
Using QCAD for the design of
double quantum dots

Erik Nielsen, Suzey Gao, Ralph Young, Rick Muller, Andy
Sallinger

2nd Albany Developers Meeting
Oct 2, 2012

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.

Department of Energy's National Nuclear Security Administration under contract DE-AC04-
94AL85000.

SAND2012-10367P

Quantum dots

• Quantum dot: a potential energy “pit”
that confines electrons to a point in space

• Double quantum dot: two of them

• Useful for quantum computing if we have
just a few electrons in each dot and can
move them back & forth.

• # of e depends on “depth” and “size” of dots

V (x)

x

V (x)

x

vs.

Insulator

Double quantum dot devices

• One way to make double quantum dots:

SiliconSilicon

M M

Metal

Top

Bottom

Horizontal cut (constant z)
“Depletion Gates”

3D view

z

+ + + + + + + + +

- - - -

- - - -

Electron Density (red = higher)

(this gets meshed)

- - - -

Many patterns

Ottawa Thin B 270nm

Ottawa Fanned Mod

Ottawa Thin B
DotCS 270nm

Ottawa Thin B Open
DotCS 270nm

Radial 1CS Gated Wire 60nm

Ottawa Thin 270nm Radial 2CS

Sample device
(485)

Silicon substrateGate OxidePoly GatesPoly ReoxALD (Al-oxide)Aluminum

Layers of a Double quantum dot:

Designing good Double Quantum Dots

Central Question: How do I make a “good” quantum dot?

(experiments take a long time, would like to predict good designs)

What makes a good double quantum dot?

What knobs can we turn?
1. Voltages

2. Geometry, i.e. placement of gates

Responses

Parameters (mesh mover?)

1. Small number of electrons in dot
2. Barriers allowing electrons in and out of dot on

border of being on/off
3. Channel which measures the electrons in the dot

is operational (another barrier)

Equations to solve (reminder)

• Poisson’s equation (like heat diffusion)

• Single and many-electron Schrodinger equations (matrix
diagonalization)

But possibly multiple of each type in some types of solutions
(e.g. quantum mechanical solutions) -- Albany very flexible

  ()

Hi  Eii

QCAD in the context of Albany & DAKOTA

QCAD Solver (a ModelEvaluator)

Poisson NOX Solver (a ModelEvaluator)

Schrodinger LOCA Solver (a ModelEval)

Parameters

Responses (Integrals = #e- in dot, Saddle Pts = barriers)

Sensitivities (Capacitances)

Parameter &
Response

Manipulation

Parameters

Responses

Sensitivities (of eigenvalues?)

Parameters

Responses

Sensitivities

Albany

DAKOTA

Nonlinear
least-squares

driver

Param-study
drivers

Optimization of OttawaFlat270
Targets (NL-least sq terms):

1. 1 e- in left dot

2. Left tunnel barrier just turning on

3. Dot barrier just turning on

4. Left QPC barrier just turning on

Adjustable parameters (gate voltages):

1. AG (top accumulation gate – not shown)

2. TP

3. CP

4. LP tied to RP

5. L tied to R

6. LQPC tied to RQPC

Optimization of OttawaFlat270
Targets (NL-least sq terms):

1. 1 e- in left dot

2. Left tunnel barrier just turning on

3. Dot barrier just turning on

4. Left QPC barrier just turning on

Adjustable parameters (gate voltages):

1. AG (top accumulation gate – not shown)

2. TP

3. CP

4. LP tied to RP

5. L tied to R

6. LQPC tied to RQPC

AG (top metal)

AG (top metal)

Design Comparison

More designs

What’s helped and what’s lacking

• Helpful features of Albany architecture:
– Ease of creating custom problems (implementing new

evaluators). [Evaluation tree automatic]
– Ease of creating custom responses (again, evaluators!)
– Automatic Differentiation

• no Jacobians to compute
• speed up for NLS optimizations
• C++ templating = only implement things once

• What we’d like to see:
– No complex numbers
– Method of passing field data between sub-solvers could be

more integrated into the parameter/response framework
(currently we use field manager hooks)

This slide is intentionally left blank

iQCAD: an QCAD-Albany GUI

Erik Nielsen, Suzey Gao, Ralph Young,
Rick Muller, Andy Sallinger

Typical process to simulate a device

1. CUBIT to create mesh

2. Spread mesh (not necessary now thanks to Glen!)

3. Create Albany/Dakota input files

4. Run Albany

5. Check output file to see if it succeeded

6. Join output mesh

7. Image joined mesh using Paraview

http://qcad.sandia.gov
http://qcad.sandia.gov

A web interface to Albany:
“iQCAD”

A web-based wrapper (currently written in python) which
performs the following pre/post processing functions:

• Input file generation (input.xml, materials.xml, dak.in, …)

• Submission to run queue (interfaces w/SLURM job queuing)

• Imaging & post-processing (scripted calls to Paraview)

• Saving input and output data in a database (MySQL backend)

• User control (keeps different users’ data separate)

• Mesh preparation and checking (check .exo vs cubit .jou;

spreading meshes)

DEMO
(http://qcad.sandia.gov)

Why does it work well for QCAD?

• Lots of different classes of models/meshes

• Many similar models of each class

• Predictable location for imaging

• Potentially lots of use by non-experts

