A

Using Python and the Algebraic Modeling Language
Pyomo to Specify, Solve, and Analyze Mathematical
Programs

John D. Siirola and Jean-Paul Watson
Discrete Math and Complex Systems Department

Sandia National Laboratories
Albuquerque, NM USA

David Woodruff

Graduate School of Management
University of California Davis, USA

VA A4 a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National

T AL =32 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, Sandia
T— National Nuclear Security Administration under contract DE-AC04-94AL85000. Laboratories

\

0. Do You Have Pyomo Installed and Working?

* An interlude
— But an important pre-requisite for what follows!

* |f you don't:
— Download & Install Python 2.7 (2.6 is also acceptable)

o http://python.org/

* If you are on Windows:
— Use Python 2.7

— Download & install Coopr
 http://software.sandia.gov/trac/coopr/downloader
* Linux / MacOS: coopr _install / coopr_votd
« Windows: Coopr_* setup.exe

— Download & install “a solver”:
* glpk, cbc, ipopt are good starting points

Hart, Siirola, Watson, p. 2 ational
art, Siirola, Watson, p Laboratories

http://software.sandia.gov/trac/coopr/downloader
http://python.org/

| i 1. Introduction to Pyomo

* Three really good questions:
— Why another Algebraic Modeling Language (AML)?
— Why Python?
— Why open-source?

« Coopr: Software library infrastructure
« Coopr: Team overview and collaborators / users

 Where to find more information...

Sandia
Hart, Siirola, Watson, p. 3 Paal}ll?rg'?(llﬁes

Y
Why another AML: Improve our productivity

 QOur initial objective was noft to write another AML
— However it ended up being a necessary prerequisite

* What we needed from a modeling environment:
— Support rapid algorithm prototyping, development, and extension
— Extensible to new modeling constructs (e.g., SP, GDP)

— Facilitate hybrid approaches:
* Hybrid models
 Hybrid algorithms
* Heuristic meta-algorithms
— Transparent and accessible internal data structures
— Interoperability (models, solvers, platforms, data sources)

— Easily transferrable to non-expert user communities

Hart, Siirola, Wat , p. 4 atlDlla_
art, Siirola, Watson, p Laboratories

Y
“¥ Why Python: it meets our needs

« Python provides a full-featured object-oriented environment
— Classes, inheritance, namespaces, exceptions, ...
— Interactive interpreter

Python facilitates rapid prototyping and doesn'’t require a CS degree
— Important for modelers and general productivity

Python ships with a huge number of very useful libraries, including
— Serialization, distributed computation, db/Excel interfaces, ...
— SciPy and NumPy

Python has excellent support for dynamic loading
— Critical for integrating 3"-party extensions, custom user code

Python introspection facilitates the development of generic algorithms

Sandia
Hart, Siirola, Watson, p. 5 I.N:t}l?rg'?(llﬁes

A
Why open source: we want your involvement

* Transparency and reliability

* Foster community involvement
— Extend the modeling language
— Develop new solvers / algorithms
— Interface with additional external utilities
— “Stone Soup” model

* Flexible licensing
— Coopr/Pyomo released under 3-clause BSD license

Sandia
Hart, Siirola, Watson, p. 6 Paal}ll?rg'?(llﬁes

X

\

NERANEAN

\

/

CPLEX

Gurobi

Xpress

GLPK

7
[/

.- . -
Decomposition Strategies .g > §
— —
- Progressive Hedging .g 2 2 &
3 o
- Generalized Benders é 2 o &
= A —
- DIP Interface (coming soon) OQ" 4 = 3
= N <
G B —
| g k= =
Language Extensions O A
- Disjunctive Programming
- Stochastic Programming

) PYOMO

_ PYthon Optimization Modeling Objects

CBC

/

PICO

OpenOpt

AMPL Solver Library

Hart, Siirola, Watson, p.7

Ipopt

KNITRO

Coliny

BONMIN

@)

Sandia
National
Laboratories

Team, Collaborators, (Known) Users

« Sandia National Laboratories
— Bill Hart
— Jean-Paul Watson
— John Siirola
— David Hart
— Tom Brounstein
« University of California, Davis
— Prof. David L. Woodruff
— Prof. Roger Wets
+ Texas A&M University
— Prof. Carl D. Laird
— Daniel Word
— James Young
— Gabe Hackebell
+ Carnegie Mellon University
— Bethany Nicholson
+ Texas Tech University
— Zev Friedman
* Rose Hulman Institute
— Tim EKI
+ William & Mary
— Patrick Steele
* North Carolina State

— Kevin Hunter
Hart, Siirola, Watson, p. 8

/(Known) users:

- University of California, Davis
- Texas A&M University

- University of Texas

- University of Southern California

- George Mason University

- lowa State University

- N.C. State University

- University of Washington

- Naval Postgraduate School

- Universidad de Santiago de Chile

- University of Pisa

- Lawrence Livermore National Lab

K- Los Alamos National Lab

- Rose-Hulman Institute of Technology

)

Sandia
National
Laboratories

For More Information...

Project homepage
— http://software.sandia.gov/coopr

Mailing list
— “coopr-forum” Google Group
— “coopr-dev” Google Group

“The Book”

Mathematical Programming Computation papers

Springer Opﬁmizam 67

William E. Hart
Carl Laird
Jean-Paul Watson

David L. Woodruff

Pyomo —
Optimization
Modeling
in Python

4'2_1 Springer

— Pyomo: Modeling and Solving Mathematical Programs in Python (Vol. 3, No. 3, 2011)
— PySP: Modeling and Solving Stochastic Programs in Python (To Appear)

Hart, Siirola, Watson, p. 9

@)

Sandia
National
Laboratories

';,'
2. An Introduction to Python

 Where credit is deserved...
— Professor David Woodruff, University of California Davis

 Just enough Python to get you through the rest of the
Pyomo tutorial

* For more information
— www.python.org
— Any of the great O’Reily books (www.ora.com)
— Any of a zillion on-line tutorials

Hart, Siirola, Watson, p. 1 ational
art, Siirola, Watson, p. 10 Laboratories

http://www.ora.com/
http://www.python.org/

'; R
Python is a Calculator

« Python is often executed in an interactive mode

« But we don’t do this very often

Hart, Siirola, Watson, p. 11 ational
a lirola atson, p Laboratories

';,'
Python is a Scripting Language

import sys

import os

for run in range(0, 3):

print "Running forestfire.py in run
number", run

os.system(“myopt -r="+str(run))

Hart, Siirola, Watson, p. 12 ational
o= g Laboratories

i Python is a Programming Language

e Lists

 Dictionaries
« Sets and tuples, too
* First-class objects and functions

« (BTW: Python is an interpreted environment)

Hart, Siirola, Watson, p. 13 ational
art, Siirola, Watson, p L e

';,'
Lists (And Slicing)

>>> a = ['spam', 'eggs', 100, 1234]
>>> a

['spam’', 'eggs', 100, 1234]
>>> alo]

‘spam’

>>> al[-2]

100

>>> a[l:-1]

['eggs', 100]

>>> a[:2] + ['bacon', 2*2]

['spam', 'eggs', 'bacon', 4]

Hart, Siirola, Watson, p. 14 ational
P Laboratories

';,'
Dictionaries

>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> tel.keys()
['guido', 'irv', 'jack']
>>> 'guido' in tel
True

Hart, Siirola, Watson, p. 15 ational
art, Siirola, Watson, p L e

'; R
Functions

>>> def foo(x):

for I in range(1,x+1):
. print i
>>> foo(2)
1
2
>>> def foo2(x):
. return x*x
>>> foo2(4)
16

Hart, Siirola, Watson, p. 16

@)

Sandia
National
Laboratories

\

ython Provides an Application Development Framework

 Module definitions
e Class constructs
 And lots, lots more...

Hart, Siirola, Watson, p. 17 ational
P Laboratories

=Y
Python is Pretty Cool (Probably Cooler Than Ruby)

Many in the audience can probably say much more,
but here are some items of note:

 List comprehensions
« Magic methods (lambda functions)

* Very extensive libraries (caveat: not everything is bullet
proof; it is a wild world)
— Exemplars: numpy, scipy, matplotlib

 Pickling (take the state of things and encode it as an
ASCII string; almost (but still, it is pretty cool))

* Introspection
— getattr and setattr

Hart, Siirola, Watson, p. 18 ational
art, Siirola, Watson, p L e

'; R
List Comprehensions

>>> vec = [2, 4, 6]

>>> [3*1 for i in vec]
[6, 12, 18]

>>> [3*1 for 1 in vec if i > 3]
[12, 18]

Hart, Siirola, Watson, p. 1 ational
art, Siirola, Watson, p. 19 Laboratories

('
~ Things You Might Find Odd and/or Useful

 Indentation is important

« Shallow vs. deep copy

 Variables are passed “by reference”

* (so) There are often many function return values
* First class functions (and objects)

« Mutable vs. immutable; defaults:
— Strings: immutable
— Integers: immutable
— Objects: mutable

Hart, Siirola, Watson, p. 2 ational
art, Siirola, Watson, p. 20 Laboratories

';,'
Two Things You Might Find Very Odd

« Python is (very) weakly typed

* People get extremely excited about it

Hart, Siirola, Watson, p. 21 ational
P Laboratories

A4
| We Believe the Turing-Church Conjecture!!l!

» Everything algorithmically computable is also
computable by a Turing machine
— You probably don’t want to program a Turing machine

« But we really value our time
— Hence, our primary interest in Python

e Questions?

Hart, Siirola, Watson, p. 22 ational
P Laboratories

i 3. Fundamental Pyomo Components

« Pyomo is an object model for describing optimization
problems

Model

Hart, Siirola, Watson, p. 23

Set <
S ct T
Param <=— |||
Var SN
Var ——
Constraint F---f-------1-

domain

domain

bounds

domain

bounds

bounds

“-| expression

@)

Sandia
National
Laboratories

A
¥ Getting Started: the Model

from coopr.pyomo import * < Every Pyomo model starts

with this; it tells Python to

model = ConcreteModel() load the Pyomo Modeling
A T environment

Create an instance of a Concrete model
* Concrete models are immediately constructed
» Data must be present at the time components
are defined

Local variable to hold the model we are about to construct
« While not required, by convention we use “mode1”
* If you choose to name your model something else,
you will need to tell the Pyomo script the object
name through the command line

Hart, Siirola, Watson, p. 24 ational
@ P Laboratories

S
" Populating the Model: Variables

e Scalar variables
model.a_variable = var(within = NonNegativeReals)

A A A
The name you assign the “within” is optional Several pre-
object to becomes the and sets the variable defined domains,
object’s name, and must be domain (“domain” is e.g., “Binary”
unique in any given model. an alias for “within”)

model.a_variable = Var(bo%pds = (0, None))

Same as above: “domain” is assumed to be Reals if missing

* Indexed variables ¥ The indexes are any iteratable object,
model.a_vector var (IDX) e.g., list or Set

model.a_matrix = var(IDX_A, IDX_B)

Hart, Siirola, Watson, p. 25 ational
P Laboratories

A4
| Generating and Managing Indices: Sets

« Any iterable object can be an index, e.g., lists:
- IDX_a = [1,2,5]

- DATA = {1: 10, 2: 21, 5:42%};
IDX_b = DATA.keys()

« Sets: objects for managing multidimensional indices
— model.IDX = Set(initialize = [1,2,5])

0\

Like, indices, Sets can be initialized from any iterable

- model.IDX = Set([1,2,5])
A

Note: This doesn’t do what you want.
This creates a 3-member indexed set, where each set is empty.

Hart, Siirola, Watson, p. 26 ational
art, Siirola, Watson, p L e

4‘ Multidimensional Sets

» Sets support efficient higher-dimensional indices
model.IDX = Set(initialize=[1,2,5])
model.IDX2 = model.IDX * model.IDX

0\

This creates a virtual 2-D matrix index

» Creating sparse sets
model.IDX = Set(initialize=[1,2,5])
def lower_tri_filter(model, i, j):
return j <= 1
model.IDX2 = Set(1nitialize = model.IDX * model.IDX,
filter = Tower_tri_filter)

0\

The filter returns True if the element is in the set; False otherwise.

Hart, Siirola, Watson, p. 27 ational
P Laboratories

A4
| Defining the Problem: Consftraints

model.IDX = Set(initialize=range(100))

model.a = var()

model.b = var(IDX)

model.cl = Constraint(
expr

“eXpr” can be an expression,

or any function-like object that
returns an expression

model.c2

0\

Python list comprehensions are
very common for working
over indexed variables

Constraint(expr

“eXpr” can also be a tuple:

* 3-tuple specifies (LB, expr, UB)
» 2-tuple specifies an equality constraint.

Hart, Siirola, Watson, p. 28

sum(model.b[i] for i in model.IDX) <= model.a)

(None, model.a + model.b, 1))

Sandia
National
Laboratories

= d
Lists of Constraints

model.IDX = Set(initialize=range(10))
model.b = var(model.IDX)
model.c3 = ConstraintList()

for i in model.IDX:
model.c3.add((model.b[i] - 1) ** 2 <=1)
A

“add” adds a single new constraint to the list.
The constraints need not be related

Hart, Siirola, Watson, p. 29 ational
art, Siirola, Watson, p L e

A
Indexed Constraints and rules

model.IDX = Set(initialize=range(5))
model.a = var(model.IDX)
model.b = var()
def c4_rule(model, 1):
return model.a[i] + model.b <=1
model.c4 = Constraint(model.IDX, rule = c4_rule)

A
For indexed constraints, you provide a “rule” (function) that
returns an expression (or tuple) for each index.

NB: if you omit the “rule”, Pyomo automatically looks for a
function “<constraint name>_rule”

model.IDX2 = model.IDX * model.IDx | Each dimension of each index is
def c5_rule(model, i, j, k): <«—— @&separate argument to the rule

return model.a[i1] + model.a[j] + model.al[k] <=1
model.c5 constraint(model.IDX2, model.IDX, rule=c5_rule)

Hart, Siirola, Watson, p. 30 ational
P Laboratories

i Defining the Objective

» Objectives are a special case of Constraint

model.IDX = Set(initialize=range(100))

model.b = var(IDX)
model.obj = Objective(

expr = sum(model.b[1] for 1 in model.IDX)

sense = minimize)
If “sense” is omitted, Pyomo
assumes minimization

Hart, Siirola, Watson, p. 31

T

Note that the Objective expression
1s not a relational expression

@)

Sandia
National
Laboratories

';,'
4. Putting It All Together: Concrete p-Median

min Z d, . X,

s.t. an,m =1 VmeM

Hart, Siirola, Watson, p. 32 ational
art, Siirola, Watson, p L e

\

Concrete p-Median (1)

from coopr.pyomo import *
import random
random. seed (1000)

1 n
w oY U

o vV<Z

{ (n,m): random.uniform(1.0,2.0)
for n in range(N) for m in range(Mm) }

model = ConcreteModel ()
model.Locations = RangeSet(1,N)
model.Customers = RangeSet(1,M)

model.x = var(model.Locations, model.Customers,
bounds=(0.0,1.0))

model.y = var(model.Locations, within=Binary)

Hart, Siirola, Watson, p. 33 ational
art, Siirola, Watson, p L e

Concrete p-Median (2)

model.obj = Objective(expr = sum(d[n,m]*model.x[n,m]
for n in model.Locations for m in model.Customers))

model.num_facilities = Constraint(
expr=sum(model.y[n] for n in model.Locations) == P)

model.single_x = ConstraintList()

for m in model.Customers:
model.single_x.add(

sum(model.x[n,m] for n in model.Locations) == 1.0)

model.bound_y = ConstraintList()

for n in model.Locations:
for m in model.Customers:
model .bound_y.add(model.x[n,m] <= model.y[n])

Hart, Siirola, Watson, p. 34 ational
art, Siirola, Watson, p L e

A
In Class Exercise: Concrete Knapsack

N
max Zvi X, Item Weight Value

i=1 hammer 5 8

N < wrench 7 3
S.L. :E:vwx%'—lwzmx screwdriver 4 6

i=1

towel 3 11
x, €10,1}

Syntax reminders:

ConcreteModel ()

var([index, ..], [within=domain], [bounds=(lower,upper)])

Constraint([index, ..], [expr=expression/rule=function])

constraintList(); c.add(expression)

Objective(sense={maximize[minimize},
expr=expression/rule=function) -

ndia

Hart, Siirola, Watson, p. 35 National
P @ Laboratories

Concrete Knapsack: Solution

from coopr.pyomo import *

v = {'hammer':8, 'wrench':3, 'screwdriver':6, 'towel':11}
w = {"hammer':5, 'wrench':7, 'screwdriver':4, 'towel':3}
wW_max = 14

model = ConcreteModel ()
model.ITEMS = Set(initialize=v.keys())
model.x = var(model.ITEMS, within=Binary)

model.value = Objective(
expr = sum(v[i]*model.x[1] for 1 in model.ITEMS),
sense = maximize)

model.weight = Constraint(

expr = sum(w[i]*model.x[1] for i in model.ITEMS) <= W_max)

Hart, Siirola, Watson, p. 36

Sandia
National
Laboratories

i 5: Abstract Modeling

Hart, Siirola, Watson, p. 37 ational
P Laboratories

A4
| Importing Data: Parameters

e Scalar numeric values
model.a_parameter = Param(initialize = 42)

1)

Provide an (initial) value of 42 for the parameter

* Indexed numeric values

model.a_param_vec = Param(IDX,
initialize = data)
A

“data” must be a dictionary(*) of index
keys to values because all sets are assumed
to be unordered

(*) — actually, it must define _ getitem (),
but that only really matters to Python geeks

Hart, Siirola, Watson, p. 38 ational
art, Siirola, Watson, p L e

| i Data Sources

« Data is imported from “. dat” file
— Format similar to AMPL style
— Explicit data from “param” declarations

— External data through “1import” declarations:

» Excel
e.g., import ABCD.xls range=ABCD : Z=[A, B, C] Y=D ;

 Databases

e.g., import “DBQ=diet.mdb” using=pyodbc query="SELECT
FOOD, cost, f_ min, f_max from Food” : [FOOD] costf minf _max ;

Hart, Siirola, Watson, p. 39 ational
P Laboratories

Abstract p-Median (1)

from coopr.pyomo import *

import random
random.seed(1000)
model = AbstractModel ()

model.N = Param(within=PositiveIntegers)
model.Locations = RangeSet(1l,model.N)
model.P = Param(within=RangeSet(1,model.N))
model.M = Param(within=PositiveIntegers)
model.Customers = RangeSet(1l,model.M)

model.d = Param(model.Locations, model.Customers, rule=lambda
n, m, model : random.uniform(1.0,2.0), within=Reals)

Hart, Siirola, Watson, p. 40 ational
art, Siirola, Watson, p L e

Abstract p-Median (2)

model. x

Var(model.Locations, model.Customers, bounds=(0.0,1.0))

model.y = Var(model.Locations, within=Binary)

def rule(model):
return sum((model.d[n,m]*model.x[n,m]
for n in model.Locations for m in model.Customers))
model.obj = Objective(rule=rule)

def rule(model, m):
return (sum((model.x[n,m] for n in model.Locations)), 1.0)
model.single x = Constraint(model.Customers, rule=rule)

def rule(model, n,m):
return (None, model.x[n,m] - model.y[n], ©.0)

model.bound y = Constraint(model.Locations, model.Customers, rule=rule)

def rule(model):
return (sum((model.y[n] for n in model.Locations)) - model.P, 0.90)
model.num_facilities = Constraint(rule=rule)

Hart, Siirola, Watson, p. 41 ational
P Laboratories

’ i Abstract p-Median (3)

10;
param M := 6;

param N :

param P := 3;

Hart, Siirola, Watson, p. 42

@)

Sandia
National
Laboratories

A
In Class Exercise: Abstract Knapsack

N
max Zvi X, Item Weight Value

i=1 hammer 5 8

N < wrench 7 3
S.L. :E:vwx%'—lwzmx screwdriver 4 6

i=1

towel 3 11
x, €10,1}

Syntax reminders:
AbstractModel ()
var([index, ..], [within=domain], [bounds=(lower,upper)])
Constraint([index, ..], [expr=expression/rule=function])
constraintList(); c.add(expression)
Objective(sense={maximize[minimize},
expr=expression/rule=function)

Hart, Siirola, Watson, p. 43 ational
P Laboratories

Abstract Knapsack: Solution

from coopr.pyomo import *

mode] = AbstractModel ()

model.ITEMS = Set()

model.v = Param(model.ITEMS, within=PositiveReals)
model.w = Param(model.ITEMS, within=PositiveReals)
model.w_max = Param(within=PositiveReals)

model . x = var(model.ITEMS, within=Binary)

def value_rule(model):
return sum(model.v[i]*model.x[1] for i in model.ITEMS)
model.value = Objective(rule=value_rule, sense=maximize)

def weight_rule(model):
return sum(model.w[i]*model.x[1] for i in model.ITEMS) \
<= model.w_max
model.weight = Constraint(rule=weight_rule)

Hart, Siirola, Watson, p. 44 ational
P Laboratories

Abstract Knapsack: Solution Data

set ITEMS := hammer wrench screwdriver towel ;

param: VvV w :=
hammer 8 5
wrench 3 7
screwdriver 6 4
towel 11 3;

param W_max := 14;

Hart, Siirola, Watson, p. 45

@)

Sandia
National
Laboratories

A4
| 6: Pyomo and Python Efficiency

« Being embedded in a high-level (and interpreted)
programming language can present challenges
— Inability to constrain syntax => users have many guns

« Some of the blame can be placed on Python
— But a lot can be blamed on Pyomo

Hart, Siirola, Watson, p. 46 ational
art, Siirola, Watson, p L e

What are reasonable performance expectations?

« Python is a byte-compiled scripting language
— and Pyomo is pure Python
— ...SO expectations were not high
— ...and raw speed has never been a goal!

« Early experiences bore this out... in November, 2010:
— p-median facility location

* AMPL model construction time: ~4 seconds

« Pyomo model construction time: >2000 seconds
— Logistics disruption modeling

* GAMS solution time: ~20 seconds

* Pyomo solution time: >200 seconds

 ...but the gap is closing... in Coopr 3.2:
— p-median facility location: ~36 seconds
— Logistics disruption modeling: ~25 seconds

Hart, Siirola, Wat , p. 47 tom i
art, Siirola, Watson, p Laboratories

] ;.'
Managing performance (how not to shoot yourself)

« Expression generation; consider:

min Z Z d x ., nelLocations,me Customers
n m

Hart, Siirola, Watson, p. 48 ational
art, Siirola, Watson, p L e

\

Managing performance (how not to shoot yourself)

« Expression generation; consider:

min Z Z X ., ne Locations, m € Customers

def rulel(model): e
ans = 0
for n in model.Locations:
for m in model.Customers:
ans = ans + model.d[n,m]*model.x[n,m]
return ans

Hart, Siirola, Watson, p. 49 National

model.obj = Objective(rule=) Sandia
@ Laboratories

\

Managing performance (how not to shoot yourself)

« Expression generation; consider:

min Z Z d x ., nelLocations,me Customers
n m

def rule2(model):
ans = 0
for n in model.Locations:
for m in model.Customers:
ans += model.d[n,m]*model.x[n,m]
return ans

Hart, Siirola, Watson, p. 50 National

model.obj = Objective(rule=) Sandia
@ Laboratories

\

Managing performance (how not to shoot yourself)

« Expression generation; consider:

min Z Z d x ., nelLocations,me Customers
n m

def rule3(model):
return sum([model.d[n,m]*model.x[n,m]
for n in model.Locations for m in model.Customers])

Hart, Siirola, Watson, p. 51 National

model.obj = Objective(rule=) Sandia
@ Laboratories

\

Managing performance (how not to shoot yourself)

« Expression generation; consider:

min Z Z d x ., nelLocations,me Customers
n m

def rule4(model):
return sum(model.d[n,m]*model.x[n,m]
for n in model.Locations for m in model.Customers)

Hart, Siirola, Watson, p. 52 National

model.obj = Objective(rule=) Sandia
@ Laboratories

Managing performance (how not to shoot yourself)

« Expression generation; consider:
min Z Z wmXnms M€ Locations, m € Customers

def rulel(model): nem
ans = 0
for n in model.Locations:
for m in model.Customers: /[Il =m=1..640] \
ans = ans + model.d[n,m]*model.x[n,m]
return ans rulel: >>10000 sec
def rule2(model): rule2: 9.0 sec
ans = 0
for n in model.Locations: rule3: 14.6 sec
for m in model.Customers: led- 2.0
ans += model.d[n,m]*model.x[n,m] \\{U.C . .7 S€C 4//

return ans

def rule3(model):
return sum([model.d[n,m]*model.x[n,m]
for n in model.Locations for m in model.Customers])

def rule4(model):
return sum(model.d[n,m]*model.x[n,m]
for n in model.Locations for m in model.Customers)

Hart, Siirola, Watson, p. 53 National

model.obj = Objective(rule=) Sandia
@ Laboratories

Managing performance (how not to shoot yourself)

« Sparse data; consider:
Zanmxm <b, VneN
meM ,

model.a = Param(model.N, model.M, default=0)

def rulel(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n])

(.)

For n=1..10,m=1..1e5, 4% nonzero,

25.5 seconds to generate the constraint
le5 terms in the constraint (dense!!)

- J

model.C = Constraint(model.N, rule=)

Hart, Siirola, Watson, p. 54 ational
art, Siirola, Watson, p L e

Managing performance (how not to shoot yourself)

« Sparse data; consider:
Zan,mxm <b, VneN

meM

model.a = Param(model.N, model.M, default=0)

def rule2(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if model.a[n,m] != 0)

For n=1..10,m=1..1e5, 4% nonzero,

5 seconds slower, and still dense!

model.C = Constraint(model.N, rule=)

Hart, Siirola, Watson, p. 55 ational
art, Siirola, Watson, p L e

\

Managing performance (how not to shoot yourself)

« Sparse data; consider:
Zan,mxm <b, VneN

meM

model.a = Param(model.N, model.M, default=0)

def rule3(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if value(model.a[n,m]) != 0)

def rule4(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if model.a[n,m].value != 0)

model.C = Constraint(model.N, rule=)

Hart, Siirola, Watson, p. 56 ational
art, Siirola, Watson, p L e

Managing performance (how not to shoot yourself)

« Sparse data; consider:
Zan,mxm <b, VneN

meM

model.a = Param(model.N, model.M, default=0)

def rulel(model,n):
return sum(model.a[n,m] * model.x[m] for m in

def rule2(model,n):
return sum(model.a[n,m] * model.x[m] for m 1in

if model.a[n,m] != 0)

def rule3(model,n):
return sum(model.a[n,m] * model.x[m] for m 1in

if value(model.a[n,m]) != 0)

def rule4(model,n):
return sum(model.a[n,m] * model.x[m] for m 1in

if model.a[n,m].value !'= 0)

model.C = Constraint(model.N, rule=)

Hart, Siirola, Watson, p. 57

ma

/[n= 1..10,m = 1..165,\

4% fill]

rulel: 25.5 sec
rule2: 30.5 sec
rule3: 7.6 sec

Qule4: 5.7 sec

)

model.M) <= model.b[n]

model.M) <= model.b[n]

model.M) <= model.b[n]

Sandia
National
Laboratories

] ;.'
Managing performance (how not to shoot yourself)

« Sparse constraints; consider:
storage, , , = storage, , , , + production, pd

V t e[dStart,,dEnd], p € Products, d € Disruptions

Hart, Siirola, Watson, p. 58 ational
P Laboratories

] ;.'
Managing performance (how not to shoot yourself)

« Sparse data; consider:
Zan,mxm <b, VneN

meM

Hart, Siirola, Watson, p. 59 ational
P Laboratories

Managing performance (how not to shoot yourself)

« Sparse constraints; consider:
storage, , , = storage, , , , + production, pd

V t e[dStart,,dEnd], p € Products, d € Disruptions

def rulel(model,t,d,p):
if t < model.dstart[d] or t > model.dEnd[d]:
return Constraint.Skip
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

model.Cl = Constraint(model.TIME, model.DISRUPTIONS, model.PRODUCTS, rule=rulel)

Hart, Siirola, Watson, p. 60 ational
art, Siirola, Watson, p L e

Managing performance (how not to shoot yourself)

« Sparse constraints; consider:
storage, , , = storage, , , , + production, oo

3

V t e[dStart,,dEnd], p € Products, d € Disruptions

def rule2(model,t,d,p):
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

def _filter2(model,t,d,p):
return t >= model.dstart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set(model.TIME * model.DISRUPTIONS * model.PRODUCTS,
filter=_filter2)

model.C2 = Constraint(model.ACTIVE_DISRUPTIONS, rule=rule2)

Hart, Siirola, Watson, p. 61 ational
art, Siirola, Watson, p L e

Managing performance (how not to shoot yourself)

« Sparse constraints; consider:
storage, , , = storage, , , , + production, oo

3

V t e[dStart,,dEnd], p € Products, d € Disruptions

def rule2(model,t,d,p):
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

def _filter3(model,t,d):
return t >= model.dStart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set(model.TIME * model.DISRUPTIONS, filter=_filter3)

model.C3 = Constraint(model.ACTIVE_DISRUPTIONS, model.PRODUCTS, rule=rule2) Sani
ndia

Hart, Siirola, Watson, p. 62 National
P Laboratories

Managing performance (how not to shoot yourself)

 Sparse constraints; consider: /[t: d=1.250, N
storage, , , = storage,_, , +pr0ductlon p=1..10,

3

V t e|dStart,,dEnd], p € Products t*d =2% fill]

def rulel(model,t,d,p): Cl: 19.8 sec
if t < model.dstart[d] or t > model.dEnd[d]:
return Constraint.Skip C2 255 SCC

return model.storage[t,p,d] == model.storage[t-1,y

model.Cl = Constraint(model.TIME, model.DISRUPTIONS, >\ C3 32 SCC /

def rule2(model,t,d,p):
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

def _filter2(model,t,d,p):
return t >= model.dstart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set(model.TIME * model.DISRUPTIONS * model.PRODUCTS,
filter=_filter2)

model.C2 = Constraint(model.ACTIVE_DISRUPTIONS, rule=rule2)
def _filter3(model,t,d):
return t >= model.dStart[d] and t <= model.dEnd[d]
model.ACTIVE_DISRUPTIONS = Set(model.TIME * model.DISRUPTIONS, filter=_filter3)

model.C3 = Constraint(model.ACTIVE_DISRUPTIONS, model.PRODUCTS, rule=rule2) Sani
ndia

Hart, Siirola, Watson, p. 63 National

Laboratories

A4
| The Performance “Elephant”: Memory

* Known issue ...
— Python uses a fairly heavy-weight object model
— “Significant” recent improvements in low-level core components
« >50% over a year ago

— But...
» 640 x 640 p-median problem still consumes ~1.5 GB.

* Focus of current efforts, with several more
enhancements on the horizon.

Hart, Siirola, Watson, p. 64 ational
art, Siirola, Watson, p L e

| i 7. PySP: Stochastic Programming in Python

« Constructing the deterministic scenario model

« Specifying the scenario tree
» Specifying scenario instance data

» Creating and solving the extensive form

Hart, Siirola, Watson, p. 65 ational
P Laboratories

= Ad < PyEP
Ve

onstructing and Solving Block-Diagonal Models

« PySP: Stochastic Programming in Python
— Begin with a deterministic (Pyomo) system model
— Annotate model with data that defines the scenario(*) tree
— Leverage automatic transformation, model decomposition

« Automated solution strategies

— Solve the Extensive Form — Decompose (Progressive Hedging)
* Replicate deterministic model * Replicate deterministic model
« Form nonanticipitivity constraints * Duplicate complicating variables
« Send to solver » Solve scenarios independently

* Blend complicating variables

» Weight scenarios to encourage
convergence

* lterate

Hart, Siirola, Watson, p. 66 ational
P Laboratories

PySP: Formulating the System Model (1)

e
w

from coopr.pyomo import
model = AbstractModel()

Parameters

model.CROPS = Set()

model.TOTAL_ACREAGE = Param(within=PositiveReals)

model.PriceQuota = Param(model.CROPS, within=PositiveReals)
modeTl.SubQuotaSellingPrice = Param(model.CROPS, within=PositiveReals)
model.SuperQuotasellingPrice = Param(model.CROPS)
model.CattleFeedRequirement = Param(model.CROPS, within=NonNegativeReals)
model.PurchasePrice = Param(model.CROPS, within=PositiveReals)
model.PlantingCostPerAcre = Param(model.CROPS, within=PositiveReals)
model.Yield = Param(model.CROPS, within=NonNegativeReals)

variables

model.DevotedAcreage = Vvar(model.CROPS, bounds=(0.0, model.TOTAL_ACREAGE))
model.QuantitySubQuotasold = var(model.CROPS, bounds=(0.0, None))
model.QuantitySuperQuotasold = var(model.CROPS, bounds=(0.0, None))
model.QuantityPurchased = var(model.CROPS, bounds=(0.0, None))
model.FirstStageCost = var()

model.SecondStageCost = var()

Sandia
. ' , Nationa
Hart, Siirola, Watson, p. 67 Birge and Louveaux'’s (1997) Farmer Example @ Laboratories

\

PySP: Formulating the System Model (2)

Constraints
def ConstrainTotalAcreage_rule(model):
return summation(model.DevotedAcreage) <= model.TOTAL_ACREAGE

model.ConstrainTotalAcreage = Constraint()

def EnforceCattleFeedRequirement_rule(model, 1i):
return model.CattleFeedRequirement[i] <= (model.vyield[i] \
* model.DevotedAcreage[i]) + model.QuantityPurchased[i] \
- model.QuantitySubQuotasold[i] - model.QuantitySuperQuotasSold[i]

model.EnforceCattleFeedRequirement = Constraint(model.CROPS)

def LimitAmountSold_rule(model, 1i):
return model.QuantitySubQuotaSold[i] + model.QuantitySuperQuotaSold[i] \
- (model.vyield[i] * model.DevotedAcreage[i]) <= 0.0

model.LimitAmountSold = Constraint(model.CROPS)

def EnforceQuotas_rule(model, 1i):
return(0.0, model.QuantitySubQuotaSold[i], model.PriceQuotal[i])

model.EnforceQuotas = Constraint(model.CROPS)

Sandia
. ' , Nationa
Hart, Siirola, Watson, p. 68 Birge and Louveaux'’s (1997) Farmer Example @ Laboratories

PySP: Formulating the System Model (3)

Stage-specific cost computations

def ComputeFirstStageCost_rule(model):
return 0.0 == model.FirstStageCost \
- summation(model.PlantingCostPerAcre, model.DevotedAcreage)

model.ComputeFirstStageCost = Constraint()

def ComputeSecondStageCost_rule(model):
expr = summation(model.PurchasePrice, model.QuantityPurchased)
expr -= summation(model.SubQuotasellingPrice, model.QuantitySubQuotasold)
expr -= summation(model.SuperQuotaSellingPrice, model.QuantitySuperQuotaSold)
return(model.SecondStageCost - expr) == 0.0

model .ComputeSecondStageCost = Constraint()

Objective
def Total_Cost_oObjective_rule(model):
return model.FirstStageCost + model.SecondStageCost

model.Total_Cost_Objective = Objective(sense=minimize)

Sandia
. ' , Nationa
Hart, Siirola, Watson, p. 69 Birge and Louveaux'’s (1997) Farmer Example @ Laboratories

PySP: Specifying the Scenario Tree

set Stages := FirstStage SecondStage ;

set Nodes := RootNode
BelowAverageNode
AverageNode
AboveAverageNode ;

param NodeStage := RootNode FirstStage
BelowAverageNode SecondStage
AverageNode SecondStage

AboveAverageNode SecondStage ;

set Children[RootNode] := BelowAverageNode
AverageNode
AboveAverageNode ;

param ConditionalProbability := RootNode
BelowAverageNode
AverageNode
AboveAverageNode

set Scenarios := BelowAverageScenario
AverageScenario
AboveAverageScenario ;

param ScenarioLeafNode :=

1.0

0.33333333
0.33333334
0.33333333

BelowAverageScenario BelowAverageNode
Averagescenario AverageNode
AboveAverageScenario AboveAverageNode ;

set Stagevariables[FirstStage] := DevotedAcreagel[*] ;

set Stagevariables[SecondStage] := QuantitySubQuotaSold[*]
QuantitySuperQuotasold[*]
QuantityPurchased[*] ;

param StageCostvariable := FirstStage FirstStagecost
SecondStage SecondStageCost ;

Hart, Siirola, Watson, p. 70

V
- A
: PySP: Specifying the Scenario Instance Data

« Two methods are available to specify scenario data

— Scenario-based
— Node-based

* In the scenario-based approach, a single and complete .dat file
is specified for each individual scenario

— Redundant, but straightforward if computer-generated

* In the node-based approach, a single .dat file is specified for
each node in the scenario tree

— Maximally compact, but requires some book-keeping

Hart, Siirola, Watson, p. 71 ational
P Laboratories

V
- A
Writing and Solving the Extensive Form (1)

* Now that you have a stochastic programming model in PySP...

« Step #1: Write the extensive form and hope that your favorite solver can
actually solve it

— Fantastic if it works
— But often it doesn’t

* In PySP, the runef script is provided to both write and solve the
extensive form of a stochastic programming model

* The basic command-line;

runef --model-directory=models \
--instance-directory=scenariodata \
--solve

Hart, Siirola, Watson, p. 72 @

Sandia
National
Laboratories

Writing and Solving the Extensive Form (2)

« After solution, you get:

Tree Nodes:

Name=AboveAverageNode

Stage=SecondStage

Parent=RootNode

variables:
QuantitySubQuotaSold[CORN]=48.0
QuantitySubQuotaSold[SUGAR_BEETS]=6000.0
QuantitySubQuotaSold[wWHEAT]=310.0

Name=AverageNode

Stage=SecondStage

Parent=RootNode

variables:
QuantitySubQuotaSold[SUGAR_BEETS]=5000.0
QuantitySubQuotaSold[WHEAT]=225.0

Name=BelowAverageNode

Stage=SecondStage

Parent=RootNode

variables:
QuantitySubQuotaSold[SUGAR_BEETS]=4000.0
QuantitySubQuotaSold[wWHEAT]=140.0
QuantityPurchased[CORN]=48.0

Name=RootNode

Stage=FirstStage

Parent=None

variables:
DevotedAcreage[CORN]=80.0
DevotedAcreage[SUGAR_BEETS]=250.0
DevotedAcreage[WHEAT]=170.0

Hart, Siirola, Watson, p. 73

@)

Sandia
National
Laboratories

A
In-Class Exercise: Stochastic Knapsack

« Extend the (abstract) deterministic knapsack models to
create and solve a stochastic knapsack problem

e Scenarios
— Random values/profits — fixed weights!
— 3 scenarios is sufficient for the exercise

 Scenario Tree

« Solve with runef script
— runef -m your-dir -i your-dir --solve -solver=glpk

Hart, Siirola, Watson, p. 74 ational
P Laboratories

A4
| 8. Advanced Topics

* Lots of things that we would like to talk about
— But we assume we're already out of time

« Examples of advanced topics
— Generalized Disjunctive Programming
— Blocks and connectors
— External data sources
— Parallelization with Pyro
— Non-linear programming and the AMPL solver library interface
— Scripting for complex workflows

Hart, Siirola, Watson, p. 75 ational
art, Siirola, Watson, p L e

| i Thanks! Please Contribute!

* Now that you actually know something about Pyomo

* Please go off and do great things

« \We welcome contributions
— Bug reports
— Extensions
— Links to your projects that use Coopr/Pyomo
— Source code
— Documentation

Hart, Siirola, Watson, p. 7 ational
art, Siirola, Watson, p. 76 Laboratories

