ using (11) by

Γ′(κ), as given below.

Γ′(κ)≡


(u,γ,w)∈Rdlog2ne×Rn×Rdlog2ne :∑n

j=1 γj = κ,
∑n

j=1 vjγj =w, u binary, γ ≥ 0,

κ−u≤w≤ κ+u and κ1−κ+(1−u)≤w≤ κ1− (1−u)κ−

 (12)

Concise representations of the form given by (7) that do not require any variables λ can also be

obtained for special cases of f(x), and concise representations that do not require any variables

γ can be similarly obtained for special cases of the functions xκ and f(x)κ. Observe that xκ

can be expressed in such a concise form if and only if x can be so represented; that is, if and

only if θT can be expressed as a linear combination of the rows of V. In an analogous manner,

f(x) and f(x)κ can be expressed without variables λ and γ respectively if and only if the vector

fT = (f(θ1), f(θ2), . . . , f(θn)) can be expressed as a linear combination of the rows of V. Of course, if

it is desired to express either both x and f(x) without variables λ and/or both xκ and f(x)κ without

variables γ, then both vectors θT and fT must be able to be expressed as linear combinations of

the rows of V.

In the next section, we consider products of discrete functions indexed by the letter `. It may

simplify the reading to note that the parameters n and vj, the function f(x), the variables x, y,

κ, λj, γj, and w, the binary values u, and the sets S, Λ′, and Γ′(κ) all play the same role in that

section as they do here, with an additional subscript used to indicate the associated function f`(x`)

under consideration. Where appropriate, this same notation is also used in Section 4.
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3. Base-2 Representations of Products of Discrete Functions

The strategy of (4) and (10) to transform the n binary λ and the n binary γ to nonnegative

continuous variables through the defining of dlog2ne new binary u, combined with the linearization

of the expressions uκ of (10) via (11) to obtain (12), can be used to construct concise mixed 0-1

linear representations of products of functions of discrete variables. This construction yields repre-

sentations that dominate the two methods of Li and Lu (2009) in terms of numbers of constraints,

while affording improved relaxation strength relative to the first approach and equivalent strength

relative to the second.

Consider m functions f`(x`), ` ∈ {1, . . . ,m}, where x` ∈ S` ≡ {θ`1, θ`2, . . . , θ`n`
} and where n`

denotes the number of realizations of x`. Here, we subscript the function f(x), the variable x, the

set S, and the multiplier κ of the previous sections with the index ` to denote the m different

functions. Also, we let θ`j denote the jth realization of the variable x`. We further construct sets

Λ′` and Γ′`(κ`) of the form (4) and (12) respectively, one corresponding to each function f`(x`), and

accordingly apply the subscript ` to the variables u, λ, γ, and w, as well as to the vectors vj, to

obtain the sets, for each `∈ {1, . . . ,m}, given as

Λ′` ≡

{
(u`,λ`)∈Rdlog2(n`)e×Rn` :

n∑̀
j=1

λ`j = 1,

n∑̀
j=1

v`jλ`j =u`, u` binary, λ` ≥ 0

}
,

and

Γ′`(κ`)≡


(u`,γ`,w`)∈Rdlog2(n`)e×Rn` ×Rdlog2(n`)e :

n∑̀
j=1

γ`j = κ`,

n∑̀
j=1

v`jγ`j =w`, u` binary, γ` ≥ 0,

κ−` u` ≤w` ≤ κ+
` u` and κ`1−κ+

` (1−u`)≤w` ≤ κ`1− (1−u`)κ
−
`

 (13)

where κ−` and κ+
` denote lower and upper bounds on the values of κ`.

By the logic of the previous sections, for each `∈ {1, . . . ,m}, the variable x` and function f`(x`)

can be expressed as in (5) and (9) by

x` =

n∑̀
j=1

θ`jλ`j and y` =

n∑̀
j=1

f`(θ`j)λ`j, (u`,λ`)∈Λ′`, (14)
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where y` = f`(x`), and the products x`κ` and f`(x`)κ` can be expressed by

x`κ` =

n∑̀
j=1

θ`jγ`j and f`(x`)κ` =

n∑̀
j=1

f`(θ`j)γ`j, (u`,γ`,w`)∈ Γ′`(κ`). (15)

If desired, the products x`κ` and f`(x`)κ` can each be replaced in (15) by continuous variables.

We now focus on a representation of the product
∏m

j=1 fj(xj) using the sets Λ′` and Γ′`(κ`) from

above. To begin, for each ` ∈ {2, . . . ,m}, we represent the product f1(x1)f2(x2) by a continu-

ous variable y12, the product f1(x1)f2(x2)f3(x3) by a variable y123, and so on up to the product

f1(x1)f2(x2) · · ·fm(xm) by a variable y12···m. For ease of notation, for each ` ∈ {1, . . . ,m}, let J` =

1 · · · ` denote consecutive subscript indices so that
∏`

j=1 fj(xj) is represented by the variable yJ`

(with y1 = yJ1). As additional notation, for each ` ∈ {1, . . . ,m− 1}, denote computed lower and

upper bounds on the product
∏`

j=1 fj(xj) by f−J` and f+
J`

respectively. Continue by constructing Λ′`

and expressing the variables x` and y` as in (14) for each ` ∈ {1, . . . ,m}. Then compute Γ′`(κ`) of

(13) for each `∈ {2, . . . ,m} with the nonnegative scalar κ` given by κ` =
∏`−1

j=1 fj(xj)− f−J`−1
. Such

κ` have lower and upper bounds of κ−` = 0 and κ+
` = f+

J`−1
−f−J`−1

respectively. The resulting system

follows where, for each `∈ {2, . . . ,m}, we have included explicit restrictions that κ` = yJ`−1
−f−J`−1

,

with yJ`−1
substituted for the linearized version of

∏`−1
j=1 fj(xj).

x` =

n∑̀
j=1

θ`jλ`j, y` =

n∑̀
j=1

f`(θ`j)λ`j, (u`,λ`)∈Λ′` ∀ `= 1, . . . ,m (16)

κ` = yJ`−1
− f−J`−1

∀ `= 2, . . . ,m (17)

yJ` =

n∑̀
j=1

f`(θ`j)γ`j + y`f
−
J`−1

, (u`,γ`,w`)∈ Γ′`(κ`) ∀ `= 2, . . . ,m (18)

Note that the u` binary restrictions for ` ∈ {2, . . . ,m} are found in both (16) and (18) but need

only be stated once. The desired result that yJi =
∏i

j=1 fj(xj) for i = 1, . . . ,m can be envisioned

as inductively obtained. The base case having i = 1 is established by (16) with ` = 1 to yield

y1 = yJ1 = f1(x1). For each i∈ {2, . . . ,m}, the argument assumes that yJi−1
=
∏i−1

j=1 fj(xj), and then

uses restrictions (16)–(18) with `= i to enforce that yJi = fi(xi)yJi−1
. The products x`κ` of (15)

do not appear in (16)–(18) as they are not needed in the representation of
∏m

j=1 fj(xj).
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Upon substituting κ` = yJ`−1
−f−J`−1

for each `∈ {2, . . . ,m} from (17) into (18) and then removing

(17), the counts on the types and numbers of variables in (16) and (18) are summarized in Table 1.

Summing relevant entries, Table 1 gives that (16) and (18) have a total of 3m−1+n1 +2
∑m

`=2 n` +∑m

`=2 dlog2(n`)e continuous variables and
∑m

`=1 dlog2(n`)e binary variables.

Table 1 Variable types and counts in (16) and (18).

Variable name Variable type Number of such variables
x` continuous m
y` continuous m

yJ`
, ` 6= 1 continuous m− 1
λ` continuous n` for each `∈ {1, . . . ,m}
γ` continuous n` for each `∈ {2, . . . ,m}
w` continuous dlog2(n`)e for each `∈ {2, . . . ,m}
u` binary dlog2(n`)e for each `∈ {1, . . . ,m}

Relative to the number of constraints in (16) and (18), a count is as follows. Each set Λ′` of

(16) has dlog2(n`)e+ 1 restrictions, while each set Γ′`(κ`) of (18) with κ` as defined in (17) has

5 dlog2(n`)e+ 1 restrictions. Including the additional 2m equalities defining x` and y` of (16) and

the m − 1 equalities defining yJ` for ` 6= 1 of (18), the total number of constraints is 5m − 2 +

dlog2(n1)e+ 6
∑m

`=2 dlog2(n`)e .

The numbers of variables and constraints can be reduced, depending on the structure of the

problem and the desired form of the resulting linearization. Four reduction strategies are listed

below.

1. Since κ−` = 0 for each `∈ {2, . . . ,m}, the inequalities κ−` u` ≤w` of (13) become nonnegativity

on w`, reducing the number of constraints by
∑m

`=2 dlog2(n`)e . If some κ` is defined which allows for

a strengthening of κ−` from 0 to a positive value, then a transformation of variables w′` =w`−κ−` u`

as in Adams and Forrester (2005) and Glover (1984) can be used.

2. If desired, the variables x`, y`, and yJ` can all be substituted from the linearization (as well

as any encompassing optimization problem) by using the definition of variables in terms of λ`j and

γ`j found in (16) and (18). This substitution reduces the number of variables and constraints by

3m− 1 each.
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3. Each of the sets Λ′` and Γ′`(κ`) can be reduced in size by dlog2(n`)e + 1 variables via a

transformation that changes the equality restrictions to inequality. To see this, consider Λ′1. As

the defining linear system of equations is of full rank (choose the columns corresponding to λ11

and λ1(2p−1+1) for each p ∈ {1, . . . , dlog2(n1)e}), a basis for Rdlog2(n1)e+1 can be obtained in terms

of a subset of the columns of the defining system. Then the dlog2(n1)e+ 1 basic variables can be

expressed in terms of the nonbasic variables and subsequently eliminated from the formulation.

Performing such a reduction on each Λ′` and Γ′`(κ`) reduces the formulation by 2m−1+dlog2(n1)e+

2
∑m

`=2 dlog2(n`)e continuous variables.

4. The order in which the functions are numbered and subsequently linearized affects the variable

and constraint counts. The set Γ′1(κ1) of (13) does not appear in (18), nor do the associated

variables γ1 and w1. Therefore, selecting f1(x1) so that n1 = max{n` : ` = 1, . . . ,m} can yield a

smaller formulation.

The lower and upper bounds f−J` and f+
J`

on the products
∏`

j=1 fj(xj) for `∈ {1, . . . ,m− 1} used

in the construction of (16)–(18) can be computed in different ways. For each `∈ {1, . . . ,m}, lower

and upper bounds f−` and f+
` on the function f`(x`) are readily obtained as f−` = min{f`(θ`j) :

j = 1, . . . , n`} and f+
` = max{f`(θ`j) : j = 1, . . . , n`}. Next consider the values f−J` and f+

J`
for

` ∈ {2, . . . ,m − 1}. If f−j ≥ 0 for all j ∈ {1, . . . , `}, then we can use f−J` =
∏`

j=1 f
−
j and f+

J`
=∏`

j=1 f
+
j . If, however, f−j < 0 for some such j, then various options exist, including using f+

J`
=∏`

j=1 max{|f−j |, |f+
j |} and f−J` =−f+

J`
.

Three additional remarks relative to (16)–(18) are warranted. First, products of discrete variables

(as opposed to products of functions of discrete variables) can be readily handled by having f`(x`)

serve as identity functions so that f`(θ`j) = θ`j for all ` ∈ {1, . . . ,m} and j ∈ {1, . . . , n`}. Then the

first equation in (16) defining x` can be removed for each ` ∈ {1, . . . ,m}, as x` = y`. Second, the

linearization process that produces (16)–(18) does not depend on x1 being discrete. This allows us

to accommodate the expression
∏m

j=1 fj(xj) when the function f1(x1) is continuous. In this case,

restrictions (16) with `= 1 are not used. Third, the approach of (16)–(18) does not make use of
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the product f1(x1)κ1, so the value κ1 and set Γ′1(κ1) of (13) is not found in (18). Similarly, the

lower and upper bounds f−Jm and f+
Jm

on
∏m

j=1 fj(xj) are not needed.

We conclude this section with an example demonstrating the use of (16) and (18) in linearizing

the monomial x3
1x

1.5
2 .

EXAMPLE 2. Consider the m = 2 functions f1(x1) = x3
1 and f2(x2) = x1.5

2 , where x1 ∈ S1 ≡

{−1,2,5,7} and x2 ∈ S2 ≡ {2,4,8}, so that n1 = 4 and n2 = 3. The restrictions (16) and (18) have the

continuous variables y1, y2, and y12 replacing f1(x1), f2(x2), and the product f1(x1)f2(x2) = x3
1x

1.5
2

respectively. Using matrices to simplify notation where possible, (16) is given by

x1 =−1λ11 + 2λ12 + 5λ13 + 7λ14, y1 = (−1)3λ11 + 23λ12 + 53λ13 + 73λ14, (u1,λ1)∈Λ′1,

where

Λ′1 =

(u1,λ1)∈R2×R4 :

[
1 1 1 1
0 1 0 1
0 0 1 1

] λ11

λ12

λ13

λ14

=

[
1
u11

u12

]
,u1 binary,λ1 ≥ 0

 ,

and

x2 = 2λ21 + 4λ22 + 8λ23, y2 = 21.5λ21 + 41.5λ22 + 81.5λ23, (u2,λ2)∈Λ′2,

where

Λ′2 =

{
(u2,λ2)∈R2×R3 :

[
1 1 1
0 1 0
0 0 1

][
λ21

λ22

λ23

]
=

[
1
u21

u22

]
,u2 binary,λ2 ≥ 0

}
.

Since f−J1 = f−1 = (−1)3, we have κ2 = x3
1− (−1)3 = y1 + 1, with κ−2 = 0 and

κ+
2 = f+

1 − f−1 = 73− (−1)3 = 344. Then (18) becomes

y12 = 21.5γ21 + 41.5γ22 + 81.5γ23− y2, (u2,γ2,w2)∈ Γ′2(y1 + 1),

where Γ′(y1 + 1) of (13) is expressed in matrix form as

Γ′2(y1 + 1) =



(u2,γ2,w2)∈R2×R3×R2,γ2 ≥ 0 :[
1 1 1
0 1 0
0 0 1

][
γ21
γ22
γ23

]
=

[
y1 +1
w21

w22

]
,[

0
0

]
≤
[
w21

w22

]
≤ 344

[
u21

u22

]
,[

y1 +1
y1 +1

]
− 344

[
1−u21

1−u22

]
≤
[
w21

w22

]
≤
[
y1 +1
y1 +1

]


,

with u2 binary not explicitly listed as it is found in Λ′2 above. Note that while the sets Λ′1 and Λ′2

were earlier explained to be locally ideal, the presence of Γ′2(y1 + 1) forfeits this property. Upon
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removing the binary restrictions on u1 and u2, a nonintegral extreme point is given by u1 =
(
1
3
,0
)
,

u2 = (0,1), λ1 =
(
2
3
, 1
3
,0,0

)
, λ2 = (0,0,1), w2 = (0,3), and γ2 = (0,0,3), with (x1, x2, y1, y2, y12) =

(0,8,2,16
√

2,32
√

2). Now, suppose that we change the problem so that the variable x1 is redefined

to be continuous in the interval [−1,7], and it is desired to have y12 represent the product of the

continuous function x3
1 having −1≤ x1 ≤ 7 with the discrete-valued function x1.5

2 having x2 ∈ S2,

so that again y12 = x3
1x

1.5
2 . Explicitly define y1 to be x3

1 via y1 = x3
1, and treat y1 as a continuous

function with y1 ∈ [−1,343]. In this case, none of the restrictions associated with (16) having `= 1

are needed (including Λ′1) and the values f−1 =−1, f+
1 = 343, κ−2 = 0, and κ+

2 = 344 are unchanged

so that the set Γ′2(κ2) = Γ′2(y1 + 1) remains the same.

4. Comparisons with Other Methods

The size and relaxation strength of the system (16)–(18) compares favorably with alternate

approaches. While there is considerable literature dealing with the linearization of nonlinear 0-1

programs and the representation of discrete variables in terms of binary variables, little attention

has been given to modeling functions of discrete variables, and their products, in terms of loga-

rithmic numbers of binary variables. We focus attention here on the two methods from Li and Lu

Li and Lu (2009), one per each of the first two subsections below. These methods were reportedly

designed for solving mixed-discrete generalized geometric programs.

4.1. Li & Lu Approach 1

Given a discrete variable x that can realize values in the set S = {θ1, θ2, . . . , θn} and a function f(x)

defined in terms of x, the first approach of Li and Lu (2009) linearizes f(x) using dlog2ne binary

variables and 2n+ 1 linear inequalities, plus a single continuous variable y to represent f(x). We

temporarily adopt the notation of Section 2 that suppresses the subscript ` on the variable x, the

function f(x), the set S, the parameter n, the values θj for j ∈ {1, . . . , n}, and the vectors u, λ,

and vj since a single function of a discrete variable is initially considered.

This approach of Li and Lu (2009) can be explained in terms of ours as follows. It uses the

same binary variables u ∈ Rdlog2ne as (4) with (9), but in an altogether different manner. While
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not defining vectors vj or variables λ, it can be envisioned as also enforcing that y = f(θj) when

u = vj. (For now, we focus attention on the function f(x) and later explain how the discrete

variable x can be similarly handled. This method is unique in that it requires separate families

of restrictions to handle each of x and f(x).) For every j ∈ {1, . . . , n}, it defines a linear function

Aj(u) of the binary variables u so that Aj(u) = 0 if u = vj and Aj(u) ≥ 1 if u 6= vj. For each

such j, this is accomplished by adding to the sum
∑dlog2ne

k=1 uk, the expression 1 − 2ui for all i

having the ith component of vj as 1. These functions can be computed using matrix multiplication

as follows. Define the (dlog2ne+ 1)× (dlog2ne+ 1) invertible, symmetric matrix B whose (i, j)th

element, denoted Bij for all i, j ∈ {1, . . . , dlog2ne+ 1}, is given by

Bij =


1 if (i= 1 and j 6= 1) or (i 6= 1 and j = 1)

−2 if i= j 6= 1

0 otherwise

(19)

so that [
1
u

]T
B
[

1
vj

]
=Aj(u) =

[
1
vj

]T
B
[
1
u

]
∀ j ∈ {1, . . . , n}. (20)

The left equation becomes clear upon observing that the row vector
[
1
u

]T
B ∈ Rdlog2ne+1 has its

first entry as
∑dlog2ne

k=1 uk, and its ith entry as 1 − 2ui−1 for each i ∈ {2, . . . , dlog2ne + 1}. The

equality of the right expression with the left follows from
[
1
u

]T
B
[

1
vj

]
being a 1×1 matrix, with B

symmetric. Letting M = f+−f− with f− ≡min{f(θ1), . . . , f(θn)} and f+ ≡max{f(θ1), . . . , f(θn)},

this formulation of Li and Lu (2009) is as follows.

P ≡



(u, y)∈Rdlog2ne×R :
f(θj)−MAj(u)≤ y≤ f(θj) +MAj(u) ∀ j ∈ {1, . . . , n},
dlog2ne∑
k=1

2k−1uk ≤ n− 1,

u binary


The restrictions of P operate so that, given any binary u satisfying

∑dlog2ne
k=1 2k−1uk ≤ n − 1,

the single Aj(u) equaling 0, say Ap(u), will have the two inequalities f(θp)−MAp(u) ≤ f(x) ≤

f(θp) +MAp(u) enforcing y= f(θp), and the remaining 2(n− 1) inequalities with Aj(u)≥ 1 being

redundant.
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Observe that P contains no variables λ; it has a single continuous y and dlog2ne binary u.

However, it requires 2n + 1 inequalities. In contrast, Λ′ of (4) has n continuous λ and dlog2ne

binary u, but only dlog2ne+ 1 constraints. Recall, though, that reduction strategy 3 of Section 3

allows us to reduce the number of variables λ in Λ′ by dlog2ne+ 1. Thus, in summary, Λ′ and P

require the same number of binary variables, but the former uses 2n−dlog2ne fewer constraints at

the expense of n−dlog2ne− 2 more continuous variables.

An important consideration when expressing any function of a discrete variable in terms of

binary variables in a mixed 0-1 linear form is the strength of the continuous relaxation. Let Λ̄′ and

P̄ denote, respectively, the continuous relaxations of Λ′ and P obtained by relaxing the u binary

restrictions to 0 ≤ u ≤ 1. (Note that these 2dlog2ne inequalities are not needed in the set Λ̄′, as

they are implied by the other restrictions.) The theorem below shows that the set Λ̄′ with (9)

provides at least as tight a polyhedral representation, in terms of permissible values of y, as does

P̄ .

Theorem 1. Given any (û, λ̂)∈ Λ̄′ of (4), we have (û, ŷ)∈ P̄ , where ŷ=
∑n

j=1 f(θj)λ̂j.

Proof of Theorem 1. Let (û, λ̂)∈ Λ̄′ with ŷ=
∑n

j=1 f(θj)λ̂j. Since for each j ∈ {1, . . . , n}, u= vj

satisfies
∑dlog2ne

k=1 2k−1uk ≤ n−1, and since Λ̄′ expresses û as a convex combination λ̂ of the vectors

vj, it follows that
∑dlog2ne

k=1 2k−1ûk ≤ n− 1. Thus, the proof reduces to showing that

f(θj)−MAj(û)≤ ŷ≤ f(θj) +MAj(û) ∀ j ∈ {1, . . . , n}. (21)

Toward this end, arbitrarily select any p ∈ {1, . . . , n} and consider (21) for j = p. Surrogate the

equations of Λ̄′, represented in matrix form as in (6), using the multipliers
[

1
vp

]T
B, and set

(u,λ) = (û, λ̂), to obtain

n∑
j=1
j 6=p

λ̂j ≤
n∑

j=1

Aj(vp)λ̂j =
[

1
vp

]T
BV λ̂=

[
1
vp

]T
B
[
1
û

]
=Ap(û). (22)

The inequality follows from the nonnegativity of λ̂ and because the function Aj(vp) is defined to

have Ap(vp) = 0 and Aj(vp) ≥ 1 for j 6= p. The first equality is due to the left equation of (20)
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with u = vp, applied once for each j ∈ {1, . . . , n}. The middle equality is the surrogation of the

restrictions in Λ̄′, and the last equality follows from the right equation of (20) with j = p. Now, add

the nonnegative multiple (f+−f(θp)) of the inequality
∑n

j=1,j 6=p λ̂j ≤Ap(û) of (22) to the multiple

f(θp) of the equation
∑n

j=1 λ̂j = 1 from (4) to obtain

n∑
j=1

f(θj)λ̂j +
n∑

j=1
j 6=p

(f+− f(θj))λ̂j ≤ f(θp) + (f+− f(θp))Ap(û)

which, by the nonnegativity of (f+ − f(θj))λ̂j for all j 6= p and the defining of ŷ =
∑n

j=1 f(θj)λ̂j,

establishes the right-hand inequality of (21) for j = p because f+−f(θp)≤ f+−f− =M. Similarly,

add the nonpositive multiple (f− − f(θp)) of the inequality
∑n

j=1,j 6=p λ̂j ≤ Ap(û) of (22) to the

multiple f(θp) of the equation
∑n

j=1 λ̂j = 1 from (4) to obtain

n∑
j=1

f(θj)λ̂j +
n∑

j=1
j 6=p

(f−− f(θj))λ̂j ≥ f(θp) + (f−− f(θp))Ap(û)

which, by the nonpositivity of (f− − f(θj))λ̂j for all j 6= p and the defining of ŷ =
∑n

j=1 f(θj)λ̂j,

establishes the left inequality of (21) for j = p since f−− f(θp)≥ f−− f+ =−M. This completes

the proof. �

Note that the proof of Theorem 1 suggests a strengthening of the bound M used within P and

P̄ . For each j ∈ {1, . . . , n}, we can use M j = f(θj)− f− and M j = f+− f(θj) to redefine the set P

as

P ≡



(u, y)∈Rdlog2ne×R :
f(θj)−M jAj(u)≤ y≤ f(θj) +M jAj(u) ∀ j ∈ {1, . . . , n},
dlog2ne∑
k=1

2k−1uk ≤ n− 1,

u binary


. (23)

The set P remains unchanged with this adjustment but P̄ is potentially tightened.

The representation of a discrete variable x, as opposed to a function f(x), proceeds in an identical

manner to the above. This is readily seen by defining f(x) so that f(x) = x. The set P of (23) will

then replace each f(θj) with θj, and each occurrence of y with x. If it is desired to represent both

f(x) and x, then 4n+ 1 associated inequalities are needed in the dlog2ne binary variables u, as the

equation
∑dlog2ne

k=1 uk ≤ n− 1 need not be repeated.
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It is important to note that the converse of Theorem 1 is not true, even when the set P̄ uses the

improved values M j and M j as in (23). That is to say, there can exist a point (û, ŷ)∈ P̄ for which

there exists no λ̂ having (û, λ̂)∈ Λ̄′ and ŷ=
∑n

j=1 f(θj)λ̂j. An example illustrating Theorem 1 and

the failure of its converse is below. For simplicity of presentation, we have y = f(x) = x so that

only one family of restrictions is required.

EXAMPLE 3. Consider f(x) = x with x ∈ S ≡ {1,3,5} so that n = 3, dlog2ne = 2, f− = 1, and

f+ = 5. Then (9) with the relaxed set Λ̄′ is given by

y= λ1 + 3λ2 + 5λ3, (u,λ)∈ Λ̄′,

where

Λ̄′ =

{
(u,λ)∈R2×R3 : V λ=

[
1 1 1
0 1 0
0 0 1

][
λ1

λ2

λ3

]
=

[
1
u1

u2

]
,λ≥ 0

}
.

The set P̄ , adjusted for the strengthened M j and M j as in (23), is

P̄ =



(u, y)∈R2×R :
1 ≤ y≤ 1 + 4(u1 +u2)

3− 2(1−u1 +u2) ≤ y≤ 3 + 2(1−u1 +u2)
5− 4(1 +u1 −u2) ≤ y≤ 5

u1 + 2u2 ≤ 2
0 ≤ u1 ≤ 1
0 ≤ u2 ≤ 1


.

For ûT = (û1, û2) = (1, 1
2
), every ŷ satisfying ŷ ∈ [2,4] will have (û, ŷ)∈ P̄ . However, there exists no

λ with (û,λ)∈ Λ̄′ since the restrictions of Λ̄′ enforce that the nonnegative λ must have λ2 = û1 = 1,

λ3 = û2 = 1
2
, and λ1 +λ2 +λ3 = 1.

The paper of Li and Lu (2009) extends this approach to products of univariate functions. Again

consider them functions f`(x`), `∈ {1, . . . ,m}, where x` ∈ S` ≡ {θ`1, θ`2, . . . , θ`n`
} and n` denotes the

number of realizations of x`. Then the linearization of
∏m

`=1 f`(x`) using our strengthened bounds of

(23) is accomplished in two steps. First, for each `∈ {1, . . . ,m}, form the set P` in the same manner

as (23) to represent f`(x`) as the variable y` using the binary variables u` ∈Rdlog2(n`)e. Here, for

each such ` and for every j ∈ {1, . . . , n`}, the linear functions A`j(u`) are defined in the same manner

as Aj(u), and the bounds M `j and M `j replace M j and M j respectively so that M `j = f`(θ`j)−f−`
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and M `j = f+
` −f`(θ`j), with f−` ≡min{f`(θ`1), . . . , f`(θ`n`

)} and f+
` ≡max{f`(θ`1), . . . , f`(θ`n`

)}. In

addition, each P` has the restriction
∑dlog2ne

k=1 2k−1u`k ≤ n`− 1.

The second step is based on the following observation: for any given `, by multiplying the

functional values f`(θ`j) found within P` by a variable, say ζ, the 2n` inequalities involving f`(θ`j)

will enforce y` = ζf`(x`) provided that for each j ∈ {1, . . . , n`}, the values M `j and M `j are adjusted

so that the associated inequalities are redundant when A`j(u`)≥ 1; it is sufficient to have ζf`(θ`j)−

ζf`(x`)≤M `j and ζf`(x`)− ζf`(θ`j)≤M `j for all possible realizations of ζ and f`(x`). Now, using

this observation and the notation from Section 3 that J` = 1 · · · `, we can inductively have yJ` =∏`

j=1 fj(xj) for `≥ 2, beginning with y12 = f1(x1)f2(x2) = y1f2(x2) and sequentially progressing to

yJm = f1(x1)f2(x2) · · ·fm(xm) = yJm−1
fm(xm). The variable y12 is computed by forming a new set

P12 using ζ = y1 within P2 to obtain y12 = y1y2. Then the variable y123 is computed by forming P123

using ζ = y12 within P3 to obtain y123 = y1y2y3. Continuing up to Jm, the variable yJm is computed

by forming PJm using ζ = yJm−1
within Pm to obtain yJm =

∏m

j=1 yj. Here, each set PJ` has the

same number (2n` + 1) of constraints and the same variables u` as P`, but includes yJ` and yJ`−1

instead of y`.

In the spirit of the above discussion, for each PJ` with `≥ 2, it is sufficient to have the adjusted

M `j and M `j, denoted MJ`j
and MJ`j respectively, satisfy ζf`(θ`j)− ζf`(x`)≤MJ`j

and ζf`(x`)−

ζf`(θ`j) ≤MJ`j for all possible realizations of ζ = yJ`−1
=
∏`−1

j=1 fj(xj) and f`(x`). These values

can be computed in various ways. One method is to have MJ`j
= MJ`j = f+

J`
− f−J` where, as in

Section 3, the terms f+
J`

and f−J` are upper and lower bounds on the product
∏`

j=1 fj(xj). Different

possibilities for these bounds exist. Again as in Section 3, if f−j ≥ 0 for all j ∈ {1, . . . , `}, then we

can use f−J` =
∏`

j=1 f
−
j and f+

J`
=
∏`

j=1 f
+
j . If f−j < 0 for some j, then we can instead use f+

J`
=∏`

j=1 max{|f−j |, |f+
j |} and f−J` = −f+

J`
. Strengthened values for MJ`j

and MJ`j can be computed

based on problem structure and expended effort.

The size of the formulation is as follows. A count on each variable type is given in Table 2.

Including the m original variables x`, there are 3m − 1 continuous and
∑m

`=1 dlog2(n`)e binary

variables. Relative to constraints, each set P` for ` ∈ {1, . . . ,m} has 2n` + 1 restrictions and each
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set PJ` for `∈ {2, . . . ,m} has 2n` additional restrictions. Also, 2n` more inequalities are needed to

handle the variables x`. The total number of constraints is then m+ 4n1 + 6
∑m

`=2 n`.

Table 2 Variable types and counts in Approach 1 of Li and Lu (2009).

Variable name Variable type Number of such variables
x` continuous m
y` continuous m

yJ`
, ` 6= 1 continuous m− 1
u` binary dlog2(n`)e for each `∈ {1, . . . ,m}

4.2. Li & Lu Approach 2

The second approach of Li and Lu (2009) also represents functions of discrete variables, and their

products, using logarithmic numbers of binary variables. For simplicity in presentation, we again

begin by examining a single discrete variable x∈ S ≡ {θ1, θ2, . . . , θn} and function f(x) so that we

can temporarily drop the subscript `.

While completely different in form and structure, this approach can be viewed as a blending

of the first method of Li and Lu (2009) that makes use of the linear functions Aj(u) of (20) for

binary u ∈ Rdlog2ne with our method that employs a vector of nonnegative, continuous variables

λ∈Rn summing to unity. It operates by creating a nonlinear equation in λ and u to enforce that

λ is binary for u binary, and then sets x= θj and y = f(θj) for that single λj = 1. The nonlinear

equation is subsequently linearized using a result of Glover (1975). Notably, our study will show

that the resulting formulation allows for a substantial simplification that is achieved by identifying

inequalities that can be set to equality, removing extraneous variables, and deleting redundant

constraints. These simplifications render both the functions Aj(u) and the linearization of Glover

(1975) wholly unnecessary. In fact, the restrictions of the simplified form are directly obtainable

by multiplying the equations V λ=
[
1
u

]
of (6) found in Λ̄′ by the invertible matrix B of (19), thus

establishing an equivalence between the resulting sets.

To begin, recall from the first approach of Li and Lu (2009) in the previous section that the

linear functions Aj(u) of (20) were defined so that, for each j ∈ {1, . . . , n}, Aj(u) = 0 if u= vj and
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Aj(u)≥ 1 if u 6= vj. Also recall for each such j that the vector vj denotes the base-2 expansion

of j − 1, where entry i corresponds to the value 2i−1. In this manner, Aj(u) is defined for every

binary u satisfying
∑dlog2ne

k=1 2k−1uk ≤ n− 1. The second approach of Li and Lu (2009) defines a

vector of nonnegative, continuous variables λ∈Rn that is restricted to have
∑n

j=1 λj = 1, and uses

the nonlinear equation
∑n

j=1Aj(u)λj = 0 to ensure that the single j ∈ {1, . . . , n}, say p, having

Ap(u) = 0 must also have λp = 1. Then the equations

x=
n∑

j=1

θjλj and y=
n∑

j=1

f(θj)λj, (24)

which are identical to those found in (5) and (9), enforce x= θp and y= f(θp). The system is below.

Q≡


(u,λ)∈Rdlog2ne×Rn :∑n

j=1 λj = 1,∑n

j=1Aj(u)λj = 0,∑dlog2ne
k=1 2k−1uk ≤ n− 1,

u binary, λ≥ 0


The paper of Li and Lu (2009) linearizes the quadratic equation with the same method of Glover

(1975) that was used to rewrite the nonlinear restrictions of (10) as (11). The first step is to factor

the variables uk from λ. Expressing this factorization in terms of earlier notation, by (20) we obtain

n∑
j=1

Aj(u)λj =
[
1
u

]T
BV λ,

where the matrix B is as defined in (19). For each k ∈ {1, . . . , dlog2ne+ 1}, denoting the kth row of

the vector BV λ by gk−1(λ) so that  g0(λ)
...

gdlog2ne(λ)

=BV λ, (25)

the equation
∑n

j=1Aj(u)λj = 0 in Q becomes

g0(λ) +

dlog2ne∑
k=1

gk(λ)uk = 0.

For each k ∈ {1, . . . , dlog2ne}, the method of Glover (1975) substitutes a continuous variable δk for

the product gk(λ)uk, and uses four inequalities to enforce δk = gk(λ)uk at binary u. Using the fact

that each such gk(λ) is lower and upper bounded by −1 and 1 respectively (since the coefficient on
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every λj in each function is −1,0, or 1 and the sum of the λj equals 1), the formulation is as given

below. The paper of Li and Lu (2009) does not include the restriction
∑dlog2ne

k=1 2k−1uk ≤ n− 1 of

Q; it can be shown redundant in the presence of the remaining constraints.

Q′ ≡



(u,λ,δ)∈Rdlog2ne×Rn×Rdlog2ne :∑n

j=1 λj = 1

g0(λ) +
∑dlog2ne

k=1 δk = 0
gk(λ)− (1−uk)≤ δk ≤ gk(λ) + (1−uk) ∀ k= 1, . . . , dlog2ne
−uk ≤ δk ≤ uk ∀ k= 1, . . . , dlog2ne
u binary, λ≥ 0


(26a)
(26b)
(26c)
(26d)

While not noted in Li and Lu (2009), the structure of Q′ allows for a simplification that

significantly reduces the numbers of variables and constraints. Consider the theorem below.

Theorem 2. Every point (û, λ̂, δ̂) with λ̂≥ 0 and 0≤ û≤ 1 that satisfies (26a)–(26d) has −ûk =

δ̂k = gk(λ̂)− (1− ûk) for all k ∈ {1, . . . , dlog2ne}.

Proof of Theorem 2. It is readily verified that the matrix B defined in (19) has the first row of

B−1, say ρT ∈Rdlog2ne+1, with 2
dlog2ne

in the first entry and 1
dlog2ne

elsewhere. Consequently,

n∑
j=1

λj = ρTBV λ=
2

dlog2ne
g0(λ) +

1

dlog2ne

dlog2ne∑
k=1

gk(λ), (27)

where the first equality recognizes the first row of V λ from (6) as
∑n

j=1 λj, and the second equality

follows from (25). Now, sum 2
dlog2ne

times the equation in (26b) with 1
dlog2ne

times the sum of the

left inequalities in (26c) and (26d) and invoke (27) to obtain

n∑
j=1

λj ≤ 1. (28)

But (26a) enforces this restriction with equality for all (u,λ,δ) ∈Q′. Then the left inequalities of

both (26c) and (26d) must also hold with equality for all (u,λ,δ)∈Q′. This completes the proof.

�

The above theorem allows us to equivalently rewrite Q′ with the left inequalities of (26c) and

(26d) satisfied with equality so that δk = gk(λ)−(1−uk) and δk =−uk for each k ∈ {1, . . . , dlog2ne}.

This makes the right inequalities redundant due to 0≤ u≤ 1. Then we can substitute δk =−uk
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throughout the problem so that the variables δ and restrictions (26d) are no longer needed. The

resulting reduced version of Q′ is RQ′ below.

RQ′ ≡


(u,λ)∈Rdlog2ne×Rn :∑n

j=1 λj = 1

g0(λ) =
∑dlog2ne

k=1 uk

gk(λ) = 1− 2uk, ∀ k= 1, . . . , dlog2ne
u binary, λ≥ 0


Denoting the continuous relaxations of Q′ and RQ′ where the binary restrictions on u are

replaced with 0≤u≤ 1 by Q̄′ and R̄Q
′
respectively, it directly follows that a point (û, λ̂, δ̂)∈ Q̄′ if

and only if δ̂=−û and (û, λ̂)∈ R̄Q′. Thus, ¯RQ′ can be viewed as an economical representation of

Q̄′ that is obtained by setting a subset of the inequalities to equality, and by removing redundant

constraints and unnecessary variables.

The proof of Theorem 2 shows that RQ′ can be further reduced in size by removing any one

of the dlog2ne + 2 equality restrictions. This follows from (27), as each such restriction can be

expressed as a linear combination of the others, with no multipliers of value 0.

Interestingly, the set ¯RQ′ provides exactly the same polyhedral region as Λ̄′. This equivalence is

addressed in the theorem below.

Theorem 3. A point (û, λ̂)∈ ¯RQ′ if and only if (û, λ̂)∈ Λ̄′.

Proof of Theorem 3. Multiply the restrictions V λ =
[
1
u

]
of Λ̄′ by the invertible matrix B of

(19). Then (25) and the structure of B gives that the equation BV λ = B
[
1
u

]
yields the last

1 + dlog2ne equations found within ¯RQ′. As noted above, the restriction
∑n

j=1 λj = 1 is implied by

the remaining equations of ¯RQ′, completing the proof. �

EXAMPLE 4. As in Example 3, let f(x) = x with x ∈ S = {1,3,5}, so that again n = 3 with

dlog2ne= 2. The set Λ̄′ in three nonnegative continuous variables λ, two binary variables u, and

three equality constraints is given in Example 3 where V λ =

[
1 1 1
0 1 0
0 0 1

][
λ1

λ2

λ3

]
. By (25),

[
g0(λ)
g1(λ)
g2(λ)

]
=[

λ2 +λ3

λ1 −λ2 +λ3

λ1 +λ2 −λ3

]
=BV λ with B =

[
0 1 1
1 −2 0
1 0 −2

]
so that the representation of Li and Lu (2009) using Q̄′

is
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Q̄′ =



(u,λ,δ)∈R2×R3×R2,λ≥ 0 :
λ1 +λ2 +λ3 = 1

λ2 +λ3 + δ1 + δ2 = 0
λ1 −λ2 +λ3 − 1+u1 ≤ δ1 ≤ λ1 −λ2 +λ3 +1−u1

λ1 +λ2 −λ3 − 1+u2 ≤ δ2 ≤ λ1 +λ2 −λ3 +1−u2

−u1 ≤ δ1 ≤ u1

−u2 ≤ δ2 ≤ u2

0 ≤ u1 ≤ 1
0 ≤ u2 ≤ 1


.

Theorems 2 and 3 ensure that every point (u,λ,δ) ∈ Q̄′ must have δ = −u, and that a point

(u,λ)∈ Λ̄′ if and only if (u,λ,−u)∈ Q̄′. However, the form of Q̄′ is larger than Λ̄′. It uses the extra

variables δ1 and δ2 and, not counting the lower bounds of 0 on u1 and u2, requires two equality and

ten inequality constraints. To illustrate Theorem 2 that the four left inequalities restricting δ1 and

δ2 must hold with equality, sum the second constraint with 1
2

times each of these four inequalities

to obtain λ1 +λ2 +λ3 ≤ 1, as (28) was computed from (27). The first equation of Q̄′ then establishes

the result. The representation of f(x) (equivalently x for this example) is achieved using (24).

The paper of Li and Lu (2009) notes that this approach can be combined with their first

method to handle products of univariate functions. Given m functions f`(x`) where x` ∈ S` ≡

{θ`1, θ`2, . . . , θ`n`
} for `∈ {1, . . . ,m}, the product

∏m

`=1 f`(x`) is linearized in an identical fashion to

the previous section with the following exception. For each `∈ {1, . . . ,m}, a set Q′` in the variables

u`, λ`, and δ` is formed as in (26a)–(26d) so that x` and f`(x`) can be expressed as in (24). Then

the representations Q′` replace the sets P`. For each `∈ {2, . . . ,m}, the set PJ` remains unchanged,

having the variable yJ` represent the product
∏`

j=1 fj(xj).

Relative to the number of constraints, for each ` ∈ {1, . . . ,m} the set Q′` and the corresponding

expressions in (24) contain 4 dlog2(n`)e + 4 restrictions (noting that 0 ≤ u ≤ 1 is implied). For

`∈ {2, . . . ,m} the set PJ` has 2n` additional restrictions. In total, 4m+4
∑m

`=1 dlog2(n`)e+2
∑m

`=2 n`

constraints are required. (This is a savings beyond the first method in Li and Lu (2009) of

4n`−4 dlog2(n`)e−3 constraints for each `∈ {1, . . . ,m}.) As for variables, Table 3 gives the names,

types, and numbers required. Summing, there are 3m− 1 +
∑m

`=1(n` + dlog2(n`)e) continuous and∑m

`=1 dlog2(n`)e binary variables.

As a final remark here, it is important to note that two works subsequent to Li and Lu (2009)

focus on the methods of this subsection and the previous, and that our contribution of Section 2
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Table 3 Variable types and counts in Approach 2 of Li and Lu (2009).

Variable name Variable type Number of such variables
x` continuous m
y` continuous m

yJ`
, ` 6= 1 continuous m− 1
λ` continuous n` for each `∈ {1, . . . ,m}
δ` continuous dlog2(n`)e for each `∈ {1, . . . ,m}
u` binary dlog2(n`)e for each `∈ {1, . . . ,m}

answers an open question in this regard. The paper of Li et al. (2009) applied these works of Li

and Lu (2009) to piecewise-linear functions, and showed that the second is preferable to the first.

However, Vielma et al. (2010a) later demonstrated, both theoretically and computationally, that

the forms given within Li et al. (2009) are dominated by alternate methods. Vielma et al. (2010a)

conjectured that, while inferior in this setting, the second might have utility in other contexts.

Theorems 2 and 3 shed light in this regard by establishing an equivalence between the polytopes

Q̄′ and Λ̄′ so that Q̄′ is locally ideal. This equivalence reveals two shortcomings of the second form

of Li et al. (2009). First, the set Q̄′ can be reduced in size to Λ̄′ without forfeiting relaxation

strength. Second, and more importantly, the weak relaxation relative to piecewise functions is not

due to the set Q̄′ itself, but rather to the specific modeling of the functions employed by Li et al.

(2009).

4.3. Computational Comparisons

Subsections 4.1 and 4.2 demonstrate that the proposed approach improves upon the methods of

Li and Lu (2009), but it remains to show the extent of this improvement within a computational

setting. To provide insight, this subsection presents numerical experience for a simple nonlinear

discrete program in three variables as described below.

minimize c1x
p1
1 + c2x

p2
2 + c3x

p3
3 + c12x

p1
1 x

p2
2 + c13x

p1
1 x

p3
3 + c23x

p2
2 x

p3
3 + c123x

p1
1 x

p2
2 x

p3
3

subject to

0.9≤ xp1
1 x

p2
2 x

p3
3 ≤ 1.1
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x` ∈ S` ≡ {θ`1, . . . , θ`n} ∀ `∈ {1, . . . ,3}

Here, the decision variables are given by x1, x2, and x3, with n denoting the number of possible

realizations of each x` (so that by earlier notation, n` = n for ` ∈ {1,2,3}). Each of the seven

nonempty subsets J of {1,2,3} has the objective coefficient cJ corresponding to the term
∏

`∈J x
p`
`

generated randomly via a uniform distribution on the open interval (−1,1). For each ` ∈ {1,2,3},

the exponents p` are similarly obtained, while the values θ`j also follow a uniform distribution, but

over the interval (0,100). All input was truncated to two decimal places. In a manner similar to

test problems of Li and Lu (2009), the constraints bounding the product xp1
1 x

p2
2 x

p3
3 were chosen

to restrict the feasible region beyond that of the sets S` to make the problems more challenging.

For simplicity of presentation, we assume without loss of generality that the elements of each set

S` are arranged in increasing order so that θ`1 < . . . < θ`n. (No scenarios are considered where, for

some `, two θ`j are the same since the problem could be trivially reduced in size.)

To build our formulation, begin by constructing the set Λ′` for each ` ∈ {1,2,3} to model the

function f`(x`) = x
p`
` as in (16). Then for ` ∈ {1,2}, lower and upper bounds f−` and f+

` on the

function f`(x`) are given by f−` = θ
p`
`n and f+

` = θ
p`
`1 if p` < 0, and by f−` = θ

p`
`1 and f+

` = θ
p`
`n if

p` > 0. These values provide bounds on the product f1(x1)f2(x2) as f−12 = f−1 f
−
2 and f+

12 = f+
1 f

+
2

respectively. Consistent with (16)–(18), define nonnegative κ2 and κ3 by κ2 = f1(x1) − f−1 and

κ3 = f1(x1)f2(x2)− f−12 so that κ−2 = κ−3 = 0, κ+
2 = f+

1 − f−1 , and κ+
3 = f+

12− f−12. Then use (17) and

(18) with `∈ {2,3} to have Γ′2(κ2) and Γ′3(κ3) set y12 = f1(x1)f2(x2) and y123 = f1(x1)f2(x2)f3(x3).

To model f1(x1)f3(x3) and f2(x2)f3(x3), repeat the logic of (17) and (18) to create new sets, say

Γ′3(κ2) and Γ′3(κ4), by scaling the restrictions defining Λ′3 by each of κ2 and κ4 = f2(x2)−f−2 so that

we can use y13 = f1(x1)f3(x3) and y23 = f2(x2)f3(x3). Here, κ−4 = 0 and κ+
4 = f+

2 −f−2 . The net effect

is to have y1 = xp1
1 , y2 = xp2

2 , y3 = xp3
3 , y12 = xp1

1 x
p2
2 , y13 = xp1

1 x
p3
3 , y23 = xp2

2 x
p3
3 , and y123 = xp1

1 x
p2
2 x

p3
3 .

We compare the two approaches of Li and Lu (2009) with our method of Section 3. All for-

mulations were submitted to CPLEX 11 with default optimization parameters on a Sun V440

workstation having 16GB of RAM and four 1.6GHz processors. A time limit of 30 minutes per
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problem was enforced. Results are summarized in Tables 4 and 5. Table 4 is separated into four

main columns, delineated by vertical lines. Column 1 gives the numbers of realizations n of each

variable x`, while columns 2, 3, and 4 consider approaches 1 and 2 of Li and Lu (2009), and

our approach respectively. Within each of these last three columns, the CPU execution times in

seconds, the numbers of dual-simplex iterations, and the numbers of nodes explored in the binary

search tree to reach optimality are labeled “Time,” “Iters,” and “Nodes,” respectively. (Problems

recognized as infeasible were not recorded.) As indicated in column 1, the number of realizations

of each variable x` was increased from 32 to 64 to 128 to 256, running five problems of each size.

Table 4 Comparison of computational performance

Li & Lu Approach 1 Li & Lu Approach 2 Our Approach
n Time Iters Nodes Time Iters Nodes Time Iters Nodes

32 0.41 1057 427 0.17 357 50 0.01 180 0
32 1.34 2693 854 0.24 536 106 0.08 218 0
32 2.37 6813 2426 0.46 1249 254 0.17 947 46
32 11.98 51238 23819 1.56 7619 1623 0.21 1220 107
32 13.81 63192 26057 2.78 28637 2430 0.15 596 40
64 6.63 12181 4409 3.82 14275 2292 0.43 1372 185
64 10.11 19788 6540 4.79 14487 3434 0.39 1629 97
64 11.93 25457 5868 2.23 7645 443 0.44 1878 162
64 17.02 31970 16291 0.58 1010 113 0.40 779 23
64 26.27 59311 18290 1.10 1360 224 0.18 230 15

128 50.00 49237 16172 10.46 11712 3503 1.22 1443 73
128 >1800.00 - - 8.09 8312 1743 0.36 654 39
128 >1800.00 - - 13.24 7838 2843 0.97 2703 100
128 >1800.00 - - 56.99 108090 25161 1.06 4458 207
128 >1800.00 - - 58.51 130196 24007 1.18 3641 430
256 297.99 120309 41283 236.69 371169 40509 0.87 485 37
256 >1800.00 - - 39.21 55242 4305 1.46 3113 80
256 >1800.00 - - 42.51 39389 3898 1.38 3005 55
256 >1800.00 - - 484.75 358470 95583 0.61 448 11
256 >1800.00 - - 631.01 612257 66601 2.87 7811 299

The results confirm the superiority of the proposed method. In all cases, our method outper-

formed both approaches of Li and Lu (2009) in terms of time, iterations, and numbers of nodes

explored. This advantage becomes more pronounced as the problem sizes increase. Also, a compar-

ison of columns 2 and 3 reaffirms the experience of Li and Lu (2009) that their second approach

is an improvement over their first.
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Table 5 addresses relaxation strength for the same twenty test problems. The five columns

denote the numbers of realizations n of each variable x`, the objective values to the relaxations

of approaches 1 and 2 of Li and Lu (2009), to our relaxations, and to that of the original binary

program. In every case, our method yields a tighter bound than the second approach of Li and Lu

(2009), which in term is tighter than the first approach. Interestingly, while Theorems 2 and 3 prove

relaxation equivalence between our method and the second approach for a single function, this

equivalence does not apply to products of more than one function since, as explained in Subsection

4.2, the authors revert back to their first approach to model functional products. Thus, the second

approach of Li and Lu (2009) has a theoretical relaxation strength between their first approach

and ours.

Table 5 Comparison of relaxation strength

n Li & Lu Approach 1 Li & Lu Approach 2 Our Approach Binary Optimal
32 -8.342 -4.033 -0.697 -0.697
32 -12.645 0.241 3.398 3.538
32 -18.675 -10.211 -0.681 1.121
32 -363.184 -355.244 -51.507 2.583
32 -1119.101 -971.884 -12.023 -5.727
64 -0.132 0.828 2.543 3.785
64 -121.358 -41.941 -36.386 -34.129
64 -169.248 -71.218 -7.053 -2.886
64 -12.744 -3.701 -0.724 0.253
64 -58.522 -37.552 -4.186 -2.241

128 -3.304 -1.217 -0.218 2.128
128 -112.355 -83.511 -0.162 0.082
128 -123.285 -100.147 -14.434 -10.826
128 -115.093 -85.041 -5.721 0.719
128 -6159.661 -4935.720 -401.697 -32.183
256 -2.604 -0.206 0.331 1.235
256 -15.314 -10.119 -2.925 -1.866
256 -42.301 -31.235 -8.338 -5.400
256 -315.553 -72.972 -9.926 -7.098
256 -339.325 -273.020 -30.575 -8.910

5. Conclusions

This paper presents a strategy for expressing functions of discrete variables, and their products,

in terms of logarithmic numbers of binary variables. The fundamental idea is an observation for

writing a binary vector as a convex combination of extreme points of the unit hypercube. This
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observation allows us to treat n binary variables as continuous by defining a smaller number of

dlog2ne binary variables. Such collections of binary variables naturally arise in modeling general

discrete variables, and functions thereof.

Our strategy provides a unifying perspective for two published approaches that are designed to

use logarithmic numbers of binary variables. It compares favorably, in terms of the strengths of the

continuous relaxations and formulation sizes, to both methods. We show for the case of a function

f(x) having x a discrete variable, that our continuous relaxation dominates one such method, and is

theoretically equivalent to the other. For both competing approaches, our forms use markedly fewer

constraints. Our proofs provide insight into relationships of the alternate approaches with each

other, and improve upon the second by identifying (previously unnoticed) families of unnecessary

constraints and extraneous variables. The established theoretical superiority is then borne out for

products of functions in a computational study.

Given a collection of m functions f`(x`) for ` ∈ {1, . . . ,m}, where each discrete variable x` can

realize n` distinct values, Table 6 summarizes the numbers of continuous variables and constraints

required to linearize the product
∏m

`=1 f`(x`) for each of the three approaches. The first row of

the table is the proposed method of Section 3, while rows two and three are the approaches of

Sections 4.1 and 4.2. For readability, we let N =
∑m

`=1 n` and L=
∑m

`=1 dlog2(n`)e . Since all three

approaches employ the same L binary variables, this count is not included in the table.

We also posed four reduction strategies based on variable substitutions and transformations.

In order to perform more transparent comparisons, these strategies are not reflected in Table 6.

However, it is interesting to note that, in addition to the proposed method, they can be selectively

applied to the other two approaches. The substitution of variables w′` = w` − κ−` u` in the first

strategy for positive κ−` is applicable to the second approach of Li and Lu (2009), although

it becomes unnecessary in light of Theorem 2. The second reduction strategy to eliminate the

variables x` and y` is applicable to the second approach of Li and Lu (2009). But all variables in

the first approach of Li and Lu (2009), and the yJ` in the second approach, must be kept. The

third reduction strategy that converts equality restrictions to inequalities can be applied to the
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second approach of Li and Lu (2009), but will only save two variables, due to only two equality

restrictions. Finally, the fourth reduction strategy dealing with the order of the functions considered

can potentially reduce all formulations, though to different extents.

Table 6 Summary of variable and constraint counts

Continuous Variables Constraints
Proposed Method 3m− 1−n1 + 2N +L−dlog2(n1)e 5m− 2− 5 dlog2(n1)e+ 6L
Li & Lu 1 Li and Lu (2009) 3m− 1 m+ 6N − 2n1

Li & Lu 2 Li and Lu (2009) 3m− 1 +N +L 4m+ 4L+ 2N − 2n1

This study is predominantly theoretical in nature, focusing on representation size and relax-

ation strength, as well as equivalences between, and improvements to, known techniques. Limited

computational experience is provided. Future research includes detailed studies to more fully deter-

mine the practical benefits made possible by reduced numbers of binary variables in concise model

representations.
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