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This paper presents an approach for representing functions of discrete variables, and their products, using
logarithmic numbers of binary variables. Given a univariate function whose domain consists of n distinct
values, it begins by employing a base-2 expansion to express the function in terms of the ceiling of log,n binary
and n continuous variables, using linear restrictions to equate the functional values with the possible binary
realizations. The representation of the product of such a function with a nonnegative variable is handled via
an appropriate scaling of the linear restrictions. Products of m functions are treated in an inductive manner
from ¢ =2 to m, where each step ¢ uses such a scaling to express the product of function ¢ and a nonnegative
variable denoting a translated version of the product of functions 1 through i — 1 as a newly-defined variable.
The resulting representations, both in terms of one function and many, are important for reformulating
general discrete variables as binary, and also for linearizing mixed-integer generalized geometric and discrete
nonlinear programs, where it is desired to economize on the number of binary variables. The approach
provides insight into, improves upon, and subsumes related linearization methods for products of functions

of discrete variables.
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1. Introduction

Consider a discrete variable z that can realize values in the finite set S ={6,,60,...,0,}. It is well
known that x can be expressed in terms of n binary variables A= (A, Aoy . 0 Ay) as
=Y 0\, A€A, (1)
j=1
where
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AE{)\ER":Z/\]-:L)\]- binaryforjzl,...,n}. (2)
j=1

Moreover, given that x is an integer with 6; =0,_, +1 for j =2,...,n, then x can be alternately

defined as in Watters (1967) by
[logan]
r=0,+ Z 2" Ly, x < 0,, uy, binary for k=1,..., [log,n]. (3)
k=1
Of course, if [log,n| =log,n, then the inequality = <6, of (3) is not needed. (Throughout this
paper, we find it convenient to denote sums from 1 to n using the index j and sums from 1 to
[log,n| using the index k.)

An obvious difference between (1) and (3) is that the former requires n binary variables whereas
the latter uses only [log,n|. In this study, we represent functions of discrete variables in terms of
logarithmic numbers of binary variables, and use these representations to linearize products of such
functions. A recent work of Li and Lu (2009) has contributed two such linearizations by defining
auxiliary continuous variables and linear constraints. The methods vary in their construction. This
raises the following two-part question. Given a discrete variable x that can realize values in some
arbitrary set S having |S| =n, how can x be most economically represented, and how can such a
representation be used to linearize products of discrete functions?

We use a simple observation relative to the unit hypercube to address this question so as to
efficiently represent = and any associated function f(z), and ultimately to represent products of
such functions. As a consequence, we are able to improve upon the contributions of Li and Lu
(2009) relative to the linearization of monomial terms of discrete variables, as well as to mixed-
integer generalized geometric programs. This paper is in the spirit of work in Vielma and Nemhauser
(2011), which presents an interesting study on the use of logarithmic numbers of binary variables
to model disjunctive constraints, focusing on SOS1 and SOS2 type restrictions.

Applications for functions of discrete variables naturally arise in a broad range of fields, including
environmentally benign solvent design (Sinha et al. 1999), molecular design of freon alterna-

tives (Sahinidis and Tawarmalani 2000), pooling problems for chemical and wastewater treatment
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(Meyer and Floudas 2006), optimization of heat exchange networks (Bergamini et al. 2007),
nonconvex portfolio optimization (Kallrath 2003), and digital circuit optimization (Boyd et al.
2005), to name a few. The paper by Floudas and Gounaris (2009) gives an excellent overview of
recent advances and applications for a variety of problems involving functions of discrete variables.
Applications also arise involving products of discrete variables, or functions thereof. For example,
Harjunkoski et al. (1999) study trim loss minimization in the paper-converting industry when
slicing large paper spools into smaller output pieces to meet customer specifications. Here, non-
negative integer variables are used to represent the number of times a particular cutting pattern is
selected, as well as the number of each type output that is produced by a specific cutting pattern.
Products of these variables represent the total numbers of outputs, and ensure customer demands

are met.
2. Base-2 Representations of Discrete Variables and Functions

In this section, we represent a discrete variable x € S = {61,0s,...,0,} in terms of [log,n]| binary
variables, n nonnegative continuous variables, and [log,n| 4+ 1 linear equality restrictions. The
representation is then shown to extend to functions of this variable, as well as to the product
of any such function with a nonnegative variable. The study relies on the following elementary

observation, stated without proof due to its simplicity.

Observation

Given any positive integer p, a binary vector u € RP can be represented as a convex combination
of a select subset of n < 2P distinct extreme points of the unit hypercube in R? if and only if the
vector u is itself one of the selected extreme points, with a single convex multiplier equaling 1,

and the remaining n — 1 multipliers equaling 0.

For our purposes, a useful implementation of this observation is the following. Consider any

n distinct extreme points v;, j € {1,...,n}, of the unit hypercube in RMeg21 For simplicity, we
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henceforth define these extreme points so that vector v; € RMog271 ig the base-2 expansion of the
number j — 1, where entry i corresponds to the value 2°=!. Let XA € R" serve as convex multipliers
of these points v;. Then the observation gives us, with p = [log,n], that A € A of (2) if and only

if there exists a vector u € RM°82"1 5o that (u,\) € A/, where

AN = {(u,)\) e RMog2n1 R Z)\j =1, Zvj)\j =u, u binary, A > 0} . (4)
j=1 j=1

Consequently, (4) provides a mechanism for replacing the restrictions A € A of (2) in n binary
variables with (u,A) € A’ in [log,n] binary variables. This gives us that = described in (1) and
(2) can be expressed with [log,n]| binary variables w, n nonnegative continuous variables A, and

[log,n] + 1 equality constraints from (4) in A and u as

n

=Y 0}, (u,A) €N (5)

j=1

The region A’ of (4) possesses an interesting property, and provides insight into related sets.
From a polyhedral perspective, A’ is locally ideal in that the polytope obtained by removing the
u binary restrictions has w (and A) binary at all extreme points. This is readily seen since the
set defined by Z;LZI Aj =1 and A >0 has each extreme point having a single \; equaling 1 and
the rest equaling 0, and since the constraints 2?21 v,;\; = u consequently serve only to fix u to
some binary v;. A’ also relates to a form found in Vielma and Nemhauser (2011), and used in
the context of piecewise linear models within Vielma et al. (2010b). This set, which Vielma et al.
(2010b) show to be locally ideal, is

(u, \) € RMog2n]  R™

A// — n n )
E =1, E v\ <wu, E (1-v;)\; <1—wu, u binary, A>0
=1

j=1 j=1

Subtracting >7_, A; = 1 from each constraint in 377 (1 —v;)A; <1 —u gives us that 37, v;\; >
u so that A’ of (4) and A” are equivalent, alternately establishing A’ as locally ideal. Notably, A’
can be viewed as an improvement over A” as it contains around half the number of constraints.

(The paper of Vielma and Nemhauser (2011) has the equality of A” relaxed to <, but a similar
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ideal argument holds for the inequality case. The equality version is considered in Vielma et al.
(2010b).)

It is instructive to note cases of S for which (5) can be reduced to the size of (3), and contain
no A variables. Define the ([log,n] + 1) x n matrix V whose 7' column is given by [1;1]] so that

the equations of A’ can be written as

1
VA= M . (6)
Suppose that the vector 87 = (01,05,...,0,) can be written as a linear combination of the rows of
V using multipliers a” = (o, a1, ..., Qflog,n1) s0 that o’V = 6" . Then (5) simplifies to
[logan]
T =0+ Z axuy, w binary, (u,A) € A’ (7)
k=1

Since x in (7) is described entirely in terms of u, the variables A simply ensure that the w vector
is a column v; corresponding to the binary expansion of some integer between 0 and n — 1. Then

(7) can be rewritten as

[logyn] [logyn]
T=ay+ Z Uy, Z 281y, <n —1, u binary. (8)
k=1 k=1

Using logic similar to that for (3), if [log,n| =log,n, then the inequality of (8) is unnecessary. In
this case, the polytope obtained by relaxing w binary to 0 <wu <1 can be readily shown to have
u binary at all extreme points, and thus to be locally ideal. But when [log,n]| > log,n, the locally
ideal property is not preserved in the simplification step from (7) to (8), as demonstrated in the
example below. However, regardless of the value of n, for those special instances where x is integer
with 8, =0; 1 +1 for j=2,...,n, we have ap =6, and a; =2""! for k=1,...,[log,n], reducing
(8) to (3).

EXAMPLE 1. Let z € S ={2,3,5,7,8} so that n =75, [log,n] =3, and 8 = (2,3,5,7,8)”. Arranging

the vectors (1,v,)7 as the columns of V, we obtain that (5) can be written as

xTr = 2)\1 +3)\2 + 5)\3 + 7)\4 +8)\5, (U,)\) € A
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where
11111 M 1
/ 3 5 01010 ~ Uy .
AN=q(uN)eR XR:VA=|/,710 is = |, | » w binary, A >0
00001 * us
As

There exists no a with a”V = 6" and hence the A variables cannot be removed. If, however,

S=1{2,3,5,6,8}, then a”V =0" for a” =(2,1,3,6) and we can obtain (8) with
T =24 uy + 3uy + 6us, u; + 2us + 4duz <4, u binary.

For this latter case, since [log,5| > log,5, the inequality is needed and the representation is not
locally ideal, with (x,uy,uz,u3) = (5,1,1, ;) an extreme point to the relaxation that does not have
u binary.

Now, observe that (5) can be extended to express any function f(z) of the discrete variable z, as
well as the product of x and/or any such f(x) with a nonnegative variable , in terms of the same

[log,n| binary variables u. Relative to the function f(z), define a variable, say y, and include the

linear equation
y=>_fB)N (9)

in (5). This equation forces y to equal f(x) for binary w. The products xx and f(z)x for nonnegative
k rely on a modification of (4). Suppose that each restriction in A’ (exclusive of w binary) is
multiplied by the nonnegative x to obtain the system I'(k) below, where we use variables v to
denote the scaled A.
I'(k) = {(u,’y) e RMos2n1 5 R™ zn:%- =K, zn:vﬂj = uk, ubinary, v > O} (10)
=1 =1
Then, since (10) is a scaling of the equations in (4), we have for any nonnegative realization of x
that the expressions Z;L:1 0;; and Z;;l f(6;)7;, which are scaled versions of that found in (5)
and (9) respectively, will equal the products zx and yx.
A drawback of (10) is that [log,n| of the equations contain quadratic terms, as found in the

vector uk. These terms can be linearized via a procedure of Glover (1975) that replaces ux with a
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vector of continuous variables w, and enforces w = uk using the 4 [log,n]| inequalities below. Here
x~ and kT are lower and upper bounds on the permissible values of , and 1 represents a vector

of ones in RMogan]
kKu<w<rktuwand k1 -k (1—u)<w<kl—(1—u)k~ (11)

For each k € {1,...,[logyn]}, if ux =0, the left-hand inequalities enforce wy, =0 and the right-
hand inequalities are redundant, while if u; =1, the right-hand inequalities enforce wy = k and the
left-hand inequalities are redundant.

We denote the linearized version of I'(k) where w is substituted in (10) for ux using (11) by

I(k), as given below.
(u,~,w) € RMg2n] 5 R™ x RMogzn] .
(k)= DY =Ry iy UyY; = w, u binary,y >0, (12)
rFu<w<kTuwand k1l -kt (1l—u)<w<kl—(1—u)k"

Concise representations of the form given by (7) that do not require any variables A can also be
obtained for special cases of f(z), and concise representations that do not require any variables
~ can be similarly obtained for special cases of the functions xx and f(z)k. Observe that xk
can be expressed in such a concise form if and only if = can be so represented; that is, if and
only if 8" can be expressed as a linear combination of the rows of V. In an analogous manner,
f(x) and f(x)k can be expressed without variables A and - respectively if and only if the vector
Fr=(f(01),f(8),...,f(0,)) can be expressed as a linear combination of the rows of V. Of course, if
it is desired to express either both x and f(x) without variables A and/or both zx and f(x)r without
variables 4, then both vectors 87 and f” must be able to be expressed as linear combinations of
the rows of V.

In the next section, we consider products of discrete functions indexed by the letter ¢. It may
simplify the reading to note that the parameters n and v;, the function f(x), the variables z, v,
K, Aj, 7, and w, the binary values u, and the sets S, A’, and I'"(k) all play the same role in that

section as they do here, with an additional subscript used to indicate the associated function f,(x)

under consideration. Where appropriate, this same notation is also used in Section 4.
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3. Base-2 Representations of Products of Discrete Functions

The strategy of (4) and (10) to transform the n binary A and the n binary -« to nonnegative
continuous variables through the defining of [log,n| new binary u, combined with the linearization
of the expressions uk of (10) via (11) to obtain (12), can be used to construct concise mixed 0-1
linear representations of products of functions of discrete variables. This construction yields repre-
sentations that dominate the two methods of Li and Lu (2009) in terms of numbers of constraints,
while affording improved relaxation strength relative to the first approach and equivalent strength
relative to the second.

Consider m functions f,(z¢), £ € {1,...,m}, where x, € S¢ = {01,042, ..,0s,,} and where n,
denotes the number of realizations of z,. Here, we subscript the function f(z), the variable x, the
set S, and the multiplier x of the previous sections with the index ¢ to denote the m different
functions. Also, we let 6,; denote the j'" realization of the variable x,. We further construct sets
A}, and I'(k,) of the form (4) and (12) respectively, one corresponding to each function f,(x,), and
accordingly apply the subscript ¢ to the variables u, A, 7, and w, as well as to the vectors v;, to
obtain the sets, for each £ € {1,...,m}, given as

ng ny
V= {(’U/g, ) € RMg2(m)T 5 R7e Z)\gj =1, ij)\gj = uy, ug binary, A, > 0} ,
j=1 =1

and
(g, v, wy) € R8T 5 R 3 RITog2(n)]
ng ng
Iy (ke) = Z'Ylj = Ky, Zveﬂej = wy, ug binary, v, >0, (13)
/Ji?w <w, gf}w and 11 — k) (1 —up) <wp <kl — (1 —wp)k,
where k, and ,; denote lower and upper bounds on the values of ;.
By the logic of the previous sections, for each ¢ € {1,...,m}, the variable z, and function f,(x,)
can be expressed as in (5) and (9) by
ng ng

Ty = Zegj)\gj and Yo = Z fg(agj)Agj, (’U;g, Ag) S A;, (14)

j=1 =1
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where y, = fi(x,), and the products x¢x, and fi(x,)k, can be expressed by
np ny
Teke = Z Ocjve; and fo(ze)re = Z Je(Oei)ves, (we,vo, we) € Ty(Ke). (15)
=1 i=1
If desired, the products xyx, and fy(z,)k, can each be replaced in (15) by continuous variables.
We now focus on a representation of the product [, f;(x;) using the sets A} and T'y(r,) from
above. To begin, for each ¢ € {2,...,m}, we represent the product fi(x;)f2(z2) by a continu-
ous variable y;2, the product fi(z1)fa(z2)f3(z3) by a variable yi23, and so on up to the product
fi(z1) fa(xa) -+« fin(zm) by a variable yia...,,. For ease of notation, for each £ € {1,...,m}, let J, =
1---¢ denote consecutive subscript indices so that Hle fi(z;) is represented by the variable y,,
(with ¥ =y, ). As additional notation, for each ¢ € {1,...,m — 1}, denote computed lower and
upper bounds on the product H§:1 fi(z;) by f;, and sz respectively. Continue by constructing A}
and expressing the variables z, and y, as in (14) for each £ € {1,...,m}. Then compute I')(x,) of
(13) for each £ € {2,...,m} with the nonnegative scalar k, given by k, = Hf: fi(z;) —f;,_,- Such
k¢ have lower and upper bounds of k, =0 and x| = f};,l — [;,_, respectively. The resulting system
follows where, for each ¢ € {2,...,m}, we have included explicit restrictions that x, =y, , — fr .

with y,, | substituted for the linearized version of Hf;i fi(x;).

ny Ny
Ty = Z@j&j; Ye= Zfé(glj))‘éja (w, Ag) €Ay VE=1,....m (16)
j=1 j=1
KZ:yJefl_fJ_g_l VEZQ,,T)’L (17)
g
Vs = Y Je0u)ves +yefs, s (e, v we) €T(ke) VE=2,...,m (18)
j=1

Note that the u, binary restrictions for ¢ € {2,...,m} are found in both (16) and (18) but need

only be stated once. The desired result that y;, = H;‘:l fi(z;) for i=1,...,m can be envisioned

as inductively obtained. The base case having ¢ = 1 is established by (16) with £ =1 to yield
. 1—1

Y1 =ys = fi(21). For each i € {2,...,m}, the argument assumes that y;,_, =[[,_, f;(z;), and then

uses restrictions (16)—(18) with £ =14 to enforce that y;, = fi(x;)ys,_,. The products x,x, of (15)

do not appear in (16)—(18) as they are not needed in the representation of H;"':l fi(x;).
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Upon substituting x, =y;,_, — f, | foreach £€{2,...,m} from (17) into (18) and then removing
(17), the counts on the types and numbers of variables in (16) and (18) are summarized in Table 1.
Summing relevant entries, Table 1 gives that (16) and (18) have a total of 3m—1+n; +23 ", ny+

>y [logy(ne)] continuous variables and ;" | [log,(n,)] binary variables.

Table 1  Variable types and counts in (16) and (18).

Variable name | Variable type Number of such variables
x, continuous m
Yo continuous m

Ys,, L #1 continuous m—1

Ae continuous n, for each £ € {1,...,m}
¥, continuous ne for each £ € {2,...,m}
w, continuous | [log,(n,)] for each £ €{2,...,m}
Uy binary [logy(ne)] for each £€{1,...,m}

Relative to the number of constraints in (16) and (18), a count is as follows. Each set A} of
(16) has [log,(n,)] + 1 restrictions, while each set I',(k,) of (18) with , as defined in (17) has
5 [log,(ne)] + 1 restrictions. Including the additional 2m equalities defining x, and y, of (16) and
the m — 1 equalities defining y,, for £# 1 of (18), the total number of constraints is 5m — 2 +
[log,(n1)] 46 32,2, [logy(ne) ] -

The numbers of variables and constraints can be reduced, depending on the structure of the
problem and the desired form of the resulting linearization. Four reduction strategies are listed
below.

1. Since k, =0 for each £ € {2,...,m}, the inequalities x, u, < w, of (13) become nonnegativity
on wy, reducing the number of constraints by >_,", [log,(n,)] . If some &, is defined which allows for
a strengthening of x, from 0 to a positive value, then a transformation of variables w), = w, — k, u,
as in Adams and Forrester (2005) and Glover (1984) can be used.

2. If desired, the variables x,, y,, and y,, can all be substituted from the linearization (as well
as any encompassing optimization problem) by using the definition of variables in terms of A,; and
ve; found in (16) and (18). This substitution reduces the number of variables and constraints by

3m — 1 each.
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3. Each of the sets A}, and I')(k,) can be reduced in size by [log,(n,)] + 1 variables via a
transformation that changes the equality restrictions to inequality. To see this, consider Aj. As
the defining linear system of equations is of full rank (choose the columns corresponding to Aq;
and Aj(gp-144) for each p € {1,..., [log,(n1)]}), a basis for RM°€2("1+1 can be obtained in terms
of a subset of the columns of the defining system. Then the [log,(n;)]| + 1 basic variables can be
expressed in terms of the nonbasic variables and subsequently eliminated from the formulation.
Performing such a reduction on each A} and I'}(x,) reduces the formulation by 2m — 1+ [log,(n1)]+
2%, [logy(ng)] continuous variables.

4. The order in which the functions are numbered and subsequently linearized affects the variable
and constraint counts. The set I"'j(k1) of (13) does not appear in (18), nor do the associated
variables v, and w;. Therefore, selecting f;(x;) so that n; = max{n,:¢=1,...,m} can yield a
smaller formulation.

The lower and upper bounds f; and f; on the products H§:1 fi(x;) for £ € {1,...,m—1} used
in the construction of (16)—(18) can be computed in different ways. For each ¢ € {1,...,m}, lower
and upper bounds f, and f; on the function f,(z,) are readily obtained as f,” = min{f,(6;;) :
j=1,...,n} and f = max{fi(0s):j=1,...,n}. Next consider the values f; and f for
te{2,...,m—1}. If f7 >0 for all je€{1,...,¢}, then we can use f; = H§:1fj_ and fj =
H§:1 fj+. If, however, f; <0 for some such j, then various options exist, including using fj; =
[T, max{|f;|.1f|} and f5, = —fF.

Three additional remarks relative to (16)—(18) are warranted. First, products of discrete variables
(as opposed to products of functions of discrete variables) can be readily handled by having f,(z,)
serve as identity functions so that fy(0y;) =6,; for all £€ {1,...,m} and j € {1,...,n,}. Then the
first equation in (16) defining z, can be removed for each ¢ € {1,...,m}, as x, = y,. Second, the
linearization process that produces (16)—(18) does not depend on z; being discrete. This allows us
to accommodate the expression []7", f;(z;) when the function fi(x,) is continuous. In this case,

restrictions (16) with ¢ =1 are not used. Third, the approach of (16)—(18) does not make use of
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the product fi(x;)ky, so the value k; and set I'}(k;) of (13) is not found in (18). Similarly, the
lower and upper bounds f; ~and fj on [[/., f;(z;) are not needed.

We conclude this section with an example demonstrating the use of (16) and (18) in linearizing
the monomial x}z3°.
EXAMPLE 2. Consider the m = 2 functions fi(z1) = 23 and fo(z2) = 23°, where z; € S} =
{—1,2,5,7} and x5 € S> = {2,4, 8}, so that n; =4 and ny = 3. The restrictions (16) and (18) have the
continuous variables y;, yo, and y;5 replacing fi(z1), fo(z2), and the product fi(z1) fo(xs) = 2325

respectively. Using matrices to simplify notation where possible, (16) is given by

1 =—1A11 + 2 12 +5A3+ Thig, v = (1) A1 +2° A0+ 52 A3 + 7204, (ur, Ar) €A,

where
1111 i“ 1
AN =1{ (u,\) ER*xR*: | 0101 21 = wuy |,u; binary,A\{ >0},
)‘13
0011 U2
A14
and
To = 2)\21 + 4A22 + 8)\23, Yo = 21'5A21 + 41~5)\22 + 81‘5)\23, (’U,Q7 Ag) (S AIQ,
where

A/2: {(’U;Q,)\Q)ERz XR?):

111 Aot
010 Aoo
001 Ao3
Since f; = fi = (—1)°, we have ry = 27 — (=1)° =y, + 1, with r; =0 and

1
= [u21] , Uz binary, As 20}.

U22

ky = fif — fi =7 —(—1)3=344. Then (18) becomes
Y12 =291 + 4 900 + 8" P05 — o, (Ua, Yo, wa) € Ty(ys + 1),

where I(y; + 1) of (13) is expressed in matrix form as

(U2,7,, W) ER? X R? x R?,, >0 )
1117 [Heu 1
|:010:| [722:| = |: W21 :| )
001 Y23 Wao
<] <ouf ] |

Wa2 U229

y1+1 1—usy Way g+ 1
at] R el N el B e

with uy binary not explicitly listed as it is found in A} above. Note that while the sets A} and A}

Ly +1) =

were earlier explained to be locally ideal, the presence of I',(y; + 1) forfeits this property. Upon
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removing the binary restrictions on w; and wus, a nonintegral extreme point is given by u; = (%, 0),
uy = (0,1), Ay =(2,4,0,0), A2 =1(0,0,1), wy = (0,3), and 7, = (0,0,3), with (z1, 22, y1,y2,y12) =
(0,8,2,16v/2,32v/2). Now, suppose that we change the problem so that the variable z; is redefined
to be continuous in the interval [—1,7], and it is desired to have y;2 represent the product of the
continuous function x3 having —1 < z; <7 with the discrete-valued function z}° having x, € So,
so that again y,, = z923°. Explicitly define y; to be 22 via y; = 2%, and treat y; as a continuous
function with y; € [—1,343]. In this case, none of the restrictions associated with (16) having ¢ =1
are needed (including A}) and the values f;” = —1, f;" =343, k; =0, and x5 = 344 are unchanged

so that the set I')(k2) =T (y; + 1) remains the same.

4. Comparisons with Other Methods

The size and relaxation strength of the system (16)—(18) compares favorably with alternate
approaches. While there is considerable literature dealing with the linearization of nonlinear 0-1
programs and the representation of discrete variables in terms of binary variables, little attention
has been given to modeling functions of discrete variables, and their products, in terms of loga-
rithmic numbers of binary variables. We focus attention here on the two methods from Li and Lu
Li and Lu (2009), one per each of the first two subsections below. These methods were reportedly

designed for solving mixed-discrete generalized geometric programs.

4.1. Li & Lu Approach 1

Given a discrete variable = that can realize values in the set S = {6,,6,,...,6,} and a function f(x)
defined in terms of z, the first approach of Li and Lu (2009) linearizes f(x) using [log,n]| binary
variables and 2n + 1 linear inequalities, plus a single continuous variable y to represent f(x). We
temporarily adopt the notation of Section 2 that suppresses the subscript ¢ on the variable z, the
function f(x), the set S, the parameter n, the values #; for j € {1,...,n}, and the vectors u, A,
and v, since a single function of a discrete variable is initially considered.

This approach of Li and Lu (2009) can be explained in terms of ours as follows. It uses the

same binary variables u € RM°82"1 as (4) with (9), but in an altogether different manner. While
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not defining vectors v; or variables A, it can be envisioned as also enforcing that y = f(6,) when
u = v;. (For now, we focus attention on the function f(x) and later explain how the discrete
variable x can be similarly handled. This method is unique in that it requires separate families
of restrictions to handle each of z and f(z).) For every j € {1,...,n}, it defines a linear function
A;(u) of the binary variables u so that A;(u) =0 if w =wv; and A;(u) > 1 if u # v;. For each

logyn]

such 7, this is accomplished by adding to the sum ZLZl uy, the expression 1 — 2u; for all ¢

having the i'* component of v; as 1. These functions can be computed using matrix multiplication
as follows. Define the ([logyn] + 1) X ([logyn]| + 1) invertible, symmetric matrix B whose (i,5)""
element, denoted B;; for all 4,5 € {1,..., [log,n]| + 1}, is given by

1 if(i=landj#1)or (i#1andj=1)
B =< -2 ifi=j#1 (19)
0 otherwise

so that

[ =g =[1] B[] vieq 20

u v, - J(u)_ v; u ]G{ "“’n}‘ ( )

17
The left equation becomes clear upon observing that the row vector [u} B € RMMog2n1+1 hag its
first entry as Z,Elzofm uy, and its " entry as 1 — 2u;_; for each i € {2,...,[logyn] + 1}. The
T
equality of the right expression with the left follows from [H B [vl] being a 1 x 1 matrix, with B
symmetric. Letting M = f* — f~ with f~ =min{f(6,),..., f(0,)} and fT =max{f(6,),...,f(6.)},
this formulation of Li and Lu (2009) is as follows.
(u,y) € RMog2nl x R

f(0;) —MA;(u)<y<f(l;,)+MA;(u) Vjie{l,...,n},
j2) [logyn]

Z 2P Ly <n—1,
k=1

u Binary

The restrictions of P operate so that, given any binary u satisfying ZQE?"] 2k=Lyy, <n —1,
the single A;(u) equaling 0, say A,(u), will have the two inequalities f(6,) — MA,(u) < f(z) <
f(6,) + MA,(u) enforcing y = f(6,), and the remaining 2(n — 1) inequalities with A;(u) > 1 being

redundant.
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Observe that P contains no variables A; it has a single continuous y and [log,n| binary wu.
However, it requires 2n + 1 inequalities. In contrast, A’ of (4) has n continuous A and [log,n|
binary w, but only [log,n] 4 1 constraints. Recall, though, that reduction strategy 3 of Section 3
allows us to reduce the number of variables A in A’ by [logyn] + 1. Thus, in summary, A’ and P
require the same number of binary variables, but the former uses 2n — [log,n| fewer constraints at
the expense of n — [log,n| — 2 more continuous variables.

An important consideration when expressing any function of a discrete variable in terms of
binary variables in a mixed 0-1 linear form is the strength of the continuous relaxation. Let A’ and
P denote, respectively, the continuous relaxations of A’ and P obtained by relaxing the w binary
restrictions to 0 < w < 1. (Note that these 2[log,n] inequalities are not needed in the set A’, as
they are implied by the other restrictions.) The theorem below shows that the set A’ with (9)

provides at least as tight a polyhedral representation, in terms of permissible values of y, as does

P.
THEOREM 1. Given any (@, A) € N of (4), we have (i) € P, where jj = Z;;lf(ﬁj)j\j.

Proof of Theorem 1. Let (@, A) € A with §j = > f(Gj)j\j. Since for each j € {1,...,n}, u=v;
satisfies ZQE%M 281y, <n—1, and since A’ expresses @ as a convex combination X of the vectors

v;, it follows that Z,Ei%m 2k=14,;,, <n —1. Thus, the proof reduces to showing that
f(0;) = MA;(a) << f(0;)+ MA;(@)Vje{l,...,n}. (21)

Toward this end, arbitrarily select any p € {1,...,n} and consider (21) for j = p. Surrogate the
_ T
equations of A’, represented in matrix form as in (6), using the multipliers [vl } B, and set

(w,A) = (@, ), to obtain
S A<y 4w)h = [;perﬁ\: [;prB m = A (@). (22)

The inequality follows from the nonnegativity of A and because the function A;(v,) is defined to

have A,(v,) =0 and A;(v,) > 1 for j # p. The first equality is due to the left equation of (20)
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with u = v, applied once for each j € {1,...,n}. The middle equality is the surrogation of the
restrictions in A/, and the last equality follows from the right equation of (20) with j = p. Now, add

the nonnegative multiple (f+ — f(6,)) of the inequality > \; < Ay(@) of (22) to the multiple

Jj=1,j#p

f(8,) of the equation Y77, A, =1 from (4) to obtain

Zf A +Z N < F(8,) + (T — f(6,))Ay(@)
J#p
which, by the nonnegativity of (f* — f(Hj));\j for all j # p and the defining of 3§ = Z?:1 f(Gj)j\],

establishes the right-hand inequality of (21) for j = p because f* — f(0,) < f* — f~ = M. Similarly,

add the nonpositive multiple (f~ — f(6,)) of the inequality >." A, < Ay(@) of (22) to the

Jj=1,j#p

multiple f(6,) of the equation > A; =1 from (4) to obtain

Zf >\ +Z 'Zf(ep)‘{'(f__f(gp))Ap(’&')
J#p
which, by the nonpositivity of (f~ — f(0 )))\ for all j # p and the defining of § = 27 f(e )

establishes the left inequality of (21) for j =p since f~ — f(0,) > f~ — f* = —M. This completes
the proof. O

Note that the proof of Theorem 1 suggests a strengthening of the bound M used within P and
P. For each j €{1,...,n}, we can use M, = f(6;) — f~ and M; = f* — f(6;) to redefine the set P

as
(u,y) € RM&r] X R
f(gj)_MJA( )<y<f( )+MA( )VjE{l,...,n},
P ez . (23)

Z 2P Ly, <n—1,
k=1
u binary

The set P remains unchanged with this adjustment but P is potentially tightened.

The representation of a discrete variable z, as opposed to a function f(z), proceeds in an identical
manner to the above. This is readily seen by defining f(z) so that f(x)=x. The set P of (23) will
then replace each f(6;) with 6, and each occurrence of y with z. If it is desired to represent both
f(z) and x, then 4n + 1 associated inequalities are needed in the [log,n] binary variables u, as the

equation Zﬂoggn] ur <n — 1 need not be repeated.
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It is important to note that the converse of Theorem 1 is not true, even when the set P uses the
improved values M ; and M as in (23). That is to say, there can exist a point (@,9) € P for which
there exists no A having (u, 5\) €A and = Z;;l f (Gj)j\j. An example illustrating Theorem 1 and
the failure of its converse is below. For simplicity of presentation, we have y = f(x) = x so that
only one family of restrictions is required.

EXAMPLE 3. Consider f(z) =z with z € S ={1,3,5} so that n =3, [log,n] =2, f~ =1, and

f*=5. Then (9) with the relaxed set A’ is given by
Y= )\1 + 3)\2 =+ 5)\3, (U, )\) € A,,

where

_ 1117 A 1
A/:{(u,A)€R2xR3:V)\: [010] [AQ] = [ul],)\zg}‘
001

U2

The set P, adjusted for the strengthened M ; and M; as in (23), is

(((u,y) ER2xR: )
1 <y< 1+4(ur+u2)
_ 3—2(1—uitu2) <y< 3+2(1—up+uz)
P= 5—4(14wui—u2) <y< 5
UL +2u2 <2
0 Sulg 1
0<u<1

\ Y

For " = (11, 1s) = (1, 1), every § satisfying § € [2,4] will have (@,9) € P. However, there exists no
X with (@, \) € A’ since the restrictions of A’ enforce that the nonnegative A must have Ay =1, = 1,
As=dp=1, and A+ A+ Ay =1.

The paper of Li and Lu (2009) extends this approach to products of univariate functions. Again
consider the m functions f(x,), £ € {1,...,m}, where z, € S¢ = {01,042, ..., 04, } and n, denotes the
number of realizations of x,. Then the linearization of [, , f¢(z,) using our strengthened bounds of
(23) is accomplished in two steps. First, for each £ € {1,...,m}, form the set P, in the same manner
as (23) to represent f,(z,) as the variable y, using the binary variables u, € RIM108;(0)1 . Here, for
each such ¢ and for every j € {1,...,n,}, the linear functions A,;(u,) are defined in the same manner

as A;(u), and the bounds M,; and M; replace M ; and M; respectively so that M,; = f,(0,;) — f,
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and ng = f,7— f1(0¢;), with f; =min{f,(6s), .. -5 fe(On,)} and i =max{fi(0n),.. s fe(Oem,)}- In
addition, each P, has the restriction ZE:O?M 25V <myp — 1.

The second step is based on the following observation: for any given ¢, by multiplying the
functional values fy(6,;) found within P, by a variable, say ¢, the 2n, inequalities involving f,(6,;)
will enforce y, = ( f¢(z) provided that for each j € {1,...,n,}, the values M,; and M ; are adjusted
so that the associated inequalities are redundant when A,;(u,) > 1; it is sufficient to have ¢ fo(6,;) —
Cfe(ze) <M, and C fo(xe) — Cfe(0e;) < My for all possible realizations of ¢ and f,(x,). Now, using
this observation and the notation from Section 3 that J, =1---/, we can inductively have y;, =
H§:1 fj(z;) for £> 2, beginning with yi2 = f1(x1) fo(22) = y1 f2(22) and sequentially progressing to
Ygm = f1(z1) fa(@2) -+ frn(@m) =Yg, fin(Tm). The variable y;5 is computed by forming a new set
Py, using ( =y, within P, to obtain y;5 = y172. Then the variable y,23 is computed by forming P93
using ¢ = y;2 within P to obtain yj25 = y19y2ys. Continuing up to J,,, the variable y;, is computed

by forming P;  using ¢ =y,

m—1

within P, to obtain y;, = H;nzlyj. Here, each set P;, has the
same number (2n, 4 1) of constraints and the same variables u, as Py, but includes y 5, and yg, |
instead of y,.

In the spirit of the above discussion, for each P;, with £> 2, it is sufficient to have the adjusted
M,; and M;, denoted M, ; and M ;,; respectively, satisfy ¢ fo(6¢;) — ( fe(ze) < M, ; and ¢ fo(z,) —
Cfe(8e;) < M,,; for all possible realizations of ( =y, , = Hf: fi(xz;) and fy(x,). These values
can be computed in various ways. One method is to have M, ; = MJN» = fj[ — [, where, as in
Section 3, the terms fj; and f; are upper and lower bounds on the product H§:1 fi(z;). Different
possibilities for these bounds exist. Again as in Section 3, if f;” >0 for all j € {1,...,£}, then we
can use f; = H§:1 f; and f};Z = H§:1 [ If f7 <0 for some j, then we can instead use fj;Z =
H§:1 max{| f; |, ]f;r|} and f; = —fj;. Strengthened values for M ; ; and M ;,; can be computed
based on problem structure and expended effort.

The size of the formulation is as follows. A count on each variable type is given in Table 2.
Including the m original variables z,, there are 3m — 1 continuous and Y_,", [log,(n,)] binary

variables. Relative to constraints, each set P, for £ € {1,...,m} has 2n, + 1 restrictions and each
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set P, for £€{2,...,m} has 2n, additional restrictions. Also, 2n, more inequalities are needed to

handle the variables z,. The total number of constraints is then m +4n; +6 ZZQ Ty

Table 2  Variable types and counts in Approach 1 of Li and Lu (2009).

Variable name ‘ Variable type Number of such variables
T, continuous m
Yo continuous m
Ys,, 0 #1 continuous m—1
[y binary [logy(ne)] for each £€{1,...,m}

4.2. Li & Lu Approach 2

The second approach of Li and Lu (2009) also represents functions of discrete variables, and their
products, using logarithmic numbers of binary variables. For simplicity in presentation, we again
begin by examining a single discrete variable z € S ={6;,0,,...,0,} and function f(x) so that we
can temporarily drop the subscript £.

While completely different in form and structure, this approach can be viewed as a blending
of the first method of Li and Lu (2009) that makes use of the linear functions A;(u) of (20) for
binary u € RM°%2"1 with our method that employs a vector of nonnegative, continuous variables
A € R” summing to unity. It operates by creating a nonlinear equation in A and u to enforce that
A is binary for w binary, and then sets z =0; and y = f(6;) for that single A\; = 1. The nonlinear
equation is subsequently linearized using a result of Glover (1975). Notably, our study will show
that the resulting formulation allows for a substantial simplification that is achieved by identifying
inequalities that can be set to equality, removing extraneous variables, and deleting redundant
constraints. These simplifications render both the functions A;(u) and the linearization of Glover

(1975) wholly unnecessary. In fact, the restrictions of the simplified form are directly obtainable

1
u

by multiplying the equations VA = { ] of (6) found in A’ by the invertible matrix B of (19), thus
establishing an equivalence between the resulting sets.

To begin, recall from the first approach of Li and Lu (2009) in the previous section that the

linear functions A;(u) of (20) were defined so that, for each j € {1,...,n}, A;(u)=0if u=v; and
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Aj(u) > 1 if u # v;. Also recall for each such j that the vector v; denotes the base-2 expansion
of j — 1, where entry ¢ corresponds to the value 2°~'. In this manner, A;(u) is defined for every
binary w satisfying ZQE?"] 281y, <n — 1. The second approach of Li and Lu (2009) defines a
vector of nonnegative, continuous variables A € R™ that is restricted to have Z?:l A; =1, and uses

the nonlinear equation Z;.Lzl A;(u)A\; =0 to ensure that the single j € {1,...,n}, say p, having

A,(u) =0 must also have A\, =1. Then the equations

xzzej/\j and y:Zf(Hj))\], (24)
=1 j=1

which are identical to those found in (5) and (9), enforce x =6, and y = f(6,,). The system is below.

(u,A) € RMog2n] x R
Z;L:I Aj=1,
Q= > Aj(w)h; =0,
Z;Lh:)?n] 2Py, <n—1,
u binary, A>0

The paper of Li and Lu (2009) linearizes the quadratic equation with the same method of Glover
(1975) that was used to rewrite the nonlinear restrictions of (10) as (11). The first step is to factor

the variables u;, from A. Expressing this factorization in terms of earlier notation, by (20) we obtain
> A= || BVA
j=1

where the matrix B is as defined in (19). For each k € {1,..., [log,n] + 1}, denoting the k" row of
the vector BV A by gi_1(A) so that

go(A)
: =BV, (25)

Intogyn1 (A)
the equation Y " | A;(u)); =0 in @ becomes

[loggn]
go()\) + Z gk()\)uk =0.
k=1
For each k € {1,..., [logyn]}, the method of Glover (1975) substitutes a continuous variable d; for

the product gi(A)ug, and uses four inequalities to enforce 6y = gi(A)us, at binary u. Using the fact

that each such g (A) is lower and upper bounded by —1 and 1 respectively (since the coefficient on
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every \; in each function is —1,0, or 1 and the sum of the \; equals 1), the formulation is as given
below. The paper of Li and Lu (2009) does not include the restriction ZQE%M 2F 1y, <m—1 of

Q); it can be shown redundant in the presence of the remaining constraints.

('U,7 A75) c Rfloggz] % R™ x Rﬂoggn] .
Z" A=1 (26a)
o= G0N + " g =0 (26b)
gk(/\) (I—up) <0 <gr( M)+ (A —up)VE=1,...,[logyn] (26¢)
—Up Sék Suka:L..., “OgQH—‘ (26d)
u binary, A >0 )

While not noted in Li and Lu (2009), the structure of @’ allows for a simplification that

significantly reduces the numbers of variables and constraints. Consider the theorem below.

THEOREM 2. Every point (i, X,8) with A >0 and 0 <@ <1 that satisfies (26a)-(26d) has —iy, =
or = gi(X) — (1 — ) for all ke {1,...,[log,n]}.

Proof of Theorem 2. 1t is readily verified that the matrix B defined in (19) has the first row of

B!, say pT € RMog2n1+1 with TozgrT g = in the first entry and elsewhere Consequently,
n 9 [logon]
A =p"BVA=—"—g(A\) + —— ge(N), (27)
; ! [log,n| ’ [log,n | ;

where the first equality recognizes the first row of VA from (6) as Z;;l Aj, and the second equality

follows from (25). Now, sum times the equation in (26b) with times the sum of the

flog n] Hog n]

left inequalities in (26¢) and (26d) and invoke (27) to obtain

d oyt (28)
j=1

But (26a) enforces this restriction with equality for all (u,\,d) € Q'. Then the left inequalities of
both (26¢) and (26d) must also hold with equality for all (u,\,d) € Q'. This completes the proof.
U

The above theorem allows us to equivalently rewrite " with the left inequalities of (26¢) and
(26d) satisfied with equality so that 0y, = gx(A) — (1 —uy) and §, = —uy, for each k€ {1,..., [log,n]}.

This makes the right inequalities redundant due to 0 < < 1. Then we can substitute 0, = —uy
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throughout the problem so that the variables d and restrictions (26d) are no longer needed. The
resulting reduced version of @’ is RQ)’ below.
(u,A) € RMog2n] 5 R
22;1 Aj= 11
A r
RQ'= go(X) =32
ge(A) =1—-2u,, Vk=1,...,[log,n]
u binary, A>0
Denoting the continuous relaxations of @' and R(Q’ where the binary restrictions on u are
replaced with 0 <u <1 by Q' and R_Q/ respectively, it directly follows that a point (u, 5\, 3) e Q' if
and only if 6 =—4 and (u, 5\) € RiQ/. Thus, RQ’ can be viewed as an economical representation of
Q' that is obtained by setting a subset of the inequalities to equality, and by removing redundant
constraints and unnecessary variables.
The proof of Theorem 2 shows that RQ’ can be further reduced in size by removing any one
of the [logyn| + 2 equality restrictions. This follows from (27), as each such restriction can be
expressed as a linear combination of the others, with no multipliers of value 0.

Interestingly, the set RQ’ provides exactly the same polyhedral region as A’. This equivalence is

addressed in the theorem below.
THEOREM 3. A point ('&,5\) € RQ' if and only if (ﬂ,j\) eN.

Proof of Theorem 3. Multiply the restrictions VA = [H of A’ by the invertible matrix B of

(19). Then (25) and the structure of B gives that the equation BVA =B [ } yields the last

1
u
1+ [log,n] equations found within RQ’. As noted above, the restriction >" | \; =1 is implied by
the remaining equations of RQ’, completing the proof. O
EXAMPLE 4. As in Example 3, let f(z) =z with =z € S ={1,3,5}, so that again n = 3 with
[log,n] = 2. The set A’ in three nonnegative continuous variables A, two binary variables u, and

three equality constraints is given in Example 3 where VA = [0 1 O] {/\2] . By (25), [gl(A)] =

Az + A 0 1 1 _
|:)\1 — o +>\3] = BV A with B= [1 -2 0] so that the representation of Li and Lu (2009) using @)’
AL+ A2 —As 1 0-2

is
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(u,X,0) ERZXR3 xR A>0:
AM+X+As =1
Aa+As+61+602 =0
=, AM—X+A—1+u <H< M—do+As+1—w
Q = AMA+d—A3—1+us <HL < M+ —Az+1—up
—u; <01 < w
—uy <62 < ugp
0<u; <1
\ 0 <ux<1 Vs

Theorems 2 and 3 ensure that every point (u,X,d) €  must have § = —u, and that a point
(u, A) € A’ if and only if (u, A, —u) € Q'. However, the form of @’ is larger than A’. It uses the extra
variables §; and &, and, not counting the lower bounds of 0 on u; and u,, requires two equality and
ten inequality constraints. To illustrate Theorem 2 that the four left inequalities restricting d; and
02 must hold with equality, sum the second constraint with % times each of these four inequalities
to obtain \; + Xy + A3 < 1, as (28) was computed from (27). The first equation of Q' then establishes
the result. The representation of f(z) (equivalently = for this example) is achieved using (24).

The paper of Li and Lu (2009) notes that this approach can be combined with their first
method to handle products of univariate functions. Given m functions f,(x,) where x, € S, =
{001,002, ...,00,} for £€{1,...,m}, the product [],", fe(z,) is linearized in an identical fashion to
the previous section with the following exception. For each £ € {1,...,m}, a set Q) in the variables
Uy, Ay, and d, is formed as in (26a)-(26d) so that z, and f,(z,) can be expressed as in (24). Then
the representations @} replace the sets P,. For each £ € {2,...,m}, the set P;, remains unchanged,
having the variable y;, represent the product H§:1 fi(x;).

Relative to the number of constraints, for each £ € {1,...,m} the set @} and the corresponding
expressions in (24) contain 4 [log,(n,)] + 4 restrictions (noting that 0 < w <1 is implied). For
¢ e{2,...,m} the set P;, has 2n, additional restrictions. In total, 4m+4>"," | [log,(ne)]+2> -, 1
constraints are required. (This is a savings beyond the first method in Li and Lu (2009) of
4ny,—4 [logy(ng)| — 3 constraints for each £ € {1,...,m}.) As for variables, Table 3 gives the names,
types, and numbers required. Summing, there are 3m —1+ >, (n, + [logy(n,)]) continuous and
> ey [log,(ne)] binary variables.

As a final remark here, it is important to note that two works subsequent to Li and Lu (2009)

focus on the methods of this subsection and the previous, and that our contribution of Section 2
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Table 3  Variable types and counts in Approach 2 of Li and Lu (2009).

Variable name | Variable type Number of such variables
T, continuous m
Yo continuous m
Ys,, L #1 continuous m—1
V) continuous n, for each £ € {1,...,m}
o, continuous | [logy(n,)] for each £€{1,...,m}
Uy binary [logy(ne)] for each £€{1,...,m}

answers an open question in this regard. The paper of Li et al. (2009) applied these works of Li
and Lu (2009) to piecewise-linear functions, and showed that the second is preferable to the first.
However, Vielma et al. (2010a) later demonstrated, both theoretically and computationally, that
the forms given within Li et al. (2009) are dominated by alternate methods. Vielma et al. (2010a)
conjectured that, while inferior in this setting, the second might have utility in other contexts.
Theorems 2 and 3 shed light in this regard by establishing an equivalence between the polytopes
Q" and A’ so that @' is locally ideal. This equivalence reveals two shortcomings of the second form
of Li et al. (2009). First, the set Q' can be reduced in size to A’ without forfeiting relaxation
strength. Second, and more importantly, the weak relaxation relative to piecewise functions is not
due to the set Q' itself, but rather to the specific modeling of the functions employed by Li et al.

(2009).

4.3. Computational Comparisons

Subsections 4.1 and 4.2 demonstrate that the proposed approach improves upon the methods of
Li and Lu (2009), but it remains to show the extent of this improvement within a computational
setting. To provide insight, this subsection presents numerical experience for a simple nonlinear

discrete program in three variables as described below.

L . p P D D1 ,..P D1 ,..P b2 .P Dp1 ,.P2 ,.D.
minimize c1x]" + 5% + 325> + cr22] 52 + 1327 52 4 Co3 x5 x5 + crazr x5t as?

subject to

0.9 <zP'ab?af? <1.1
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Jf@ESgE{Qﬂ,...,Q@n} V@G{l,,S}

Here, the decision variables are given by z, x,, and z3, with n denoting the number of possible
realizations of each z, (so that by earlier notation, n, = n for £ € {1,2,3}). Each of the seven
nonempty subsets J of {1,2,3} has the objective coefficient ¢, corresponding to the term [],_; z7*
generated randomly via a uniform distribution on the open interval (—1,1). For each ¢ € {1,2,3},
the exponents p, are similarly obtained, while the values 6,; also follow a uniform distribution, but
over the interval (0,100). All input was truncated to two decimal places. In a manner similar to
test problems of Li and Lu (2009), the constraints bounding the product ai'z5?z%® were chosen
to restrict the feasible region beyond that of the sets S, to make the problems more challenging.
For simplicity of presentation, we assume without loss of generality that the elements of each set
S, are arranged in increasing order so that 6, < ... <#,,. (No scenarios are considered where, for
some /, two 6,; are the same since the problem could be trivially reduced in size.)

To build our formulation, begin by constructing the set A, for each ¢ € {1,2,3} to model the
function fy(x,) = x}* as in (16). Then for ¢ € {1,2}, lower and upper bounds f, and f,” on the
function f,(z,) are given by f, =67¢ and f,” =0} if p, <0, and by f, =6}{ and f, =0}" if
p¢ > 0. These values provide bounds on the product fi(z1)fs(x2) as fio = fi fy and fih = fif fa©
respectively. Consistent with (16)—(18), define nonnegative k, and k3 by ks = fi(z1) — f; and
ks = fi(z1) fo(m2) — fi3 s0 that ky = k3 =0, kT = fi7 — fi, and k3 = f{; — fi5. Then use (17) and
(18) with £ € {2,3} to have I', (ko) and I';(k3) set y12 = fi(x1) fa(x2) and yia3 = fi(x1) fa(x2) f3(x3).
To model fi(z1)f3(z3) and fo(xs)f3(x3), repeat the logic of (17) and (18) to create new sets, say
Iy (ko) and T'4(k4), by scaling the restrictions defining A} by each of ks and Ky = fa(x2) — f5 so that
we can use yi3 = f1(11) f3(z3) and yo3 = fo(w2) f3(xs). Here, k; =0 and s} = f5” — f, . The net effect
is to have y; = ', yo = 252, ys = 28>, y1o = 2V 2h?, y13 = 271283 o3 = 25228 and yy03 = 2P b2 k3.

We compare the two approaches of Li and Lu (2009) with our method of Section 3. All for-

mulations were submitted to CPLEX 11 with default optimization parameters on a Sun V440

workstation having 16GB of RAM and four 1.6GHz processors. A time limit of 30 minutes per
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problem was enforced. Results are summarized in Tables 4 and 5. Table 4 is separated into four
main columns, delineated by vertical lines. Column 1 gives the numbers of realizations n of each
variable x,, while columns 2, 3, and 4 consider approaches 1 and 2 of Li and Lu (2009), and
our approach respectively. Within each of these last three columns, the CPU execution times in
seconds, the numbers of dual-simplex iterations, and the numbers of nodes explored in the binary
search tree to reach optimality are labeled “Time,” “Iters,” and “Nodes,” respectively. (Problems
recognized as infeasible were not recorded.) As indicated in column 1, the number of realizations

of each variable z, was increased from 32 to 64 to 128 to 256, running five problems of each size.

Table 4 Comparison of computational performance

Li & Lu Approach 1 Li & Lu Approach 2 Our Approach
n Time Iters Nodes | Time Iters Nodes | Time Iters Nodes
32 0.41 1057 427 0.17 357 50| 0.01 180 0
32 1.34 2693 854 0.24 536 106 | 0.08 218 0
32 2.37 6813 2426 0.46 1249 254 | 0.17 947 46

32 11.98 51238 23819 1.56 7619 1623 | 0.21 1220 107
32 13.81 63192 26057 2.78 28637 2430| 0.15 596 40

64 6.63 12181 4409 3.82 14275 2292 | 0.43 1372 185
64 10.11 19788 6540 4.79 14487 3434 | 0.39 1629 97
64 11.93 25457 5868 2.23 7645 443 | 0.44 1878 162

64 17.02 31970 16291 0.58 1010 113 | 040 779 23
64 26.27 59311 18290 1.10 1360 224| 0.18 230 15
128 50.00 49237 16172 | 1046 11712 3503 | 1.22 1443 73

128 | >1800.00 - - 8.09 8312 1743 | 0.36 654 39
128 | >1800.00 - - 13.24 7838 2843 | 0.97 2703 100
128 | >1800.00 - -| 56.99 108090 25161 | 1.06 4458 207

128 | >1800.00 - -| 58.51 130196 24007 | 1.18 3641 430
256 297.99 120309 41283 |236.69 371169 40509 | 0.87 485 37

256 | >1800.00 - -1 39.21 55242 4305 | 1.46 3113 80
256 | >1800.00 - -| 42,51 39389 3898 | 1.38 3005 55
256 | >1800.00 - -1 484.75 358470 95583 | 0.61 448 11
256 | >1800.00 - -1631.01 612257 66601 | 2.87 7811 299

The results confirm the superiority of the proposed method. In all cases, our method outper-
formed both approaches of Li and Lu (2009) in terms of time, iterations, and numbers of nodes
explored. This advantage becomes more pronounced as the problem sizes increase. Also, a compar-
ison of columns 2 and 3 reaffirms the experience of Li and Lu (2009) that their second approach

is an improvement over their first.
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Table 5 addresses relaxation strength for the same twenty test problems. The five columns
denote the numbers of realizations n of each variable x,, the objective values to the relaxations
of approaches 1 and 2 of Li and Lu (2009), to our relaxations, and to that of the original binary
program. In every case, our method yields a tighter bound than the second approach of Li and Lu
(2009), which in term is tighter than the first approach. Interestingly, while Theorems 2 and 3 prove
relaxation equivalence between our method and the second approach for a single function, this
equivalence does not apply to products of more than one function since, as explained in Subsection
4.2, the authors revert back to their first approach to model functional products. Thus, the second
approach of Li and Lu (2009) has a theoretical relaxation strength between their first approach

and ours.

Table 5 Comparison of relaxation strength

n | Li & Lu Approach 1 Li & Lu Approach 2 Our Approach Binary Optimal
32 -8.342 -4.033 -0.697 -0.697
32 -12.645 0.241 3.398 3.538
32 -18.675 -10.211 -0.681 1.121
32 -363.184 -355.244 -51.507 2.583
32 -1119.101 -971.884 -12.023 -5.727
64 -0.132 0.828 2.543 3.785
64 -121.358 -41.941 -36.386 -34.129
64 -169.248 -71.218 -7.053 -2.886
64 -12.744 -3.701 -0.724 0.253
64 -58.522 -37.552 -4.186 -2.241

128 -3.304 -1.217 -0.218 2.128
128 -112.355 -83.511 -0.162 0.082
128 -123.285 -100.147 -14.434 -10.826
128 -115.093 -85.041 -5.721 0.719
128 -6159.661 -4935.720 -401.697 -32.183
256 -2.604 -0.206 0.331 1.235
256 -15.314 -10.119 -2.925 -1.866
256 -42.301 -31.235 -8.338 -5.400
256 -315.553 -72.972 -9.926 -7.098
256 -339.325 -273.020 -30.575 -8.910

5. Conclusions

This paper presents a strategy for expressing functions of discrete variables, and their products,
in terms of logarithmic numbers of binary variables. The fundamental idea is an observation for

writing a binary vector as a convex combination of extreme points of the unit hypercube. This
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observation allows us to treat n binary variables as continuous by defining a smaller number of
[log,n] binary variables. Such collections of binary variables naturally arise in modeling general
discrete variables, and functions thereof.

Our strategy provides a unifying perspective for two published approaches that are designed to
use logarithmic numbers of binary variables. It compares favorably, in terms of the strengths of the
continuous relaxations and formulation sizes, to both methods. We show for the case of a function
f(z) having x a discrete variable, that our continuous relaxation dominates one such method, and is
theoretically equivalent to the other. For both competing approaches, our forms use markedly fewer
constraints. Our proofs provide insight into relationships of the alternate approaches with each
other, and improve upon the second by identifying (previously unnoticed) families of unnecessary
constraints and extraneous variables. The established theoretical superiority is then borne out for
products of functions in a computational study.

Given a collection of m functions fy(x,) for £ € {1,...,m}, where each discrete variable z, can
realize n, distinct values, Table 6 summarizes the numbers of continuous variables and constraints
required to linearize the product [],-, fe(x,) for each of the three approaches. The first row of
the table is the proposed method of Section 3, while rows two and three are the approaches of
Sections 4.1 and 4.2. For readability, we let N =3"," n, and L=>"," [log,(n)]. Since all three
approaches employ the same L binary variables, this count is not included in the table.

We also posed four reduction strategies based on variable substitutions and transformations.
In order to perform more transparent comparisons, these strategies are not reflected in Table 6.
However, it is interesting to note that, in addition to the proposed method, they can be selectively
applied to the other two approaches. The substitution of variables w), = w, — K, u, in the first
strategy for positive k, is applicable to the second approach of Li and Lu (2009), although
it becomes unnecessary in light of Theorem 2. The second reduction strategy to eliminate the
variables x, and y, is applicable to the second approach of Li and Lu (2009). But all variables in
the first approach of Li and Lu (2009), and the y,, in the second approach, must be kept. The

third reduction strategy that converts equality restrictions to inequalities can be applied to the
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second approach of Li and Lu (2009), but will only save two variables, due to only two equality
restrictions. Finally, the fourth reduction strategy dealing with the order of the functions considered

can potentially reduce all formulations, though to different extents.

Table 6 Summary of variable and constraint counts

‘ Continuous Variables ‘ Constraints
Proposed Method 3m—1—mn; +2N + L —[log,(ni)| | 5m —2—5[log,(ni)| + 6L
Li & Lu 1 Li and Lu (2009) 3m—1 m—+6N —2n,
Li & Lu 2 Li and Lu (2009) 3m—14+N+L 4m+4L+2N —2n,

This study is predominantly theoretical in nature, focusing on representation size and relax-
ation strength, as well as equivalences between, and improvements to, known techniques. Limited
computational experience is provided. Future research includes detailed studies to more fully deter-
mine the practical benefits made possible by reduced numbers of binary variables in concise model

representations.
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