SAND2012-9327P

MuelLu - A Flexible, Parallel Multigrid
Framework

Trilinos User Group Meeting
Oct. 30 — Nov. 1, 2012

Jonathan Hu

L YA N g%
%VA‘W—‘?‘_& wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear

™™ Security Administration under contract DE-AC04-94AL85000.

National
Laboratories

4 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a @ Sandia

Development Team

Jeremie Gaidamour Andrey Prokopenko

Tobias Wiesner Ray naro Chris Siefert
(TU Munich) Ao

National
Laboratories

Outline

* Design and Motivation
» User interfaces
 Case study: smoothed aggregation

— Reuse possibilities

Design and Motivation

Motivation for a New Multigrid Library

* Trilinos already has mature multigrid library, ML

— Algorithms for Poisson, Elasticity, Petrov-Galerkin,
H(curl), H(div)

— Algorithms have been exercised extensively.

— Broad user base

* However ...

— ML weakly linked to other Trilinos capabilities (e.g.,
smoothers)

— C-based, only scalar type “double” supported
explicitly
— Over 50K lines of source code
* Maintainability, extensibility

Sandia
National
Laboratories

Objectives for New Multigrid Framework

 Templating on scalar, ordinal types

« Advanced architectures

— Kokkos support for various compute node types
* Hybrid parallelism: MPI, MPl+threads, MPI+MPI
* GPUs eventually
- Extensibility
— Facilitate development of other algorithms

* Energy minimization methods
* Geometric, classic algebraic multigrid, ...

— Ability to combine several types of multigrid
* Preconditioner reuse
— Reduce setup expense

Sandia
National
Laboratories

Multigrid Basics

 Two main components

— Smoothers
* Approximate solves on each level

» “Cheaply” reduces particular error
components

« On coarsest level, smoother = A7
(usually)

— Grid Transfers
« Moves data between levels

* Must represent components that
smoothers can’t reduce g

- Algebraic Multigrid (AMG) Q Qimaevel
— AMG generates grid transfers Senci
— AMG generates coarse grid A/’s @ Laboratres

Current MuelLu Capabilities

* Grid Transfer Algorithms
— Smoothed aggregation, Petrov Galerkin

« Smoothers
— SOR, ILU, Polynomial (Ifpack, Ifpack2)

* Direct solvers
— KLU, SuperLU, SuperLUDist (Amesos, Amesos2)

« Sparse linear algebra (Epetra, Tpetra)

* Krylov acceleration (Belos, AztecOO) @ Sandia

National
Laboratories

Xpetra

* Wrapper for Epetra and
Tpetra
— Based on Tpetra interfaces

— Allows unified access to
either linear algebra library

- Layer concept:
— Layer 2: blocked operators
— Layer 1: operator views

— Layer 0: low level E/Tpetra
wrappers (automatically
generated code)

* MuelLu algorithms are
written using Xpetra

X

Design Overview

 MueLu makes heavy use of “factory” pattern
— Factories: classes that generate objects

* Preconditioner is created by chaining together
factories that create grid transfers, smoothers,
coarse grid Galerkin triple-matrix product

* FactoryManager manages these dependencies

* User is not required to specify these
dependencies (or even know they exist).

Sandia
National
Laboratories

User Interfaces

MuelLu — User Interfaces

* MuelLu can be customized as follows:
— XML input files
— Parameter lists (key-value pairs)
— Directly through C++ interfaces

* New/casual users
— Minimal interface
— Sensible defaults provided automatically

« Advanced users

— Can customize or replace any component of
multigrid algorithm. @ Sandia

National
Laboratories

MueLu — A Simple C++ Example

// Creation of fine matrix A, solution X, right-hand side B not shown

// Allocate hierarchy object and insert A
Hierarchy H(fineA);

H.Setup () ;

H.Iterate (B,nits,X);

* Generates smoothed aggregation multigrid
preconditioner.

- Uses reasonable defaults.
- As we’ll see, these can changed easily.

Sandia
National
Laboratories

Customizing the Preconditioner

’

// Creation of fine matrix A, solution X, right-hand side B not shown

// Allocate hierarchy object and insert A

Hierarchy H(fineAh);

RCP<TentativePFactory> ProlongatorFact = rcp(new TentativePFactory()
Teuchos: :ParameterlList smootherParamlList;
smootherParamlList.set (, 3);

) ;

RCP<SmootherPrototype> smootherPrototype rcp(new TrilinosSmoother (

smootherParamlList));

FactoryManager M;
M.SetFactory (, ProlongatorFact) ;
M. Set (, SmootherPrototype) ;

H.Setup (M) ;

int its=10;
H.Iterate(B,nits,X);

(™)

Sandia
National
Laboratories

Customizing the Preconditioner

// Creation of fine matrix A, solution X, right-hand side B not shown

// Allocate hierarchy object and insert A
Hierarchy H(fineA);

<::rECP<TentativePFactory> ProlongatorFact = rcp(new TentativePFactory ())ﬁ::::>

TeUuChoSs & PO b O T e e el il

smootherParamlList.set (, 3);

RCP<SmootherPrototype> smootherPrototype rcp(new TrilinosSmoother (

, smootherParamlList));
FactoryManager M;
M.SetFactory (, ProlongatorFact) ;
M. Set (, SmootherPrototype) ;
H.Setup (M) ;

int its=10;
H.Iterate(B,nits,X);

* Use unsmoothed prolongator
— Rcp == smart pointer

(™)

Sandia
National
Laboratories

Customizing the Preconditioner

// Creation of fine matrix A, solution X, right-hand side B not shown

// Allocate hierarchy object and insert A
Hierarchy H(fineA);

RCP<TentativePFactorv> ProlongatorkFact = rcp(new TentativePFactorv()):

Teuchos: :ParameterlList smootherParamlList;

smootherParamlList.set (, 3);
RCP<SmootherPrototype> smootherPrototype rcp(new TrilinosSmoother (

, smootherParamList));

FactoryManager M;
M.SetFactory (, ProlongatorFact) ;
M. Set (, SmootherPrototype) ;

H.Setup (M) ;

int its=10;
H.Iterate(B,nits,X);

* Use degree 3 polynomial smoother
— Parameter list == key/value pairs @ Sandia

National
— Smoother Laboratories

Customizing the Preconditioner

// Creation of fine matrix A, solution X, right-hand side B not shown

// Allocate hierarchy object and insert A
Hierarchy H(fineA);

RCP<TentativePFactory> ProlongatorFact = rcp(new TentativePFactory());
Teuchos: :ParameterList smootherParamlList;

smootherParamList.set (

RCP<SmootherPrototype> smootherPrototype new TrilinosSmoother (

, smootherParamList));

FactoryManager M;
M.SetFactory (, ProlongatorFact) ;
M. Set (, SmootherPrototype) ;

W(M):

int its=103;
H.Iterate(B,nits,X);

* Register changes with Factory Manager and pass

to Setup. @

Sandia
National
Laboratories

The Factory Manager

* Holds default factories to be used during
multigrid setup.

« Can have one FactoryManager per level.

* User can selectively specify alternatives.
FactoryManager M;
M.SetFactory(“Aggregation”, UCAggFact);

* The hierarchy set up process queries the
FactoryManager for proper factory for each
algorithmic component.

Sandia
National
Laboratories

Accessing MuelLu Through XML

//read in XML file...

ParameterListInterpreter muelLuFactory (xmlFileName) ;
RCP<Hierarchy> H = mueluFactory.CreateHierarchy();
H->GetLevel (0) =>Set ("A", A);

muelLuFactory.SetupHierarchy (*H) ;

int nITts = 10;
H->Iterate (*B, nlIts, *X);

<ParameterList name="Muelu">
<Parameter name="numDesiredlLevel"” type="int" walue="10"/>
<Parameter name="maxCoarseSize" type="1int" value="50@"/>

<ParameterlList name="Finelevel":-
<Parameter name="startlLevel” type="1int" value="@"/>
<Parameter name="Smoother" type="string" value="Chebyshev" />
<Parameter nome="Aggregates" type="string" value="UCAggregationFactor
</ParameterlLists

<ParameterList name="CoarsestlLevel"”>
<Parameter name="startlLevel” +type="int" value="-1"/-
<Parameter name="CoarseSolver" type="string" value="DirectSolver" />
</ParameterlList>
</ParameterList>

Case Study: Smoothed Aggregation

Multigrid

Smoothed Aggregation Setup

* Group fine unknowns into
aggregates to form coarse
unknowns

Sandia
National
Laboratories

Smoothed Aggregation Setup

* Group fine unknowns into
aggregates to form coarse
unknowns

* Partition given nullspace B,
across aggregates to have local
support

Sandia
National
Laboratories

* Group fine unknowns into
aggregates to form coarse
unknowns

* Partition given nullspace B,
across aggregates to have local
support

* Calculate QR=B, to get initial
prolongator Pn(=Q) and coarse
nullspace (R).

- Form final prolongator P = (| — wD'A)Ptent

Sandia
National
Laboratories

Case Study: Smoothed Aggregation

Dependency Graph

* Possible call sequences to generate Ps™ SaPFactory

A

1) PFact = SaPFactory():; TentativePFactory

4

2) PtentFact = TentativePFactory(); M
PFact = SaPFactory (PtentFact); Y

GraphFactory

= AggregationFactory () ;

TentativePFactory (AggFact) ;
SaPFactory (Ptent) ;

- Data dependencies must be maintained between

factories.
D=
National
Laboratories

Management of Data Dependencies

- Level class manages data storage
* Factories exchange data by taking Level classes
as arguments to Build method:
— Build(currentLevel) or
— Build(fineLevel,coarselLevel)
* Factories declare on Level the data that they

require, along with generating factories, or
FactoryManager provides generating strategy.

Sandia
National
Laboratories

Advantages of Data Management on Level

* Level manages data deallocation once all
requests satisfied

* Generating factory does not need to know what
other factories require data
- Data reuse

— Any data (aggregates, P, ...) can be retained by
user request for reuse in later runs.

— Data can be retained for later analysis.
— Almost any reuse granularity is possible.

Sandia
National
Laboratories

Example: Smoothed Aggregation

SaPFactory

AggFact = AggregationFactory () 7y

Ptent = TentativePFactory (AggFact); TentativePFact
cntativerractory

Pfact=SaPFactory (Ptent) ; y

AggregationFactory

 Pfact registers with Level its need for P, along

with generating factory Ptent. GraphFactory

 Ptent registers with Level its need for aggregate
data, along with generating factory (AggFact)

» AggFact generates aggregates, stores on Level.
 After Ptent accesses aggregates, Level frees data.
« After Pfact access P |evel frees data.

Sandia
. National
User does not need to manage data dependencies. @ Laboratores

Summary

* Current status
— Copyrighted with open-source BSD style license
— Part of publicly available Trilinos anonymous clone
— We still support ML.

* Ongoing/Future work
— Grid transfers based on constrained minimization (aka energy
minimization)
— Improving documentation, application interfaces

— Big driver for FY 13 1s templated stack milestone requirements

Sandia
National
Laboratories

— Performance optimizations

