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0. Do You Have Pyomo Installed and Working?

* An interlude
— But an important pre-requisite for what follows!

* |f you don't:
— Download & Install Python 2.7 (2.6 is also acceptable)

o http://python.org/

* If you are on Windows:
— Use Python 2.7

— Download & install Coopr
 http://software.sandia.gov/trac/coopr/downloader
* Linux / MacOS: coopr _install / coopr_votd
« Windows: Coopr_* setup.exe

— Download & install “a solver”:
* glpk, cbc, ipopt are good starting points
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| i 1. Introduction to Pyomo

* Three really good questions:
— Why another Algebraic Modeling Language (AML)?
— Why Python?
— Why open-source?

« Coopr: Software library infrastructure
« Coopr: Team overview and collaborators / users

 Where to find more information...

Sandia
Hart, Siirola, Watson, p. 3 Paal}ll?rg'?(llﬁes



Y
Why another AML: Improve our productivity

 QOur initial objective was noft to write another AML
— However it ended up being a necessary prerequisite

* What we needed from a modeling environment:
— Support rapid algorithm prototyping, development, and extension
— Extensible to new modeling constructs (e.g., SP, GDP)

— Facilitate hybrid approaches:
* Hybrid models
 Hybrid algorithms
* Heuristic meta-algorithms
— Transparent and accessible internal data structures
— Interoperability (models, solvers, platforms, data sources)

— Easily transferrable to non-expert user communities

Hart, Siirola, Wat , p. 4 atlDlla_
art, Siirola, Watson, p Laboratories



Y
“¥ Why Python: it meets our needs

« Python provides a full-featured object-oriented environment
— Classes, inheritance, namespaces, exceptions, ...
— Interactive interpreter

Python facilitates rapid prototyping and doesn'’t require a CS degree
— Important for modelers and general productivity

Python ships with a huge number of very useful libraries, including
— Serialization, distributed computation, db/Excel interfaces, ...
— SciPy and NumPy

Python has excellent support for dynamic loading
— Critical for integrating 3"-party extensions, custom user code

Python introspection facilitates the development of generic algorithms

Sandia
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A
Why open source: we want your involvement

* Transparency and reliability

* Foster community involvement
— Extend the modeling language
— Develop new solvers / algorithms
— Interface with additional external utilities
— “Stone Soup” model

* Flexible licensing
— Coopr/Pyomo released under 3-clause BSD license

Sandia
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Team, Collaborators, (Known) Users

« Sandia National Laboratories
— Bill Hart
— Jean-Paul Watson
— John Siirola
— David Hart
— Tom Brounstein
« University of California, Davis
— Prof. David L. Woodruff
— Prof. Roger Wets
+ Texas A&M University
— Prof. Carl D. Laird
— Daniel Word
— James Young
— Gabe Hackebell
+ Carnegie Mellon University
— Bethany Nicholson
+ Texas Tech University
— Zev Friedman
* Rose Hulman Institute
— Tim EKI
+ William & Mary
— Patrick Steele
* North Carolina State

— Kevin Hunter
Hart, Siirola, Watson, p. 8

/(Known) users:

- University of California, Davis
- Texas A&M University

- University of Texas

- University of Southern California

- George Mason University

- lowa State University

- N.C. State University

- University of Washington

- Naval Postgraduate School

- Universidad de Santiago de Chile

- University of Pisa

- Lawrence Livermore National Lab

K- Los Alamos National Lab

- Rose-Hulman Institute of Technology
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For More Information...

Project homepage
— http://software.sandia.gov/coopr

Mailing list
— “coopr-forum” Google Group
— “coopr-dev” Google Group

“The Book”

Mathematical Programming Computation papers

Springer Opﬁmizam 67

William E. Hart
Carl Laird
Jean-Paul Watson

David L. Woodruff

Pyomo —
Optimization
Modeling
in Python

4'2_1 Springer

— Pyomo: Modeling and Solving Mathematical Programs in Python (Vol. 3, No. 3, 2011)
— PySP: Modeling and Solving Stochastic Programs in Python (To Appear)

Hart, Siirola, Watson, p. 9
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2. An Introduction to Python

 Where credit is deserved...
— Professor David Woodruff, University of California Davis

 Just enough Python to get you through the rest of the
Pyomo tutorial

* For more information
— www.python.org
— Any of the great O’Reily books (www.ora.com)
— Any of a zillion on-line tutorials

Hart, Siirola, Watson, p. 1 ational
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'; R
Python is a Calculator

« Python is often executed in an interactive mode

« But we don’t do this very often

Hart, Siirola, Watson, p. 11 ational
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Python is a Scripting Language

import sys

import os

for run in range(0, 3):

print "Running forestfire.py in run
number", run

os.system(“myopt -r="+str(run))

Hart, Siirola, Watson, p. 12 ational
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i Python is a Programming Language

e Lists

 Dictionaries
« Sets and tuples, too
* First-class objects and functions

« (BTW: Python is an interpreted environment)

Hart, Siirola, Watson, p. 13 ational
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Lists (And Slicing)

>>> a = ['spam', 'eggs', 100, 1234]
>>> a

['spam’', 'eggs', 100, 1234]
>>> alo]

‘spam’

>>> al[-2]

100

>>> a[l:-1]

[ 'eggs', 100]

>>> a[:2] + ['bacon', 2*2]

[ 'spam', 'eggs', 'bacon', 4]
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Dictionaries

>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel[ 'jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> tel.keys()
[ 'guido', 'irv', 'jack']
>>> 'guido' in tel
True

Hart, Siirola, Watson, p. 15 ational
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Functions

>>> def foo(x):

for I in range(1,x+1):
. print i
>>> foo(2)
1
2
>>> def foo2(x):
. return x*x
>>> foo2(4)
16

Hart, Siirola, Watson, p. 16
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ython Provides an Application Development Framework

 Module definitions
e Class constructs
 And lots, lots more...
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Python is Pretty Cool (Probably Cooler Than Ruby)

Many in the audience can probably say much more,
but here are some items of note:

 List comprehensions
« Magic methods (lambda functions)

* Very extensive libraries (caveat: not everything is bullet
proof; it is a wild world)
— Exemplars: numpy, scipy, matplotlib

 Pickling (take the state of things and encode it as an
ASCII string; almost (but still, it is pretty cool))

* Introspection
— getattr and setattr

Hart, Siirola, Watson, p. 18 ational
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List Comprehensions

>>> vec = [2, 4, 6]

>>> [3*1 for i in vec]
[6, 12, 18]

>>> [3*1 for 1 in vec if i > 3]
[12, 18]

Hart, Siirola, Watson, p. 1 ational
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~ Things You Might Find Odd and/or Useful

 Indentation is important

« Shallow vs. deep copy

 Variables are passed “by reference”

* (so) There are often many function return values
* First class functions (and objects)

« Mutable vs. immutable; defaults:
— Strings: immutable
— Integers: immutable
— Objects: mutable

Hart, Siirola, Watson, p. 2 ational
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Two Things You Might Find Very Odd

« Python is (very) weakly typed

* People get extremely excited about it

Hart, Siirola, Watson, p. 21 ational
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A4
| We Believe the Turing-Church Conjecture!!l!

» Everything algorithmically computable is also
computable by a Turing machine
— You probably don’t want to program a Turing machine

« But we really value our time
— Hence, our primary interest in Python

e Questions?

Hart, Siirola, Watson, p. 22 ational
P Laboratories



i 3. Fundamental Pyomo Components

« Pyomo is an object model for describing optimization
problems

Model

Hart, Siirola, Watson, p. 23

Set <
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¥ Getting Started: the Model

from coopr.pyomo import * < Every Pyomo model starts

with this; it tells Python to

model = ConcreteModel() load the Pyomo Modeling
A T environment

Create an instance of a Concrete model
* Concrete models are immediately constructed
» Data must be present at the time components
are defined

Local variable to hold the model we are about to construct
« While not required, by convention we use “mode1”
* If you choose to name your model something else,
you will need to tell the Pyomo script the object
name through the command line

Hart, Siirola, Watson, p. 24 ational
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" Populating the Model: Variables

e Scalar variables
model.a_variable = var(within = NonNegativeReals)

A A A
The name you assign the “within” is optional Several pre-
object to becomes the and sets the variable defined domains,
object’s name, and must be domain (“domain” is e.g., “Binary”
unique in any given model. an alias for “within”)

model.a_variable = Var(bo%pds = (0, None))

Same as above: “domain” is assumed to be Reals if missing

* Indexed variables ¥ The indexes are any iteratable object,
model.a_vector var (IDX) e.g., list or Set

model.a_matrix = var(IDX_A, IDX_B)

Hart, Siirola, Watson, p. 25 ational
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| Generating and Managing Indices: Sets

« Any iterable object can be an index, e.g., lists:
- IDX_a = [1,2,5]

- DATA = {1: 10, 2: 21, 5:42%};
IDX_b = DATA.keys()

« Sets: objects for managing multidimensional indices
— model.IDX = Set(initialize = [1,2,5])

0\

Like, indices, Sets can be initialized from any iterable

- model.IDX = Set([1,2,5])
A

Note: This doesn’t do what you want.
This creates a 3-member indexed set, where each set is empty.

Hart, Siirola, Watson, p. 26 ational
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4‘ Multidimensional Sets

» Sets support efficient higher-dimensional indices
model.IDX = Set(initialize=[1,2,5])
model.IDX2 = model.IDX * model.IDX

0\

This creates a virtual 2-D matrix index

» Creating sparse sets
model.IDX = Set(initialize=[1,2,5])
def lower_tri_filter(model, i, j):
return j <= 1
model.IDX2 = Set( 1nitialize = model.IDX * model.IDX,
filter = Tower_tri_filter )

0\

The filter returns True if the element is in the set; False otherwise.
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P Laboratories




A4
| Defining the Problem: Consftraints

model.IDX = Set(initialize=range(100))

model.a = var()

model.b = var(IDX)

model.cl = Constraint(
expr

“eXpr” can be an expression,

or any function-like object that
returns an expression

model.c2

0\

Python list comprehensions are
very common for working
over indexed variables

Constraint(expr

“eXpr” can also be a tuple:

* 3-tuple specifies ( LB, expr, UB)
» 2-tuple specifies an equality constraint.

Hart, Siirola, Watson, p. 28

sum(model.b[i] for i in model.IDX) <= model.a )

(None, model.a + model.b, 1))
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Lists of Constraints

model.IDX = Set( initialize=range(10) )
model.b = var(model.IDX)
model.c3 = ConstraintList()

for i in model.IDX:
model.c3.add( (model.b[i] - 1) ** 2 <=1 )
A

“add” adds a single new constraint to the list.
The constraints need not be related

Hart, Siirola, Watson, p. 29 ational
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Indexed Constraints and rules

model.IDX = Set(initialize=range(5))
model.a = var(model.IDX)
model.b = var()
def c4_rule(model, 1):
return model.a[i] + model.b <=1
model.c4 = Constraint(model.IDX, rule = c4_rule)

A
For indexed constraints, you provide a “rule” (function) that
returns an expression (or tuple) for each index.

NB: if you omit the “rule”, Pyomo automatically looks for a
function “<constraint name>_rule”

model.IDX2 = model.IDX * model.IDx | Each dimension of each index is
def c5_rule(model, i, j, k): <«—— @&separate argument to the rule

return model.a[i1] + model.a[j] + model.al[k] <=1
model.c5 constraint(model.IDX2, model.IDX, rule=c5_rule)

Hart, Siirola, Watson, p. 30 ational
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i Defining the Objective

» Objectives are a special case of Constraint

model.IDX = Set(initialize=range(100))

model.b = var(IDX)
model.obj = Objective(

expr = sum(model.b[1] for 1 in model.IDX)

sense = minimize )
If “sense” is omitted, Pyomo
assumes minimization

Hart, Siirola, Watson, p. 31
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Note that the Objective expression
1s not a relational expression
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4. Putting It All Together: Concrete p-Median

min Z d, . X,

s.t. an,m =1 VmeM
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Concrete p-Median (1)

from coopr.pyomo import *
import random
random. seed (1000)

1 n
w oY U

o vV<Z

{ (n,m): random.uniform(1.0,2.0)
for n in range(N) for m in range(Mm) }

model = ConcreteModel ()
model.Locations = RangeSet(1,N)
model.Customers = RangeSet(1,M)

model.x = var( model.Locations, model.Customers,
bounds=(0.0,1.0))

model.y = var(model.Locations, within=Binary)

Hart, Siirola, Watson, p. 33 ational
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Concrete p-Median (2)

model.obj = Objective( expr = sum( d[n,m]*model.x[n,m]
for n in model.Locations for m in model.Customers ) )

model.num_facilities = Constraint(
expr=sum( model.y[n] for n in model.Locations) == P )

model.single_x = ConstraintList()

for m in model.Customers:
model.single_x.add(

sum( model.x[n,m] for n in model.Locations) == 1.0 )

model.bound_y = ConstraintList()

for n in model.Locations:
for m in model.Customers:
model .bound_y.add( model.x[n,m] <= model.y[n] )

Hart, Siirola, Watson, p. 34 ational
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In Class Exercise: Concrete Knapsack

N
max Zvi X, Item Weight Value

i=1 hammer 5 8

N < wrench 7 3
S.L. :E:vwx%'—lwzmx screwdriver 4 6

i=1

towel 3 11
x, €10,1}

Syntax reminders:

ConcreteModel ()

var( [index, ..], [within=domain], [bounds=(lower,upper)] )

Constraint( [index, ..], [expr=expression/rule=function] )

constraintList(); c.add( expression )

Objective( sense={maximize[minimize},
expr=expression/rule=function ) -

ndia
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Concrete Knapsack: Solution

from coopr.pyomo import *

v = {'hammer':8, 'wrench':3, 'screwdriver':6, 'towel':11}
w = {"hammer':5, 'wrench':7, 'screwdriver':4, 'towel':3}
wW_max = 14

model = ConcreteModel ()
model.ITEMS = Set( initialize=v.keys() )
model.x = var( model.ITEMS, within=Binary )

model.value = Objective(
expr = sum( v[i]*model.x[1] for 1 in model.ITEMS ),
sense = maximize )

model.weight = Constraint(

expr = sum( w[i]*model.x[1] for i in model.ITEMS ) <= W_max )

Hart, Siirola, Watson, p. 36
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i 5: Abstract Modeling
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A4
| Importing Data: Parameters

e Scalar numeric values
model.a_parameter = Param(initialize = 42)

1)

Provide an (initial) value of 42 for the parameter

* Indexed numeric values

model.a_param_vec = Param(IDX,
initialize = data)
A

“data” must be a dictionary(*) of index
keys to values because all sets are assumed
to be unordered

(*) — actually, it must define _ getitem (),
but that only really matters to Python geeks

Hart, Siirola, Watson, p. 38 ational
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| i Data Sources

« Data is imported from “. dat” file
— Format similar to AMPL style
— Explicit data from “param” declarations

— External data through “1import” declarations:

» Excel
e.g., import ABCD.xls range=ABCD : Z=[A, B, C] Y=D ;

 Databases

e.g., import “DBQ=diet.mdb” using=pyodbc query="SELECT
FOOD, cost, f_ min, f_max from Food” : [FOOD] costf minf _max ;

Hart, Siirola, Watson, p. 39 ational
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Abstract p-Median (1)

from coopr.pyomo import *

import random
random.seed(1000)
model = AbstractModel ()

model.N = Param(within=PositiveIntegers)
model.Locations = RangeSet(1l,model.N)
model.P = Param(within=RangeSet(1,model.N))
model.M = Param(within=PositiveIntegers)
model.Customers = RangeSet(1l,model.M)

model.d = Param(model.Locations, model.Customers, rule=lambda
n, m, model : random.uniform(1.0,2.0), within=Reals)

Hart, Siirola, Watson, p. 40 ational
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Abstract p-Median (2)

model. x

Var(model.Locations, model.Customers, bounds=(0.0,1.0))

model.y = Var(model.Locations, within=Binary)

def rule(model):
return sum( (model.d[n,m]*model.x[n,m]
for n in model.Locations for m in model.Customers) )
model.obj = Objective(rule=rule)

def rule(model, m):
return (sum( (model.x[n,m] for n in model.Locations)), 1.0)
model.single x = Constraint(model.Customers, rule=rule)

def rule(model, n,m):
return (None, model.x[n,m] - model.y[n], ©.0)

model.bound y = Constraint(model.Locations, model.Customers, rule=rule)

def rule(model):
return (sum( (model.y[n] for n in model.Locations) ) - model.P, 0.90)
model.num_facilities = Constraint(rule=rule)

Hart, Siirola, Watson, p. 41 ational
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’ i Abstract p-Median (3)

10;
param M := 6;

param N :

param P := 3;

Hart, Siirola, Watson, p. 42
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In Class Exercise: Abstract Knapsack

N
max Zvi X, Item Weight Value

i=1 hammer 5 8

N < wrench 7 3
S.L. :E:vwx%'—lwzmx screwdriver 4 6

i=1

towel 3 11
x, €10,1}

Syntax reminders:
AbstractModel ()
var( [index, ..], [within=domain], [bounds=(lower,upper)] )
Constraint( [index, ..], [expr=expression/rule=function] )
constraintList(); c.add( expression )
Objective( sense={maximize[minimize},
expr=expression/rule=function )
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Abstract Knapsack: Solution

from coopr.pyomo import *

mode] = AbstractModel ()

model.ITEMS = Set()

model.v = Param( model.ITEMS, within=PositiveReals )
model.w = Param( model.ITEMS, within=PositiveReals )
model.w_max = Param( within=PositiveReals )

model . x = var( model.ITEMS, within=Binary )

def value_rule(model):
return sum( model.v[i]*model.x[1] for i in model.ITEMS )
model.value = Objective( rule=value_rule, sense=maximize )

def weight_rule(model):
return sum( model.w[i]*model.x[1] for i in model.ITEMS ) \
<= model.w_max
model.weight = Constraint( rule=weight_rule )
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Abstract Knapsack: Solution Data

set ITEMS := hammer wrench screwdriver towel ;

param: VvV w :=
hammer 8 5
wrench 3 7
screwdriver 6 4
towel 11 3;

param W_max := 14;

Hart, Siirola, Watson, p. 45
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| 6: Pyomo and Python Efficiency

« Being embedded in a high-level (and interpreted)
programming language can present challenges
— Inability to constrain syntax => users have many guns

« Some of the blame can be placed on Python
— But a lot can be blamed on Pyomo
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What are reasonable performance expectations?

« Python is a byte-compiled scripting language
— and Pyomo is pure Python
— ...SO expectations were not high
— ...and raw speed has never been a goal!

« Early experiences bore this out... in November, 2010:
— p-median facility location

* AMPL model construction time: ~4 seconds

« Pyomo model construction time: >2000 seconds
— Logistics disruption modeling

* GAMS solution time: ~20 seconds

* Pyomo solution time: >200 seconds

 ...but the gap is closing... in Coopr 3.2:
— p-median facility location: ~36 seconds
— Logistics disruption modeling: ~25 seconds

Hart, Siirola, Wat , p. 47 tom i
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Managing performance (how not to shoot yourself)

« Expression generation; consider:

min Z Z d x ., nelLocations,me Customers
n m
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Managing performance (how not to shoot yourself)

« Expression generation; consider:

min Z Z X ., ne Locations, m € Customers

def rulel(model): e
ans = 0
for n in model.Locations:
for m in model.Customers:
ans = ans + model.d[n,m]*model.x[n,m]
return ans

Hart, Siirola, Watson, p. 49 National
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Managing performance (how not to shoot yourself)

« Expression generation; consider:

min Z Z d x ., nelLocations,me Customers
n m

def rule2(model):
ans = 0
for n in model.Locations:
for m in model.Customers:
ans += model.d[n,m]*model.x[n,m]
return ans

Hart, Siirola, Watson, p. 50 National
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Managing performance (how not to shoot yourself)

« Expression generation; consider:

min Z Z d x ., nelLocations,me Customers
n m

def rule3(model):
return sum( [ model.d[n,m]*model.x[n,m]
for n in model.Locations for m in model.Customers ] )

Hart, Siirola, Watson, p. 51 National
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Managing performance (how not to shoot yourself)

« Expression generation; consider:

min Z Z d x ., nelLocations,me Customers
n m

def rule4(model):
return sum( model.d[n,m]*model.x[n,m]
for n in model.Locations for m in model.Customers )

Hart, Siirola, Watson, p. 52 National
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Managing performance (how not to shoot yourself)

« Expression generation; consider:
min Z Z wmXnms M€ Locations, m € Customers

def rulel(model): nem
ans = 0
for n in model.Locations:
for m in model.Customers: /[Il =m=1..640 ] \
ans = ans + model.d[n,m]*model.x[n,m]
return ans rulel: >>10000 sec
def rule2(model): rule2: 9.0 sec
ans = 0
for n in model.Locations: rule3: 14.6 sec
for m in model.Customers: led- 2.0
ans += model.d[n,m]*model.x[n,m] \\{U.C . .7 S€C 4//

return ans

def rule3(model):
return sum( [ model.d[n,m]*model.x[n,m]
for n in model.Locations for m in model.Customers ] )

def rule4(model):
return sum( model.d[n,m]*model.x[n,m]
for n in model.Locations for m in model.Customers )

Hart, Siirola, Watson, p. 53 National
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Managing performance (how not to shoot yourself)

« Sparse data; consider:
Zanmxm <b, VneN
meM ,

model.a = Param( model.N, model.M, default=0 )

def rulel(model,n):
return sum( model.a[n,m] * model.x[m] for m in model.M) <= model.b[n] )

(. )

For n=1..10,m=1..1e5, 4% nonzero,

25.5 seconds to generate the constraint
le5 terms in the constraint (dense!!)

- J

model.C = Constraint( model.N, rule= )
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Managing performance (how not to shoot yourself)

« Sparse data; consider:
Zan,mxm <b, VneN

meM

model.a = Param( model.N, model.M, default=0 )

def rule2(model,n):
return sum( model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if model.a[n,m] != 0 )

For n=1..10,m=1..1e5, 4% nonzero,

5 seconds slower, and still dense!

model.C = Constraint( model.N, rule= )
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Managing performance (how not to shoot yourself)

« Sparse data; consider:
Zan,mxm <b, VneN

meM

model.a = Param( model.N, model.M, default=0 )

def rule3(model,n):
return sum( model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if value(model.a[n,m]) != 0 )

def rule4(model,n):
return sum( model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if model.a[n,m].value != 0 )

model.C = Constraint( model.N, rule= )
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art, Siirola, Watson, p L e



Managing performance (how not to shoot yourself)

« Sparse data; consider:
Zan,mxm <b, VneN

meM

model.a = Param( model.N, model.M, default=0 )

def rulel(model,n):
return sum( model.a[n,m] * model.x[m] for m in

def rule2(model,n):
return sum( model.a[n,m] * model.x[m] for m 1in

if model.a[n,m] != 0 )

def rule3(model,n):
return sum( model.a[n,m] * model.x[m] for m 1in

if value(model.a[n,m]) != 0 )

def rule4(model,n):
return sum( model.a[n,m] * model.x[m] for m 1in

if model.a[n,m].value !'= 0 )

model.C = Constraint( model.N, rule= )

Hart, Siirola, Watson, p. 57

ma

/[n= 1..10,m = 1..165,\

4% fill ]

rulel: 25.5 sec
rule2: 30.5 sec
rule3: 7.6 sec

Qule4: 5.7 sec

)

model.M) <= model.b[n]

model.M) <= model.b[n]

model.M) <= model.b[n]

Sandia
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Managing performance (how not to shoot yourself)

« Sparse constraints; consider:
storage, , , = storage, , , , + production, pd

V t e[dStart,,dEnd ], p € Products, d € Disruptions

Hart, Siirola, Watson, p. 58 ational
P Laboratories



] ;.'
Managing performance (how not to shoot yourself)

« Sparse data; consider:
Zan,mxm <b, VneN

meM
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Managing performance (how not to shoot yourself)

« Sparse constraints; consider:
storage, , , = storage, , , , + production, pd

V t e[dStart,,dEnd ], p € Products, d € Disruptions

def rulel(model,t,d,p):
if t < model.dstart[d] or t > model.dEnd[d]:
return Constraint.Skip
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

model.Cl = Constraint( model.TIME, model.DISRUPTIONS, model.PRODUCTS, rule=rulel )
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Managing performance (how not to shoot yourself)

« Sparse constraints; consider:
storage, , , = storage, , , , + production, oo

3

V t e[dStart,,dEnd ], p € Products, d € Disruptions

def rule2(model,t,d,p):
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

def _filter2(model,t,d,p):
return t >= model.dstart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set( model.TIME * model.DISRUPTIONS * model.PRODUCTS,
filter=_filter2 )

model.C2 = Constraint( model.ACTIVE_DISRUPTIONS, rule=rule2 )
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Managing performance (how not to shoot yourself)

« Sparse constraints; consider:
storage, , , = storage, , , , + production, oo

3

V t e[dStart,,dEnd ], p € Products, d € Disruptions

def rule2(model,t,d,p):
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

def _filter3(model,t,d):
return t >= model.dStart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set( model.TIME * model.DISRUPTIONS, filter=_filter3 )

model.C3 = Constraint( model.ACTIVE_DISRUPTIONS, model.PRODUCTS, rule=rule2 ) Sani
ndia

Hart, Siirola, Watson, p. 62 National
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Managing performance (how not to shoot yourself)

 Sparse constraints; consider: /[t: d=1.250, N
storage, , , = storage,_, , +pr0ductlon p=1..10,

3

V t e|dStart,,dEnd ], p € Products t*d =2% fill ]

def rulel(model,t,d,p): Cl: 19.8 sec
if t < model.dstart[d] or t > model.dEnd[d]:
return Constraint.Skip C2 255 SCC

return model.storage[t,p,d] == model.storage[t-1,y

model.Cl = Constraint( model.TIME, model.DISRUPTIONS, >\ C3 32 SCC /

def rule2(model,t,d,p):
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

def _filter2(model,t,d,p):
return t >= model.dstart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set( model.TIME * model.DISRUPTIONS * model.PRODUCTS,
filter=_filter2 )

model.C2 = Constraint( model.ACTIVE_DISRUPTIONS, rule=rule2 )
def _filter3(model,t,d):
return t >= model.dStart[d] and t <= model.dEnd[d]
model.ACTIVE_DISRUPTIONS = Set( model.TIME * model.DISRUPTIONS, filter=_filter3 )

model.C3 = Constraint( model.ACTIVE_DISRUPTIONS, model.PRODUCTS, rule=rule2 ) Sani
ndia
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A4
| The Performance “Elephant”: Memory

* Known issue ...
— Python uses a fairly heavy-weight object model
— “Significant” recent improvements in low-level core components
« >50% over a year ago

— But...
» 640 x 640 p-median problem still consumes ~1.5 GB.

* Focus of current efforts, with several more
enhancements on the horizon.
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| i 7. PySP: Stochastic Programming in Python

« Constructing the deterministic scenario model

« Specifying the scenario tree
» Specifying scenario instance data

» Creating and solving the extensive form

Hart, Siirola, Watson, p. 65 ational
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Ve

onstructing and Solving Block-Diagonal Models

« PySP: Stochastic Programming in Python
— Begin with a deterministic (Pyomo) system model
— Annotate model with data that defines the scenario(*) tree
— Leverage automatic transformation, model decomposition

« Automated solution strategies

— Solve the Extensive Form — Decompose (Progressive Hedging)
* Replicate deterministic model * Replicate deterministic model
« Form nonanticipitivity constraints * Duplicate complicating variables
« Send to solver » Solve scenarios independently

* Blend complicating variables

» Weight scenarios to encourage
convergence

* lterate
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PySP: Formulating the System Model (1)

e
w

from coopr.pyomo import
model = AbstractModel()

# Parameters

model.CROPS = Set()

model.TOTAL_ACREAGE = Param( within=PositiveReals )

model.PriceQuota = Param( model.CROPS, within=PositiveReals )
modeTl.SubQuotaSellingPrice = Param( model.CROPS, within=PositiveReals )
model.SuperQuotasellingPrice = Param( model.CROPS )
model.CattleFeedRequirement = Param( model.CROPS, within=NonNegativeReals )
model.PurchasePrice = Param( model.CROPS, within=PositiveReals )
model.PlantingCostPerAcre = Param( model.CROPS, within=PositiveReals )
model.Yield = Param( model.CROPS, within=NonNegativeReals )

# variables

model.DevotedAcreage = Vvar( model.CROPS, bounds=(0.0, model.TOTAL_ACREAGE) )
model.QuantitySubQuotasold = var( model.CROPS, bounds=(0.0, None) )
model.QuantitySuperQuotasold = var( model.CROPS, bounds=(0.0, None) )
model.QuantityPurchased = var( model.CROPS, bounds=(0.0, None) )
model.FirstStageCost = var()

model.SecondStageCost = var()

Sandia
. ' , Nationa
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PySP: Formulating the System Model (2)

# Constraints
def ConstrainTotalAcreage_rule(model):
return summation(model.DevotedAcreage) <= model.TOTAL_ACREAGE

model.ConstrainTotalAcreage = Constraint()

def EnforceCattleFeedRequirement_rule(model, 1i):
return model.CattleFeedRequirement[i] <= ( model.vyield[i] \
* model.DevotedAcreage[i] ) + model.QuantityPurchased[i] \
- model.QuantitySubQuotasold[i] - model.QuantitySuperQuotasSold[i]

model.EnforceCattleFeedRequirement = Constraint( model.CROPS )

def LimitAmountSold_rule(model, 1i):
return model.QuantitySubQuotaSold[i] + model.QuantitySuperQuotaSold[i] \
- (model.vyield[i] * model.DevotedAcreage[i]) <= 0.0

model.LimitAmountSold = Constraint( model.CROPS )

def EnforceQuotas_rule(model, 1i):
return(0.0, model.QuantitySubQuotaSold[i], model.PriceQuotal[i])

model.EnforceQuotas = Constraint( model.CROPS )

Sandia
. ' , Nationa
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PySP: Formulating the System Model (3)

# Stage-specific cost computations

def ComputeFirstStageCost_rule(model):
return 0.0 == model.FirstStageCost \
- summation( model.PlantingCostPerAcre, model.DevotedAcreage )

model.ComputeFirstStageCost = Constraint()

def ComputeSecondStageCost_rule(model):
expr = summation( model.PurchasePrice, model.QuantityPurchased )
expr -= summation( model.SubQuotasellingPrice, model.QuantitySubQuotasold )
expr -= summation( model.SuperQuotaSellingPrice, model.QuantitySuperQuotaSold )
return(model.SecondStageCost - expr) == 0.0

model .ComputeSecondStageCost = Constraint()

# Objective
def Total_Cost_oObjective_rule(model):
return model.FirstStageCost + model.SecondStageCost

model.Total_Cost_Objective = Objective( sense=minimize )
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PySP: Specifying the Scenario Tree

set Stages := FirstStage SecondStage ;

set Nodes := RootNode
BelowAverageNode
AverageNode
AboveAverageNode ;

param NodeStage := RootNode FirstStage
BelowAverageNode SecondStage
AverageNode SecondStage

AboveAverageNode SecondStage ;

set Children[RootNode] := BelowAverageNode
AverageNode
AboveAverageNode ;

param ConditionalProbability := RootNode
BelowAverageNode
AverageNode
AboveAverageNode

set Scenarios := BelowAverageScenario
AverageScenario
AboveAverageScenario ;

param ScenarioLeafNode :=

1.0

0.33333333
0.33333334
0.33333333

BelowAverageScenario BelowAverageNode
Averagescenario AverageNode
AboveAverageScenario AboveAverageNode ;

set Stagevariables[FirstStage] := DevotedAcreagel[*] ;

set Stagevariables[SecondStage] := QuantitySubQuotaSold[*]
QuantitySuperQuotasold[*]
QuantityPurchased[*] ;

param StageCostvariable := FirstStage FirstStagecost
SecondStage SecondStageCost ;

Hart, Siirola, Watson, p. 70



V
- A
: PySP: Specifying the Scenario Instance Data

« Two methods are available to specify scenario data

— Scenario-based
— Node-based

* In the scenario-based approach, a single and complete .dat file
is specified for each individual scenario

— Redundant, but straightforward if computer-generated

* In the node-based approach, a single .dat file is specified for
each node in the scenario tree

— Maximally compact, but requires some book-keeping
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Writing and Solving the Extensive Form (1)

* Now that you have a stochastic programming model in PySP...

« Step #1: Write the extensive form and hope that your favorite solver can
actually solve it

— Fantastic if it works
— But often it doesn’t

* In PySP, the runef script is provided to both write and solve the
extensive form of a stochastic programming model

* The basic command-line;

runef --model-directory=models \
--instance-directory=scenariodata \
--solve
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Writing and Solving the Extensive Form (2)

« After solution, you get:

Tree Nodes:

Name=AboveAverageNode

Stage=SecondStage

Parent=RootNode

variables:
QuantitySubQuotaSold[CORN]=48.0
QuantitySubQuotaSold[SUGAR_BEETS]=6000.0
QuantitySubQuotaSold[wWHEAT]=310.0

Name=AverageNode

Stage=SecondStage

Parent=RootNode

variables:
QuantitySubQuotaSold[SUGAR_BEETS]=5000.0
QuantitySubQuotaSold[WHEAT]=225.0

Name=BelowAverageNode

Stage=SecondStage

Parent=RootNode

variables:
QuantitySubQuotaSold[SUGAR_BEETS]=4000.0
QuantitySubQuotaSold[wWHEAT]=140.0
QuantityPurchased[CORN]=48.0

Name=RootNode

Stage=FirstStage

Parent=None

variables:
DevotedAcreage[CORN]=80.0
DevotedAcreage[SUGAR_BEETS]=250.0
DevotedAcreage[WHEAT]=170.0
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A
In-Class Exercise: Stochastic Knapsack

« Extend the (abstract) deterministic knapsack models to
create and solve a stochastic knapsack problem

e Scenarios
— Random values/profits — fixed weights!
— 3 scenarios is sufficient for the exercise

 Scenario Tree

« Solve with runef script
— runef -m your-dir -i your-dir --solve -solver=glpk
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A4
| 8. Advanced Topics

* Lots of things that we would like to talk about
— But we assume we're already out of time

« Examples of advanced topics
— Generalized Disjunctive Programming
— Blocks and connectors
— External data sources
— Parallelization with Pyro
— Non-linear programming and the AMPL solver library interface
— Scripting for complex workflows
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| i Thanks! Please Contribute!

* Now that you actually know something about Pyomo

* Please go off and do great things

« \We welcome contributions
— Bug reports
— Extensions
— Links to your projects that use Coopr/Pyomo
— Source code
— Documentation
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