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Motivation COONa NH, NH,"/CI Conclusions

» Self-assembly of nanoparticles is of interest for tailored
nanocomposites, high-performance materials, etc.

Earlier work showed spontaneous asymmetry in

nanoparticle coating, even for uniform grafting densities
(Lane and Grest, PRL 110, 235501 (2010))

« Coating structure can have a significant effect on NP
interactions, solubility and assembly

- how is coating structure affected by:

* End group

« Solvent

« Charge/pH

« Ccounterion type

- Chain length

Methods

System construction:

Alkanethiol chains grafted on C-240 fullerene structure
Sulfur atoms fixed (LAMMPS fix rigid command) at C-240
carbon positions, gold atoms omitted

Large sphere placed at center of NP to keep solvent out
Equivalent to 4 nm gold core

Equilibration:

» For charged systems, counterions added near ionic groups

 All systems equilibrated for 10 steps in implicit solvent with
appropriate dielectric constant

. Solvated in water (TIP4P) or decane cubic boxes with 160A
side length

—> Total system size ~400,000 atoms

Simulations:

« OPLS/AA force field, LAMMPS MD code

« Short NPT runs followed by NVT production runs

 PPPM dispersion sum used for van der Waals
interactions (In ‘t Veld et al, JCP 127, 144711 (2007)).
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« Short chain length (C10) in most cases leads to uniform,
symmetric coating

« Long chain length (C18) leads to bundling and
nonuniform coating structures

 |onization tends to stabilize asymmetries in water 2>
higher solubility, less tendency for aggregation

 lons largely condense on functional groups, facilitate water
penetration

Future work

* Vary ionic strength - add additional background salt
« For cases of interest, simulate two or more nanoparticles

to study interparticle forces, aggregation in bulk and at
surfaces

* Vary nanoparticle core size

 Include gold core with various grafting densities and
configurations
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