
MueLu – A Flexible, Parallel Multigrid
Framework

Trilinos User Group MeetingTrilinos User Group Meeting

Oct. 30 – Nov. 1, 2012

Jonathan Hu

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000.

SAND2012-9327P

Development Team

Jeremie Gaidamour

Tobias Wiesner
(TU Munich)

Andrey Prokopenko

Ray Tuminaro Chris Siefert

Jonathan Hu

new

Outline

• Design and Motivation

• User interfaces

• Case study: smoothed aggregation

– Reuse possibilities

Design and Motivation

Motivation for a New Multigrid Library

• Trilinos already has mature multigrid library, ML

– Algorithms for Poisson, Elasticity, Petrov-Galerkin,
H(curl), H(div)

– Algorithms have been exercised extensively.

– Broad user base

• However …

– ML weakly linked to other Trilinos capabilities (e.g.,
smoothers)

– C-based, only scalar type “double” supported
explicitly

– Over 50K lines of source code

• Maintainability, extensibility

Objectives for New Multigrid Framework

• Templating on scalar, ordinal types

• Advanced architectures

– Kokkos support for various compute node types

• Hybrid parallelism: MPI, MPI+threads, MPI+MPI

• GPUs eventually

• Extensibility

– Facilitate development of other algorithms

• Energy minimization methods

• Geometric, classic algebraic multigrid, …

– Ability to combine several types of multigrid

• Preconditioner reuse

– Reduce setup expense

Multigrid Basics

• Two main components

– Smoothers

• Approximate solves on each level

• “Cheaply” reduces particular error
components

• On coarsest level, smoother = Ai
-1

(usually)

– Grid Transfers

• Moves data between levels

• Must represent components that
smoothers can’t reduce

• Algebraic Multigrid (AMG)

– AMG generates grid transfers

– AMG generates coarse grid Ai’s

Au=f

A2e2=r2

A1e1=r1

Current MueLu Capabilities

• Grid Transfer Algorithms

– Smoothed aggregation, Petrov Galerkin

• Smoothers

– SOR, ILU, Polynomial (Ifpack, Ifpack2)

• Direct solvers

– KLU, SuperLU, SuperLUDist (Amesos, Amesos2)

• Sparse linear algebra (Epetra, Tpetra)

• Krylov acceleration (Belos, AztecOO)

Xpetra

• Wrapper for Epetra and
Tpetra
– Based on Tpetra interfaces
– Allows unified access to

either linear algebra library

• Layer concept:
– Layer 2: blocked operators
– Layer 1: operator views
– Layer 0: low level E/Tpetra

wrappers (automatically
generated code)

• MueLu algorithms are
written using Xpetra

Tpetra Epetra

Kokkos

Xpetra

Layer 2 (advanced logic)

Layer 1 (basic logic)

Layer 0 (low level wrapper)

MueLu

Design Overview

• MueLu makes heavy use of “factory” pattern

– Factories: classes that generate objects

• Preconditioner is created by chaining together
factories that create grid transfers, smoothers,
coarse grid Galerkin triple-matrix product

• FactoryManager manages these dependencies

• User is not required to specify these
dependencies (or even know they exist).

User Interfaces

MueLu – User Interfaces

• MueLu can be customized as follows:

– XML input files

– Parameter lists (key-value pairs)

– Directly through C++ interfaces

• New/casual users

– Minimal interface

– Sensible defaults provided automatically

• Advanced users

– Can customize or replace any component of
multigrid algorithm.

MueLu – A Simple C++ Example

 // Creation of fine matrix A, solution X, right-hand side B not shown

 // Allocate hierarchy object and insert A
 Hierarchy H(fineA);

 H.Setup();

 H.Iterate(B,nits,X);

• Generates smoothed aggregation multigrid
preconditioner.

• Uses reasonable defaults.

• As we’ll see, these can changed easily.

 // Creation of fine matrix A, solution X, right-hand side B not shown

 // Allocate hierarchy object and insert A
 Hierarchy H(fineA);

 RCP<TentativePFactory> ProlongatorFact = rcp(new TentativePFactory());
 Teuchos::ParameterList smootherParamList;
 smootherParamList.set("Chebyshev: degree", 3);
 RCP<SmootherPrototype> smootherPrototype = rcp(new TrilinosSmoother("Chebyshev
", smootherParamList));

 FactoryManager M;
 M.SetFactory("P",ProlongatorFact);
 M.Set("Smoother",SmootherPrototype);

 H.Setup(M);

 int its=10;
 H.Iterate(B,nits,X);

Customizing the Preconditioner

 // Creation of fine matrix A, solution X, right-hand side B not shown

 // Allocate hierarchy object and insert A
 Hierarchy H(fineA);

 RCP<TentativePFactory> ProlongatorFact = rcp(new TentativePFactory());
 Teuchos::ParameterList smootherParamList;
 smootherParamList.set("Chebyshev: degree", 3);
 RCP<SmootherPrototype> smootherPrototype = rcp(new TrilinosSmoother("Chebyshev
", smootherParamList));

 FactoryManager M;
 M.SetFactory("P",ProlongatorFact);
 M.Set("Smoother",SmootherPrototype);

 H.Setup(M);

 int its=10;
 H.Iterate(B,nits,X);

Customizing the Preconditioner

• Use unsmoothed prolongator
– Rcp == smart pointer

 // Creation of fine matrix A, solution X, right-hand side B not shown

 // Allocate hierarchy object and insert A
 Hierarchy H(fineA);

 RCP<TentativePFactory> ProlongatorFact = rcp(new TentativePFactory());
 Teuchos::ParameterList smootherParamList;
 smootherParamList.set("Chebyshev: degree", 3);
 RCP<SmootherPrototype> smootherPrototype = rcp(new TrilinosSmoother("Chebyshev
", smootherParamList));

 FactoryManager M;
 M.SetFactory("P",ProlongatorFact);
 M.Set("Smoother",SmootherPrototype);

 H.Setup(M);

 int its=10;
 H.Iterate(B,nits,X);

Customizing the Preconditioner

• Use degree 3 polynomial smoother
– Parameter list == key/value pairs

– Smoother prototype

 // Creation of fine matrix A, solution X, right-hand side B not shown

 // Allocate hierarchy object and insert A
 Hierarchy H(fineA);

 RCP<TentativePFactory> ProlongatorFact = rcp(new TentativePFactory());
 Teuchos::ParameterList smootherParamList;
 smootherParamList.set("Chebyshev: degree", 3);
 RCP<SmootherPrototype> smootherPrototype = rcp(new TrilinosSmoother("Chebyshev
", smootherParamList));

 FactoryManager M;
 M.SetFactory("P",ProlongatorFact);
 M.Set("Smoother",SmootherPrototype);

 H.Setup(M);

 int its=10;
 H.Iterate(B,nits,X);

Customizing the Preconditioner

• Register changes with Factory Manager and pass
to Setup.

The Factory Manager

• Holds default factories to be used during
multigrid setup.

• Can have one FactoryManager per level.

• User can selectively specify alternatives.

FactoryManager M;

M.SetFactory(“Aggregation”,UCAggFact);

• The hierarchy set up process queries the
FactoryManager for proper factory for each
algorithmic component.

Accessing MueLu Through XML

 //read in XML file...

 ParameterListInterpreter mueLuFactory(xmlFileName);
 RCP<Hierarchy> H = mueLuFactory.CreateHierarchy();
 H->GetLevel(0)->Set("A", A);

 mueLuFactory.SetupHierarchy(*H);

 int nIts = 10;
 H->Iterate(*B, nIts, *X);

Case Study: Smoothed Aggregation

Multigrid

• Group fine unknowns into
aggregates to form coarse
unknowns

Smoothed Aggregation Setup

• Group fine unknowns into
aggregates to form coarse
unknowns

• Partition given nullspace B(h)

across aggregates to have local
support

Smoothed Aggregation Setup

















































1

1

1

1

1

1

1

1

1




• Group fine unknowns into
aggregates to form coarse
unknowns

• Partition given nullspace B(h)

across aggregates to have local
support

• Calculate QR=B(h) to get initial
prolongator Ptent (=Q) and coarse
nullspace (R).

Smoothed Aggregation Setup

















































1

1

1

1

1

1

1

1

1




• Form final prolongator Psm = (I – ωD-1A)Ptent

Case Study: Smoothed Aggregation

• Possible call sequences to generate Psm

1) PFact = SaPFactory();

2) PtentFact = TentativePFactory();

PFact = SaPFactory(PtentFact);

3) AggFact = AggregationFactory();

Ptent = TentativePFactory(AggFact);
PFact = SaPFactory(Ptent);

• Data dependencies must be maintained between
factories.

SaPFactory

TentativePFactory

AggregationFactory

GraphFactory

Dependency Graph

Management of Data Dependencies

• Level class manages data storage

• Factories exchange data by taking Level classes
as arguments to Build method:

– Build(currentLevel) or

– Build(fineLevel,coarseLevel)

• Factories declare on Level the data that they
require, along with generating factories, or
FactoryManager provides generating strategy.

Advantages of Data Management on Level

• Level manages data deallocation once all
requests satisfied

• Generating factory does not need to know what
other factories require data

• Data reuse

– Any data (aggregates, P, …) can be retained by
user request for reuse in later runs.

– Data can be retained for later analysis.

– Almost any reuse granularity is possible.

Example: Smoothed Aggregation

AggFact = AggregationFactory();

Ptent = TentativePFactory(AggFact);

Pfact=SaPFactory(Ptent);

• Pfact registers with Level its need for Ptent, along
with generating factory Ptent.

• Ptent registers with Level its need for aggregate
data, along with generating factory (AggFact)

• AggFact generates aggregates, stores on Level.

• After Ptent accesses aggregates, Level frees data.

• After Pfact access Ptent, Level frees data.

SaPFactory

TentativePFactory

AggregationFactory

GraphFactory

User does not need to manage data dependencies.

Summary

• Current status

– Copyrighted with open-source BSD style license

– Part of publicly available Trilinos anonymous clone

– We still support ML.

• Ongoing/Future work

– Grid transfers based on constrained minimization (aka energy
minimization)

– Improving documentation, application interfaces

– Big driver for FY13 is templated stack milestone requirements

– Performance optimizations

