
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's

National Nuclear Security Administration under contract DE-AC04-94AL85000.

Using Python and the Algebraic Modeling Language
Pyomo to Specify, Solve, and Analyze Mathematical

Programs

John D. Siirola and Jean-Paul Watson

Discrete Math and Complex Systems Department

Sandia National Laboratories

Albuquerque, NM USA

David Woodruff

Graduate School of Management

University of California Davis, USA

SAND2012-9471P

Hart, Siirola, Watson, p. 2

0. Do You Have Pyomo Installed and Working?

• An interlude

– But an important pre-requisite for what follows!

• If you don’t:

– Download & Install Python 2.7 (2.6 is also acceptable)

• http://python.org/

• If you are on Windows:

– Use Python 2.7

– Download & install Coopr

• http://software.sandia.gov/trac/coopr/downloader

• Linux / MacOS: coopr_install / coopr_votd

• Windows: Coopr_*_setup.exe

– Download & install “a solver”:

• glpk, cbc, ipopt are good starting points

http://software.sandia.gov/trac/coopr/downloader
http://python.org/

Hart, Siirola, Watson, p. 3

1. Introduction to Pyomo

• Three really good questions:
– Why another Algebraic Modeling Language (AML)?

– Why Python?

– Why open-source?

• Coopr: Software library infrastructure

• Coopr: Team overview and collaborators / users

• Where to find more information…

Hart, Siirola, Watson, p. 4

Why another AML: Improve our productivity

• Our initial objective was not to write another AML
– However it ended up being a necessary prerequisite

• What we needed from a modeling environment:
– Support rapid algorithm prototyping, development, and extension

– Extensible to new modeling constructs (e.g., SP, GDP)

– Facilitate hybrid approaches:

• Hybrid models

• Hybrid algorithms

• Heuristic meta-algorithms

– Transparent and accessible internal data structures

– Interoperability (models, solvers, platforms, data sources)

– Easily transferrable to non-expert user communities

Hart, Siirola, Watson, p. 5

Why Python: it meets our needs

• Python provides a full-featured object-oriented environment

– Classes, inheritance, namespaces, exceptions, …

– Interactive interpreter

• Python facilitates rapid prototyping and doesn’t require a CS degree

– Important for modelers and general productivity

• Python ships with a huge number of very useful libraries, including

– Serialization, distributed computation, db/Excel interfaces, …

– SciPy and NumPy

• Python has excellent support for dynamic loading

– Critical for integrating 3rd-party extensions, custom user code

• Python introspection facilitates the development of generic algorithms

Hart, Siirola, Watson, p. 6

Why open source: we want your involvement

• Transparency and reliability

• Foster community involvement
– Extend the modeling language

– Develop new solvers / algorithms

– Interface with additional external utilities

– “Stone Soup” model

• Flexible licensing
– Coopr/Pyomo released under 3-clause BSD license

Hart, Siirola, Watson, p. 7

GLPK

PYthon Optimization Modeling Objects

Coopr: a COmmon Optimization Python Repository

Language Extensions

- Disjunctive Programming

- Stochastic Programming

Decomposition Strategies

- Progressive Hedging

- Generalized Benders

- DIP Interface (coming soon)

CPLEX

Gurobi

Xpress

AMPL Solver Library

CBC

PICO

OpenOptP
lu

gg
ab

le
 S

ol
ve

r
In

te
rf

ac
es

C
or

e
O

pt
im

iz
at

io
n

In
fr

as
tr

uc
tu

re

Ipopt

KNITRO

Coliny

BONMIN

Hart, Siirola, Watson, p. 8

Team, Collaborators, (Known) Users
• Sandia National Laboratories

– Bill Hart

– Jean-Paul Watson

– John Siirola

– David Hart

– Tom Brounstein

• University of California, Davis

– Prof. David L. Woodruff

– Prof. Roger Wets

• Texas A&M University

– Prof. Carl D. Laird

– Daniel Word

– James Young

– Gabe Hackebeil

• Carnegie Mellon University

– Bethany Nicholson

• Texas Tech University

– Zev Friedman

• Rose Hulman Institute

– Tim Ekl

• William & Mary

– Patrick Steele

• North Carolina State

– Kevin Hunter

(Known) users:
- University of California, Davis
- Texas A&M University
- University of Texas
- Rose-Hulman Institute of Technology
- University of Southern California
- George Mason University
- Iowa State University
- N.C. State University
- University of Washington
- Naval Postgraduate School
- Universidad de Santiago de Chile
- University of Pisa
- Lawrence Livermore National Lab
- Los Alamos National Lab

Hart, Siirola, Watson, p. 9

For More Information…

• Project homepage
– http://software.sandia.gov/coopr

• Mailing list
– “coopr-forum” Google Group

– “coopr-dev” Google Group

• “The Book”

• Mathematical Programming Computation papers
– Pyomo: Modeling and Solving Mathematical Programs in Python (Vol. 3, No. 3, 2011)

– PySP: Modeling and Solving Stochastic Programs in Python (To Appear)

Hart, Siirola, Watson, p. 10

2. An Introduction to Python

• Where credit is deserved…
– Professor David Woodruff, University of California Davis

• Just enough Python to get you through the rest of the
Pyomo tutorial

• For more information
– www.python.org

– Any of the great O’Reily books (www.ora.com)

– Any of a zillion on-line tutorials

http://www.ora.com/
http://www.python.org/

Hart, Siirola, Watson, p. 11

Python is a Calculator

• Python is often executed in an interactive mode

• But we don’t do this very often

Hart, Siirola, Watson, p. 12

Python is a Scripting Language

import sys

import os

for run in range(0, 3):

print "Running forestfire.py in run
number", run

os.system(“myopt –r=”+str(run))

Hart, Siirola, Watson, p. 13

Python is a Programming Language

• Lists

• Dictionaries

• Sets and tuples, too

• First-class objects and functions

• (BTW: Python is an interpreted environment)

Hart, Siirola, Watson, p. 14

Lists (And Slicing)

>>> a = ['spam', 'eggs', 100, 1234]

>>> a

['spam', 'eggs', 100, 1234]

>>> a[0]

'spam'

>>> a[-2]

100

>>> a[1:-1]

['eggs', 100]

>>> a[:2] + ['bacon', 2*2]

['spam', 'eggs', 'bacon', 4]

Hart, Siirola, Watson, p. 15

Dictionaries

>>> tel = {'jack': 4098, 'sape': 4139}

>>> tel['guido'] = 4127

>>> tel

{'sape': 4139, 'guido': 4127, 'jack': 4098}

>>> tel['jack']

4098

>>> del tel['sape']

>>> tel['irv'] = 4127

>>> tel

{'guido': 4127, 'irv': 4127, 'jack': 4098}

>>> tel.keys()

['guido', 'irv', 'jack']

>>> 'guido' in tel

True

Hart, Siirola, Watson, p. 16

Functions

>>> def foo(x):

… for I in range(1,x+1):

… print i

>>> foo(2)

1

2

>>> def foo2(x):

… return x*x

>>> foo2(4)

16

Hart, Siirola, Watson, p. 17

Python Provides an Application Development Framework

• Module definitions

• Class constructs

• And lots, lots more…

Hart, Siirola, Watson, p. 18

Python is Pretty Cool (Probably Cooler Than Ruby)

Many in the audience can probably say much more,
but here are some items of note:

• List comprehensions

• Magic methods (lambda functions)

• Very extensive libraries (caveat: not everything is bullet
proof; it is a wild world)
– Exemplars: numpy, scipy, matplotlib

• Pickling (take the state of things and encode it as an
ASCII string; almost (but still, it is pretty cool))

• Introspection
– getattr and setattr

Hart, Siirola, Watson, p. 19

List Comprehensions

>>> vec = [2, 4, 6]

>>> [3*i for i in vec]

[6, 12, 18]

>>> [3*i for i in vec if i > 3]

[12, 18]

Hart, Siirola, Watson, p. 20

Things You Might Find Odd and/or Useful

• Indentation is important

• Shallow vs. deep copy

• Variables are passed “by reference”

• (so) There are often many function return values

• First class functions (and objects)

• Mutable vs. immutable; defaults:
– Strings: immutable

– Integers: immutable

– Objects: mutable

Hart, Siirola, Watson, p. 21

Two Things You Might Find Very Odd

• Python is (very) weakly typed

• People get extremely excited about it

Hart, Siirola, Watson, p. 22

We Believe the Turing-Church Conjecture!!!!

• Everything algorithmically computable is also
computable by a Turing machine
– You probably don’t want to program a Turing machine

• But we really value our time
– Hence, our primary interest in Python

• Questions?

Hart, Siirola, Watson, p. 23

3. Fundamental Pyomo Components

• Pyomo is an object model for describing optimization
problems

Model

Set

Set

Param

Var

Var

Constraint

domain

domain

bounds

domain

bounds

expression

bounds

…

Hart, Siirola, Watson, p. 24

Getting Started: the Model

from coopr.pyomo import *

model = ConcreteModel()

Every Pyomo model starts
with this; it tells Python to
load the Pyomo Modeling
environment

Create an instance of a Concrete model
• Concrete models are immediately constructed
• Data must be present at the time components

are defined

Local variable to hold the model we are about to construct
• While not required, by convention we use “model”
• If you choose to name your model something else,

you will need to tell the Pyomo script the object
name through the command line

Hart, Siirola, Watson, p. 25

Populating the Model: Variables

• Scalar variables
model.a_variable = Var(within = NonNegativeReals)

model.a_variable = Var(bounds = (0, None))

• Indexed variables
model.a_vector = Var(IDX)

model.a_matrix = Var(IDX_A, IDX_B)

The name you assign the
object to becomes the
object’s name, and must be
unique in any given model.

“within” is optional
and sets the variable
domain (“domain” is
an alias for “within”)

Several pre-
defined domains,
e.g., “Binary”

Same as above: “domain” is assumed to be Reals if missing

The indexes are any iteratable object,
e.g., list or Set

Hart, Siirola, Watson, p. 26

Generating and Managing Indices: Sets

• Any iterable object can be an index, e.g., lists:

– IDX_a = [1,2,5]

– DATA = {1: 10, 2: 21, 5:42};
IDX_b = DATA.keys()

• Sets: objects for managing multidimensional indices

– model.IDX = Set(initialize = [1,2,5])

– model.IDX = Set([1,2,5])

Like, indices, Sets can be initialized from any iterable

Note: This doesn’t do what you want.
This creates a 3-member indexed set, where each set is empty.

Hart, Siirola, Watson, p. 27

Multidimensional Sets

• Sets support efficient higher-dimensional indices

model.IDX = Set(initialize=[1,2,5])

model.IDX2 = model.IDX * model.IDX

• Creating sparse sets

model.IDX = Set(initialize=[1,2,5])

def lower_tri_filter(model, i, j):

return j <= i

model.IDX2 = Set(initialize = model.IDX * model.IDX,

filter = lower_tri_filter)

This creates a virtual 2-D matrix index

The filter returns True if the element is in the set; False otherwise.

Hart, Siirola, Watson, p. 28

Defining the Problem: Constraints

model.IDX = Set(initialize=range(100))

model.a = Var()

model.b = Var(IDX)

model.c1 = Constraint(

expr = sum(model.b[i] for i in model.IDX) <= model.a)

model.c2 = Constraint(expr = (None, model.a + model.b, 1))

“expr” can be an expression,
or any function-like object that
returns an expression

“expr” can also be a tuple:
• 3-tuple specifies (LB, expr, UB)
• 2-tuple specifies an equality constraint.

Python list comprehensions are
very common for working
over indexed variables

Hart, Siirola, Watson, p. 29

Lists of Constraints

model.IDX = Set(initialize=range(10))

model.b = Var(model.IDX)

model.c3 = ConstraintList()

for i in model.IDX:

model.c3.add((model.b[i] – i) ** 2 <= 1)

“add” adds a single new constraint to the list.
The constraints need not be related

Hart, Siirola, Watson, p. 30

Indexed Constraints and rules

model.IDX = Set(initialize=range(5))

model.a = Var(model.IDX)

model.b = Var()

def c4_rule(model, i):

return model.a[i] + model.b <= 1

model.c4 = Constraint(model.IDX, rule = c4_rule)

model.IDX2 = model.IDX * model.IDX

def c5_rule(model, i, j, k):

return model.a[i] + model.a[j] + model.a[k] <= 1

model.c5 = Constraint(model.IDX2, model.IDX, rule=c5_rule)

For indexed constraints, you provide a “rule” (function) that
returns an expression (or tuple) for each index.

NB: if you omit the “rule”, Pyomo automatically looks for a
function “<constraint name>_rule”

Each dimension of each index is
a separate argument to the rule

Hart, Siirola, Watson, p. 31

Defining the Objective

• Objectives are a special case of Constraint

model.IDX = Set(initialize=range(100))

model.b = Var(IDX)

model.obj = Objective(

expr = sum(model.b[i] for i in model.IDX)

sense = minimize)

If “sense” is omitted, Pyomo
assumes minimization

Note that the Objective expression
is not a relational expression

Hart, Siirola, Watson, p. 32

4. Putting It All Together: Concrete p-Median

}1,0{10

,

1..

dmin

,

,

,
,mn,





















yx

Py

MmNnyx

Mmxts

x

Nn
n

nmn

Nn
mn

MmNn
mn

Hart, Siirola, Watson, p. 33

Concrete p-Median (1)

from coopr.pyomo import *
import random
random.seed(1000)

N = 5
M = 6
P = 3

d = { (n,m): random.uniform(1.0,2.0)

for n in range(N) for m in range(M) }

model = ConcreteModel()

model.Locations = RangeSet(1,N)

model.Customers = RangeSet(1,M)

model.x = Var(model.Locations, model.Customers,
bounds=(0.0,1.0))

model.y = Var(model.Locations, within=Binary)

Hart, Siirola, Watson, p. 34

Concrete p-Median (2)

model.obj = Objective(expr = sum(d[n,m]*model.x[n,m]
for n in model.Locations for m in model.Customers))

model.num_facilities = Constraint(
expr=sum(model.y[n] for n in model.Locations) == P)

model.single_x = ConstraintList()

for m in model.Customers:
model.single_x.add(

sum(model.x[n,m] for n in model.Locations) == 1.0)

model.bound_y = ConstraintList()

for n in model.Locations:
for m in model.Customers:

model.bound_y.add(model.x[n,m] <= model.y[n])

Hart, Siirola, Watson, p. 35

In Class Exercise: Concrete Knapsack

Item Weight Value

hammer 5 8

wrench 7 3

screwdriver 4 6

towel 3 11}1,0{

..

max

max
1

1











i

N

i
ii

N

i
ii

x

Wxwts

xv

Syntax reminders:
ConcreteModel()

Var([index, …], [within=domain], [bounds=(lower,upper)])

Constraint([index, …], [expr=expression|rule=function])

ConstraintList(); c.add(expression)

Objective(sense={maximize|minimize},

expr=expression|rule=function)

Hart, Siirola, Watson, p. 36

Concrete Knapsack: Solution

from coopr.pyomo import *

v = {'hammer':8, 'wrench':3, 'screwdriver':6, 'towel':11}

w = {'hammer':5, 'wrench':7, 'screwdriver':4, 'towel':3}

W_max = 14

model = ConcreteModel()

model.ITEMS = Set(initialize=v.keys())

model.x = Var(model.ITEMS, within=Binary)

model.value = Objective(

expr = sum(v[i]*model.x[i] for i in model.ITEMS),

sense = maximize)

model.weight = Constraint(

expr = sum(w[i]*model.x[i] for i in model.ITEMS) <= W_max)

Hart, Siirola, Watson, p. 37

5: Abstract Modeling

Hart, Siirola, Watson, p. 38

Importing Data: Parameters

• Scalar numeric values
model.a_parameter = Param(initialize = 42)

• Indexed numeric values
model.a_param_vec = Param(IDX,

initialize = data)

Provide an (initial) value of 42 for the parameter

“data” must be a dictionary(*) of index
keys to values because all sets are assumed
to be unordered

(*) – actually, it must define __getitem__(),
but that only really matters to Python geeks

Hart, Siirola, Watson, p. 39

Data Sources

• Data is imported from “.dat” file

– Format similar to AMPL style

– Explicit data from “param” declarations

– External data through “import” declarations:

• Excel

e.g., import ABCD.xls range=ABCD : Z=[A, B, C] Y=D ;

• Databases

e.g., import “DBQ=diet.mdb” using=pyodbc query=“SELECT
FOOD, cost, f_min, f_max from Food” : [FOOD] cost f_min f_max ;

Hart, Siirola, Watson, p. 40

Abstract p-Median (1)

from coopr.pyomo import *

import random

random.seed(1000)

model = AbstractModel()

model.N = Param(within=PositiveIntegers)

model.Locations = RangeSet(1,model.N)

model.P = Param(within=RangeSet(1,model.N))

model.M = Param(within=PositiveIntegers)

model.Customers = RangeSet(1,model.M)

model.d = Param(model.Locations, model.Customers, rule=lambda
n, m, model : random.uniform(1.0,2.0), within=Reals)

Hart, Siirola, Watson, p. 41

Abstract p-Median (2)
model.x = Var(model.Locations, model.Customers, bounds=(0.0,1.0))

model.y = Var(model.Locations, within=Binary)

def rule(model):

return sum((model.d[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers))

model.obj = Objective(rule=rule)

def rule(model, m):

return (sum((model.x[n,m] for n in model.Locations)), 1.0)

model.single_x = Constraint(model.Customers, rule=rule)

def rule(model, n,m):

return (None, model.x[n,m] - model.y[n], 0.0)

model.bound_y = Constraint(model.Locations, model.Customers, rule=rule)

def rule(model):

return (sum((model.y[n] for n in model.Locations)) - model.P, 0.0)

model.num_facilities = Constraint(rule=rule)

Hart, Siirola, Watson, p. 42

Abstract p-Median (3)

param N := 10;

param M := 6;

param P := 3;

Hart, Siirola, Watson, p. 43

In Class Exercise: Abstract Knapsack

Item Weight Value

hammer 5 8

wrench 7 3

screwdriver 4 6

towel 3 11}1,0{

..

max

max
1

1











i

N

i
ii

N

i
ii

x

Wxwts

xv

Syntax reminders:
AbstractModel()

Var([index, …], [within=domain], [bounds=(lower,upper)])

Constraint([index, …], [expr=expression|rule=function])

ConstraintList(); c.add(expression)

Objective(sense={maximize|minimize},

expr=expression|rule=function)

Hart, Siirola, Watson, p. 44

Abstract Knapsack: Solution

from coopr.pyomo import *

model = AbstractModel()

model.ITEMS = Set()

model.v = Param(model.ITEMS, within=PositiveReals)

model.w = Param(model.ITEMS, within=PositiveReals)

model.W_max = Param(within=PositiveReals)

model.x = Var(model.ITEMS, within=Binary)

def value_rule(model):

return sum(model.v[i]*model.x[i] for i in model.ITEMS)

model.value = Objective(rule=value_rule, sense=maximize)

def weight_rule(model):

return sum(model.w[i]*model.x[i] for i in model.ITEMS) \

<= model.W_max

model.weight = Constraint(rule=weight_rule)

Hart, Siirola, Watson, p. 45

Abstract Knapsack: Solution Data

set ITEMS := hammer wrench screwdriver towel ;

param: v w :=

hammer 8 5

wrench 3 7

screwdriver 6 4

towel 11 3;

param W_max := 14;

Hart, Siirola, Watson, p. 46

6: Pyomo and Python Efficiency

• Being embedded in a high-level (and interpreted)
programming language can present challenges
– Inability to constrain syntax => users have many guns

• Some of the blame can be placed on Python
– But a lot can be blamed on Pyomo

Hart, Siirola, Watson, p. 47

What are reasonable performance expectations?

• Python is a byte-compiled scripting language

– and Pyomo is pure Python

– …so expectations were not high

– …and raw speed has never been a goal!

• Early experiences bore this out… in November, 2010:

– p-median facility location

• AMPL model construction time: ~4 seconds

• Pyomo model construction time: >2000 seconds

– Logistics disruption modeling

• GAMS solution time: ~20 seconds

• Pyomo solution time: >200 seconds

• ...but the gap is closing… in Coopr 3.2:

– p-median facility location: ~36 seconds

– Logistics disruption modeling: ~25 seconds

Hart, Siirola, Watson, p. 48

Managing performance (how not to shoot yourself)

• Expression generation; consider:

CustomersmLocationsnxd
n m

mnmn  ,,min .,

Hart, Siirola, Watson, p. 49

Managing performance (how not to shoot yourself)

• Expression generation; consider:

def rule1(model):
ans = 0
for n in model.Locations:

for m in model.Customers:
ans = ans + model.d[n,m]*model.x[n,m]

return ans

def rule2(model):
ans = 0
for n in model.Locations:

for m in model.Customers:
ans += model.d[n,m]*model.x[n,m]

return ans

def rule3(model):
return sum([model.d[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers])

def rule4(model):
return sum(model.d[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers)

model.obj = Objective(rule=_ruleN)

CustomersmLocationsnxd
n m

mnmn  ,,min .,

Hart, Siirola, Watson, p. 50

Managing performance (how not to shoot yourself)

• Expression generation; consider:

def rule1(model):
ans = 0
for n in model.Locations:

for m in model.Customers:
ans = ans + model.d[n,m]*model.x[n,m]

return ans

def rule2(model):
ans = 0
for n in model.Locations:

for m in model.Customers:
ans += model.d[n,m]*model.x[n,m]

return ans

def rule3(model):
return sum([model.d[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers])

def rule4(model):
return sum(model.d[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers)

model.obj = Objective(rule=_ruleN)

CustomersmLocationsnxd
n m

mnmn  ,,min .,

Hart, Siirola, Watson, p. 51

Managing performance (how not to shoot yourself)

• Expression generation; consider:

def rule1(model):
ans = 0
for n in model.Locations:

for m in model.Customers:
ans = ans + model.d[n,m]*model.x[n,m]

return ans

def rule2(model):
ans = 0
for n in model.Locations:

for m in model.Customers:
ans += model.d[n,m]*model.x[n,m]

return ans

def rule3(model):
return sum([model.d[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers])

def rule4(model):
return sum(model.d[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers)

model.obj = Objective(rule=_ruleN)

CustomersmLocationsnxd
n m

mnmn  ,,min .,

Hart, Siirola, Watson, p. 52

Managing performance (how not to shoot yourself)

• Expression generation; consider:

def rule1(model):
ans = 0
for n in model.Locations:

for m in model.Customers:
ans = ans + model.d[n,m]*model.x[n,m]

return ans

def rule2(model):
ans = 0
for n in model.Locations:

for m in model.Customers:
ans += model.d[n,m]*model.x[n,m]

return ans

def rule3(model):
return sum([model.d[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers])

def rule4(model):
return sum(model.d[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers)

model.obj = Objective(rule=_ruleN)

CustomersmLocationsnxd
n m

mnmn  ,,min .,

Hart, Siirola, Watson, p. 53

Managing performance (how not to shoot yourself)

• Expression generation; consider:

def rule1(model):
ans = 0
for n in model.Locations:

for m in model.Customers:
ans = ans + model.d[n,m]*model.x[n,m]

return ans

def rule2(model):
ans = 0
for n in model.Locations:

for m in model.Customers:
ans += model.d[n,m]*model.x[n,m]

return ans

def rule3(model):
return sum([model.d[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers])

def rule4(model):
return sum(model.d[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers)

model.obj = Objective(rule=_ruleN)

CustomersmLocationsnxd
n m

mnmn  ,,min .,

[n = m = 1..640]

rule1: >>10000 sec
rule2: 9.0 sec
rule3: 14.6 sec
rule4: 8.9 sec

Hart, Siirola, Watson, p. 54

Managing performance (how not to shoot yourself)

• Sparse data; consider:

model.a = Param(model.N, model.M, default=0)

def rule1(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n])

def rule2(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if model.a[n,m] != 0)

def rule3(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if value(model.a[n,m]) != 0)

def rule4(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if model.a[n,m].value != 0)

model.C = Constraint(model.N, rule=_ruleN)

Nnbxa n
Mm

mmn 


,

For n = 1..10, m = 1..1e5, 4% nonzero,

25.5 seconds to generate the constraint
1e5 terms in the constraint (dense!!)

Hart, Siirola, Watson, p. 55

Managing performance (how not to shoot yourself)

• Sparse data; consider:

model.a = Param(model.N, model.M, default=0)

def rule1(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n])

def rule2(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if model.a[n,m] != 0)

def rule3(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if value(model.a[n,m]) != 0)

def rule4(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if model.a[n,m].value != 0)

model.C = Constraint(model.N, rule=_ruleN)

Nnbxa n
Mm

mmn 


,

For n = 1..10, m = 1..1e5, 4% nonzero,

5 seconds slower, and still dense!

Hart, Siirola, Watson, p. 56

Managing performance (how not to shoot yourself)

• Sparse data; consider:

model.a = Param(model.N, model.M, default=0)

def rule1(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n])

def rule2(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if model.a[n,m] != 0)

def rule3(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if value(model.a[n,m]) != 0)

def rule4(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if model.a[n,m].value != 0)

model.C = Constraint(model.N, rule=_ruleN)

Nnbxa n
Mm

mmn 


,

Hart, Siirola, Watson, p. 57

Managing performance (how not to shoot yourself)

• Sparse data; consider:

model.a = Param(model.N, model.M, default=0)

def rule1(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n])

def rule2(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if model.a[n,m] != 0)

def rule3(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if value(model.a[n,m]) != 0)

def rule4(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if model.a[n,m].value != 0)

model.C = Constraint(model.N, rule=_ruleN)

Nnbxa n
Mm

mmn 


,

[n = 1..10, m = 1..1e5,
4% fill]

rule1: 25.5 sec
rule2: 30.5 sec
rule3: 7.6 sec
rule4: 5.7 sec

Hart, Siirola, Watson, p. 58

Managing performance (how not to shoot yourself)

• Sparse constraints; consider:

sDisruptiondProductspdEnddStartt

productionstoragestorage

dd

dptdptdpt



 

,],,[

,,,,1,,

Hart, Siirola, Watson, p. 59

Managing performance (how not to shoot yourself)

• Sparse data; consider:

def rule1(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n])

def rule2(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if model.a[n,m] != 0)

def rule3(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if value(model.a[n,m]) != 0)

def rule4(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if model.a[n,m].value != 0)

model.C = Constraint(model.N, rule=_ruleN)

Nnbxa n
Mm

mmn 


,

Hart, Siirola, Watson, p. 60

Managing performance (how not to shoot yourself)

• Sparse constraints; consider:

def rule1(model,t,d,p):
if t < model.dStart[d] or t > model.dEnd[d]:

return Constraint.Skip
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

model.C1 = Constraint(model.TIME, model.DISRUPTIONS, model.PRODUCTS, rule=rule1)

def rule2(model,t,d,p):
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

def _filter2(model,t,d,p):
return t >= model.dStart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set(model.TIME * model.DISRUPTIONS * model.PRODUCTS,
filter=_filter2)

model.C2 = Constraint(model.ACTIVE_DISRUPTIONS, rule=rule2)

def _filter3(model,t,d):
return t >= model.dStart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set(model.TIME * model.DISRUPTIONS, filter=_filter3)

model.C3 = Constraint(model.ACTIVE_DISRUPTIONS, model.PRODUCTS, rule=rule2)

sDisruptiondProductspdEnddStartt

productionstoragestorage

dd

dptdptdpt



 

,],,[

,,,,1,,

Hart, Siirola, Watson, p. 61

Managing performance (how not to shoot yourself)

• Sparse constraints; consider:

def rule1(model,t,d,p):
if t < model.dStart[d] or t > model.dEnd[d]:

return Constraint.Skip
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

model.C1 = Constraint(model.TIME, model.DISRUPTIONS, model.PRODUCTS, rule=rule1)

def rule2(model,t,d,p):
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

def _filter2(model,t,d,p):
return t >= model.dStart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set(model.TIME * model.DISRUPTIONS * model.PRODUCTS,
filter=_filter2)

model.C2 = Constraint(model.ACTIVE_DISRUPTIONS, rule=rule2)

def _filter3(model,t,d):
return t >= model.dStart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set(model.TIME * model.DISRUPTIONS, filter=_filter3)

model.C3 = Constraint(model.ACTIVE_DISRUPTIONS, model.PRODUCTS, rule=rule2)

sDisruptiondProductspdEnddStartt

productionstoragestorage

dd

dptdptdpt



 

,],,[

,,,,1,,

Hart, Siirola, Watson, p. 62

Managing performance (how not to shoot yourself)

• Sparse constraints; consider:

def rule1(model,t,d,p):
if t < model.dStart[d] or t > model.dEnd[d]:

return Constraint.Skip
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

model.C1 = Constraint(model.TIME, model.DISRUPTIONS, model.PRODUCTS, rule=rule1)

def rule2(model,t,d,p):
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

def _filter2(model,t,d,p):
return t >= model.dStart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set(model.TIME * model.DISRUPTIONS * model.PRODUCTS,
filter=_filter2)

model.C2 = Constraint(model.ACTIVE_DISRUPTIONS, rule=rule2)

def _filter3(model,t,d):
return t >= model.dStart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set(model.TIME * model.DISRUPTIONS, filter=_filter3)

model.C3 = Constraint(model.ACTIVE_DISRUPTIONS, model.PRODUCTS, rule=rule2)

sDisruptiondProductspdEnddStartt

productionstoragestorage

dd

dptdptdpt



 

,],,[

,,,,1,,

Hart, Siirola, Watson, p. 63

Managing performance (how not to shoot yourself)

• Sparse constraints; consider:

def rule1(model,t,d,p):
if t < model.dStart[d] or t > model.dEnd[d]:

return Constraint.Skip
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

model.C1 = Constraint(model.TIME, model.DISRUPTIONS, model.PRODUCTS, rule=rule1)

def rule2(model,t,d,p):
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

def _filter2(model,t,d,p):
return t >= model.dStart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set(model.TIME * model.DISRUPTIONS * model.PRODUCTS,
filter=_filter2)

model.C2 = Constraint(model.ACTIVE_DISRUPTIONS, rule=rule2)

def _filter3(model,t,d):
return t >= model.dStart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set(model.TIME * model.DISRUPTIONS, filter=_filter3)

model.C3 = Constraint(model.ACTIVE_DISRUPTIONS, model.PRODUCTS, rule=rule2)

sDisruptiondProductspdEnddStartt

productionstoragestorage

dd

dptdptdpt



 

,],,[

,,,,1,,

[t = d = 1..250,
p =1..10,
t*d = 2% fill]

C1: 19.8 sec
C2: 25.5 sec
C3: 3.2 sec

Hart, Siirola, Watson, p. 64

The Performance “Elephant”: Memory

• Known issue …
– Python uses a fairly heavy-weight object model

– “Significant” recent improvements in low-level core components

• >50% over a year ago

– But…

• 640 x 640 p-median problem still consumes ~1.5 GB.

• Focus of current efforts, with several more
enhancements on the horizon.

Hart, Siirola, Watson, p. 65

7. PySP: Stochastic Programming in Python

• Constructing the deterministic scenario model

• Specifying the scenario tree

• Specifying scenario instance data

• Creating and solving the extensive form

Hart, Siirola, Watson, p. 66

Constructing and Solving Block-Diagonal Models

• PySP: Stochastic Programming in Python
– Begin with a deterministic (Pyomo) system model

– Annotate model with data that defines the scenario(*) tree

– Leverage automatic transformation, model decomposition

• Automated solution strategies
– Solve the Extensive Form

• Replicate deterministic model

• Form nonanticipitivity constraints

• Send to solver

– Decompose (Progressive Hedging)

• Replicate deterministic model

• Duplicate complicating variables

• Solve scenarios independently

• Blend complicating variables

• Weight scenarios to encourage
convergence

• Iterate

Hart, Siirola, Watson, p. 67

PySP: Formulating the System Model (1)

from coopr.pyomo import *

model = AbstractModel()

Parameters

model.CROPS = Set()

model.TOTAL_ACREAGE = Param(within=PositiveReals)

model.PriceQuota = Param(model.CROPS, within=PositiveReals)

model.SubQuotaSellingPrice = Param(model.CROPS, within=PositiveReals)

model.SuperQuotaSellingPrice = Param(model.CROPS)

model.CattleFeedRequirement = Param(model.CROPS, within=NonNegativeReals)

model.PurchasePrice = Param(model.CROPS, within=PositiveReals)

model.PlantingCostPerAcre = Param(model.CROPS, within=PositiveReals)

model.Yield = Param(model.CROPS, within=NonNegativeReals)

Variables

model.DevotedAcreage = Var(model.CROPS, bounds=(0.0, model.TOTAL_ACREAGE))

model.QuantitySubQuotaSold = Var(model.CROPS, bounds=(0.0, None))

model.QuantitySuperQuotaSold = Var(model.CROPS, bounds=(0.0, None))

model.QuantityPurchased = Var(model.CROPS, bounds=(0.0, None))

model.FirstStageCost = Var()

model.SecondStageCost = Var()

Birge and Louveaux’s (1997) Farmer Example

Hart, Siirola, Watson, p. 68

PySP: Formulating the System Model (2)

Constraints

def ConstrainTotalAcreage_rule(model):

return summation(model.DevotedAcreage) <= model.TOTAL_ACREAGE

model.ConstrainTotalAcreage = Constraint()

def EnforceCattleFeedRequirement_rule(model, i):

return model.CattleFeedRequirement[i] <= (model.Yield[i] \

* model.DevotedAcreage[i]) + model.QuantityPurchased[i] \

- model.QuantitySubQuotaSold[i] - model.QuantitySuperQuotaSold[i]

model.EnforceCattleFeedRequirement = Constraint(model.CROPS)

def LimitAmountSold_rule(model, i):

return model.QuantitySubQuotaSold[i] + model.QuantitySuperQuotaSold[i] \

- (model.Yield[i] * model.DevotedAcreage[i]) <= 0.0

model.LimitAmountSold = Constraint(model.CROPS)

def EnforceQuotas_rule(model, i):

return(0.0, model.QuantitySubQuotaSold[i], model.PriceQuota[i])

model.EnforceQuotas = Constraint(model.CROPS)

Birge and Louveaux’s (1997) Farmer Example

Hart, Siirola, Watson, p. 69

PySP: Formulating the System Model (3)

Stage-specific cost computations

def ComputeFirstStageCost_rule(model):

return 0.0 == model.FirstStageCost \

- summation(model.PlantingCostPerAcre, model.DevotedAcreage)

model.ComputeFirstStageCost = Constraint()

def ComputeSecondStageCost_rule(model):

expr = summation(model.PurchasePrice, model.QuantityPurchased)

expr -= summation(model.SubQuotaSellingPrice, model.QuantitySubQuotaSold)

expr -= summation(model.SuperQuotaSellingPrice, model.QuantitySuperQuotaSold)

return(model.SecondStageCost - expr) == 0.0

model.ComputeSecondStageCost = Constraint()

Objective

def Total_Cost_Objective_rule(model):

return model.FirstStageCost + model.SecondStageCost

model.Total_Cost_Objective = Objective(sense=minimize)

Birge and Louveaux’s (1997) Farmer Example

Hart, Siirola, Watson, p. 70

PySP: Specifying the Scenario Tree
set Stages := FirstStage SecondStage ;

set Nodes := RootNode
BelowAverageNode
AverageNode
AboveAverageNode ;

param NodeStage := RootNode FirstStage
BelowAverageNode SecondStage
AverageNode SecondStage
AboveAverageNode SecondStage ;

set Children[RootNode] := BelowAverageNode
AverageNode
AboveAverageNode ;

param ConditionalProbability := RootNode 1.0
BelowAverageNode 0.33333333
AverageNode 0.33333334
AboveAverageNode 0.33333333 ;

set Scenarios := BelowAverageScenario
AverageScenario
AboveAverageScenario ;

param ScenarioLeafNode :=
BelowAverageScenario BelowAverageNode
AverageScenario AverageNode
AboveAverageScenario AboveAverageNode ;

set StageVariables[FirstStage] := DevotedAcreage[*] ;

set StageVariables[SecondStage] := QuantitySubQuotaSold[*]
QuantitySuperQuotaSold[*]
QuantityPurchased[*] ;

param StageCostVariable := FirstStage FirstStageCost
SecondStage SecondStageCost ;

Hart, Siirola, Watson, p. 71

PySP: Specifying the Scenario Instance Data

• Two methods are available to specify scenario data

– Scenario-based

– Node-based

• In the scenario-based approach, a single and complete .dat file
is specified for each individual scenario

– Redundant, but straightforward if computer-generated

• In the node-based approach, a single .dat file is specified for
each node in the scenario tree

– Maximally compact, but requires some book-keeping

Hart, Siirola, Watson, p. 72

Writing and Solving the Extensive Form (1)

• Now that you have a stochastic programming model in PySP…

• Step #1: Write the extensive form and hope that your favorite solver can
actually solve it

– Fantastic if it works

– But often it doesn’t

• In PySP, the runef script is provided to both write and solve the
extensive form of a stochastic programming model

• The basic command-line:

runef --model-directory=models \
--instance-directory=scenariodata \
--solve

Hart, Siirola, Watson, p. 73

• After solution, you get:

Writing and Solving the Extensive Form (2)

Tree Nodes:

Name=AboveAverageNode
Stage=SecondStage
Parent=RootNode
Variables:

QuantitySubQuotaSold[CORN]=48.0
QuantitySubQuotaSold[SUGAR_BEETS]=6000.0
QuantitySubQuotaSold[WHEAT]=310.0

Name=AverageNode
Stage=SecondStage
Parent=RootNode
Variables:

QuantitySubQuotaSold[SUGAR_BEETS]=5000.0
QuantitySubQuotaSold[WHEAT]=225.0

Name=BelowAverageNode
Stage=SecondStage
Parent=RootNode
Variables:

QuantitySubQuotaSold[SUGAR_BEETS]=4000.0
QuantitySubQuotaSold[WHEAT]=140.0
QuantityPurchased[CORN]=48.0

Name=RootNode
Stage=FirstStage
Parent=None
Variables:

DevotedAcreage[CORN]=80.0
DevotedAcreage[SUGAR_BEETS]=250.0
DevotedAcreage[WHEAT]=170.0

Hart, Siirola, Watson, p. 74

In-Class Exercise: Stochastic Knapsack

• Extend the (abstract) deterministic knapsack models to
create and solve a stochastic knapsack problem

• Scenarios
– Random values/profits – fixed weights!

– 3 scenarios is sufficient for the exercise

• Scenario Tree

• Solve with runef script
– runef -m your-dir -i your-dir --solve –solver=glpk

Hart, Siirola, Watson, p. 75

8. Advanced Topics

• Lots of things that we would like to talk about
– But we assume we’re already out of time

• Examples of advanced topics
– Generalized Disjunctive Programming

– Blocks and connectors

– External data sources

– Parallelization with Pyro

– Non-linear programming and the AMPL solver library interface

– Scripting for complex workflows

– …

Hart, Siirola, Watson, p. 76

Thanks! Please Contribute!

• Now that you actually know something about Pyomo

• Please go off and do great things

• We welcome contributions
– Bug reports

– Extensions

– Links to your projects that use Coopr/Pyomo

– Source code

– Documentation

– …

