
1	
 	

Sandia	
 Na)onal	
 Laboratories	
 is	
 a	
 mul)	
 program	
 laboratory	
 managed	
 and	
 operated	
 by	
 Sandia	
 Corpora)on,	

a	
 wholly	
 owned	
 subsidiary	
 of	
 Lockheed	
 Mar)n	
 Corpora)on,	
 for	
 the	
 U.S.	
 Department	
 of	
 Energy's	
 Na)onal	

Nuclear	
 Security	
 Administra)on	
 under	
 contract	
 DE-­‐AC04-­‐94AL85000.	
 	

.	

LAMENT

Applying Sacado to a Sierra
Material Model Library

Funding: ASC Algorithms (Hoekstra)

David Littlewood

Albany Developers Meeting
2 October 2012

SAND2012-9161P

2	
 	

§  Advanced Simulation and Computing (ASC) code

§  Developed and maintained within center 1500

§  Customers include DOE, DoD, and industrial partners

§  Capabilities:

§  Solid Mechanics (Presto, Adagio)
§  Structural Dynamics (Salinas)
§  Thermal / Fluids (Aria)

Sierra

Sierra is the engineering mechanics simulation code suite supporting the
nation’s nuclear weapons mission, as well as other customers

3	
 	

LAME IS THE MATERIAL LIBRARY UTILIZED BY SIERRA/SOLIDMECHANICS

§  80+ material models

§  ~30 “supported” material models for Sierra/SolidMechanics

§  Material models for solid elements, shell, cohesive zones, …

§  Equation of State (EOS) material models

§  Examples of material models ported to LAME:

§  EPIC material models (DoD code)
§  Abaqus User Material (UMAT) models

Library of Advanced Materials for Engineering (LAME)

4	
 	

§  Input
§  Kinematic variables (strain, strain rate, volume, …)
§  Material model state variables

§  Output
§  Stress
§  Updated material model state variables

§  Standardized C interface
§  Wraps model-specific interfaces with a common interface
§  Many material models written in Fortran

§  Extreme example: Kayenta model contains 26,738 lines of Fortran
§  Sierra/SolidMechanics calls LAME at the element level

§  Kinematic calculations are specific to each element type
§  Hierarchy of derived classes, nested classes, etc.
§  For historical reasons, LAME wrapped in several layers of abstraction

§  Albany calls LAME from within the LameStress evaluator
§  Deformation gradient is required field
§  Stress is evaluated field
§  Currently limited to small subset of LAME material models

LAME Interface

5	
 	

LAME Interface

struct	
 matParams	
 {	

	

	
 	
 	
 	
 int	
 nelements;	

	
 	
 	
 	
 int	
 nnodes_per_elem;	

	
 	
 	
 	
 int	
 nintg;	

	
 	
 	
 	
 double	
 dt;	

	
 	
 	
 	
 double	
)me;	

	
 	
 	
 	
 double	
 dt_mat;	

	
 	
 	
 	
 double	
 *	
 strain_rate;	

	
 	
 	
 	
 double	
 *	
 spin;	

	
 	
 	
 	
 double	
 *	
 stress_old;	

	
 	
 	
 	
 double	
 *	
 stress_new;	

	
 	
 	
 	
 double	
 *	
 state_old;	

	
 	
 	
 	
 double	
 *	
 state_new;	

	
 	
 	
 	
 std::vector<double	
 *>	
 sub_states_old;	

	
 	
 	
 	
 std::vector<double	
 *>	
 sub_states_new;	

	
 	
 	
 	
 double	
 *	
 temp_old;	

	
 	
 	
 	
 double	
 *	
 temp_new;	

	
 	
 	
 	
 double	
 *	
 capillarypressure_old;	

	
 	
 	
 	
 double	
 *	
 capillarypressure_new;	

	
 	
 	
 	
 double	
 *	
 weVngphasepressure_old;	

	
 	
 	
 	
 double	
 *	
 weVngphasepressure_new;	

	
 	
 	
 	
 double	
 *	
 nonweVngphasesatura)on_old;	

	
 	
 	
 	
 double	
 *	
 nonweVngphasesatura)on_new;	

	
 	
 	
 	
 double	
 *	
 concentra)on;	

	
 	
 	
 	
 double	
 *	
 leW_stretch;	

	
 	
 	
 	
 double	
 *	
 rota)on;	

	
 	
 	
 	
 double	
 *	
 volume;	

	
 	
 	
 	
 double	
 *	
 entropy;	

	
 	
 	
 	
 double	
 *	
 energy_balance_term;	

	
 	
 	
 	
 double	
 *	
 material_proper)es;	

	
 	
 	
 	
 double	
 *	
 tangent_moduli;	

	
 	
 	
 	
 double	
 *	
 centroid;	

	
 	
 	
 	
 double	
 *	
 ym_old;	

	
 	
 	
 	
 double	
 *	
 ym_new;	

	
 	
 	
 	
 double	
 *	
 nU_new;	

	
 	
 	
 	
 double	
 *	
 nU_old;	

	
 	
 	
 	
 double	
 *	
 bulk_scaling;	

	
 	
 	
 	
 double	
 *	
 shear_scaling;	

	
 	
 	
 	
 double	
 *	
 sound_speed_old;	

	
 	
 	
 	
 double	
 *	
 sound_speed_new;	

	
 	
 	
 	
 double	
 *	
 density_old;	

	
 	
 	
 	
 double	
 *	
 density_new;	

	
 	
 	
 	
 double	
 *	
 bulk_viscosity_old;	

	
 	
 	
 	
 double	
 *	
 bulk_viscosity_new;	

	
 	
 	
 	
 double	
 *	
 internal_energy_old;	

	
 	
 	
 	
 double	
 *	
 internal_energy_new;	

	
 	
 	
 	
 double	
 *	
 bulk_modulus;	

	
 	
 	
 	
 double	
 *	
 shear_modulus;	

	
 	
 	
 	
 double	
 *	
 thickness;	

	
 	
 	
 	
 double	
 *	
 base_vectors;	

	
 	
 	
 	
 double	
 *	
 characteris)c_length;	

	
 	
 	
 	
 double	
 *	
 yield_stress;	

	
 	
 	
 	
 double	
 *	
 equivalent_plas)c_strain_old;	

	
 	
 	
 	
 double	
 *	
 equivalent_plas)c_strain_new;	

	
 	
 	
 	
 double	
 *	
 plas)c_strain_rate;	

	
 	
 	
 	
 double	
 *	
 element_global_base_vectors;	

	
 	
 	
 	
 double	
 *	
 element_global_coordinates;	

	
 	
 	
 	
 double	
 *	
 scratch;	

	
 	
 	
 	
 std::string	
 model;	

	
 	
 	
 	
 bool	
 probingElement;	

	
 	
 	
 	
 double	
 *	
 strain_rate_avg;	

	
 	
 	
 	
 double	
 *	
 crack_flag_old;	

	
 	
 	
 	
 double	
 *	
 crack_flag_new;	

	
 	
 	
 	
 double	
 *	
 decay_old;	

	
 	
 	
 	
 double	
 *	
 decay_new;	

	
 	
 	
 	
 double	
 *	
 failure_measure_old;	

	
 	
 	
 	
 double	
 *	
 failure_measure_new;	

	

	
 	
 };	

INTERFACE INCLUDES POINTERS TO A LARGE SET OF DATA

6	
 	

Sacado: An Automatic Differentiation Library

Sacado is a C++ template-based toolset for automatic differentiation (AD) and
sensitivity analysis [Phipps, Gay]

WHAT IS THE SACADO PACKAGE?

HOW DOES IT WORK?

•  Computer-science wizardry utilizing C++ templates and operator overloading
•  Targeted code is templated on the scalar type (e.g., double)

•  When instantiated for the standard type, original code is recovered
•  When instantiated for an AD type, Sacado functionality is enabled

•  Sacado’s AD types contain:
•  A base value (the original scalar)
•  Additional fields corresponding to derivative terms

WHAT ARE THE APPLICATIONS TO SIERRA/SM?

•  Automatic calculation of function derivatives
•  Applicable to tangent matrix for implicit time integration and/or modal analysis
•  Ability to carry out multiple function evaluations simultaneously (multiprobe)

7	
 	

A Simple Example of Automatic Differentiation with Sacado
FUNCTION TEMPLATED ON THE SCALAR TYPE

template void testFunction<double>(double* a,!
 double* b);!
!
template void testFunction<Sacado::Fad::DFad<double> >(Sacado::Fad::DFad<double>* a,!
 Sacado::Fad::DFad<double>* b);!

template<typename ScalarT> void testFunction(ScalarT* a,!
 ScalarT* b)!
{!
 a[0] = 2.0 + 3.0*b[0] + 4.0*b[1]*b[1];!
}!

EXPLICIT TEMPLATE INSTANTIATION

•  Standard C++ template syntax
•  Replace scalar (double) with template argument ScalarT

•  Define specific instances of templated function in *.cpp file
•  Avoids need to use header files exclusively
•  Improved compilation time
•  Loss of generality (cannot use arbitrary template argument elsewhere in code)

8	
 	

A Simple Example of Automatic Differentiation with Sacado

FUNCTION INSTANTIATED WITH TEMPLATE ARGUMENT = double

vector<double> a(1);!
vector<double> b(2);!
b[0] = 2.0;!
b[1] = 3.0;!
 !
testFunction(&a[0], &b[0]);!
!
cout << "a[0] = " << a[0] << endl;!

a[0] = 44!

FUNCTION INSTANTIATED WITH TEMPLATE ARGUMENT = Sacado::Fad::DFad<double>

vector<Sacado::Fad::DFad<double> > a(1);!
vector<Sacado::Fad::DFad<double> > b(2);!
b[0] = Sacado::Fad::DFad<double>(2, 0, 2.0);!
b[1] = Sacado::Fad::DFad<double>(2, 1, 3.0);!
 !
testFunction(&a[0], &b[0]);!
!
cout << "a[0].val() = " << a[0].val() << endl;!
cout << ”a[0].dx(0) = " << a[0].dx(0) << ", a[0].dx(1) = " << a[0].dx(1) << endl;!

a[0].val() = 44!
a[0].dx(0) = 3, a[0].dx(1) = 24!

9	
 	

LAMENT: LAME Now Templated

template	
 <typename	
 ScalarT>	

struct	
 matParams	
 {	

	

	
 	
 	
 	
 int	
 nelements;	

	
 	
 	
 	
 int	
 nnodes_per_elem;	

	
 	
 	
 	
 int	
 nintg;	

	
 	
 	
 	
 double	
 dt;	

	
 	
 	
 	
 double	
)me;	

	
 	
 	
 	
 double	
 dt_mat;	

	
 	
 	
 	
 ScalarT	
 *	
 strain_rate;	

	
 	
 	
 	
 ScalarT	
 *	
 spin;	

	
 	
 	
 	
 double	
 *	
 stress_old;	

	
 	
 	
 	
 ScalarT	
 *	
 stress_new;	

	
 	
 	
 	
 double	
 *	
 state_old;	

	
 	
 	
 	
 double	
 *	
 state_new;	

	
 	
 	
 	
 std::vector<double	
 *>	
 sub_states_old;	

	
 	
 	
 	
 std::vector<double	
 *>	
 sub_states_new;	

	
 	
 	
 	
 double	
 *	
 temp_old;	

	
 	
 	
 	
 double	
 *	
 temp_new;	

	
 	
 	
 	
 double	
 *	
 capillarypressure_old;	

	
 	
 	
 	
 double	
 *	
 capillarypressure_new;	

	
 	
 	
 	
 double	
 *	
 weVngphasepressure_old;	

	
 	
 	
 	
 double	
 *	
 weVngphasepressure_new;	

	
 	
 	
 	
 double	
 *	
 nonweVngphasesatura)on_old;	

	
 	
 	
 	
 double	
 *	
 nonweVngphasesatura)on_new;	

	
 	
 	
 	
 double	
 *	
 concentra)on;	

	
 	
 	
 	
 ScalarT	
 *	
 deforma)on_gradient	

	
 	
 	
 	
 ScalarT	
 *	
 leW_stretch;	

	
 	
 	
 	
 ScalarT	
 *	
 rota)on;	

	
 	
 	
 	
 double	
 *	
 volume;	

	
 	
 	
 	
 double	
 *	
 entropy;	

	
 	
 	
 	
 double	
 *	
 energy_balance_term;	

	
 	
 	
 	
 double	
 *	
 material_proper)es;	

	
 	
 	
 	
 double	
 *	
 tangent_moduli;	

	
 	
 	
 	
 double	
 *	
 centroid;	

	
 	
 	
 	
 double	
 *	
 ym_old;	

	
 	
 	
 	
 double	
 *	
 ym_new;	

	
 	
 	
 	
 double	
 *	
 nU_new;	

	
 	
 	
 	
 double	
 *	
 nU_old;	

	
 	
 	
 	
 double	
 *	
 bulk_scaling;	

	
 	
 	
 	
 double	
 *	
 shear_scaling;	

	
 	
 	
 	
 double	
 *	
 sound_speed_old;	

	
 	
 	
 	
 double	
 *	
 sound_speed_new;	

	
 	
 	
 	
 double	
 *	
 density_old;	

	
 	
 	
 	
 double	
 *	
 density_new;	

	
 	
 	
 	
 double	
 *	
 bulk_viscosity_old;	

	
 	
 	
 	
 double	
 *	
 bulk_viscosity_new;	

	
 	
 	
 	
 double	
 *	
 internal_energy_old;	

	
 	
 	
 	
 double	
 *	
 internal_energy_new;	

	
 	
 	
 	
 double	
 *	
 bulk_modulus;	

	
 	
 	
 	
 double	
 *	
 shear_modulus;	

	
 	
 	
 	
 double	
 *	
 thickness;	

	
 	
 	
 	
 double	
 *	
 base_vectors;	

	
 	
 	
 	
 double	
 *	
 characteris)c_length;	

	
 	
 	
 	
 double	
 *	
 yield_stress;	

	
 	
 	
 	
 double	
 *	
 equivalent_plas)c_strain_old;	

	
 	
 	
 	
 double	
 *	
 equivalent_plas)c_strain_new;	

	
 	
 	
 	
 double	
 *	
 plas)c_strain_rate;	

	
 	
 	
 	
 double	
 *	
 element_global_base_vectors;	

	
 	
 	
 	
 double	
 *	
 element_global_coordinates;	

	
 	
 	
 	
 double	
 *	
 scratch;	

	
 	
 	
 	
 std::string	
 model;	

	
 	
 	
 	
 bool	
 probingElement;	

	
 	
 	
 	
 double	
 *	
 strain_rate_avg;	

	
 	
 	
 	
 double	
 *	
 crack_flag_old;	

	
 	
 	
 	
 double	
 *	
 crack_flag_new;	

	
 	
 	
 	
 double	
 *	
 decay_old;	

	
 	
 	
 	
 double	
 *	
 decay_new;	

	
 	
 	
 	
 double	
 *	
 failure_measure_old;	

	
 	
 	
 	
 double	
 *	
 failure_measure_new;	

	

	
 	
 };	

GOAL: OBTAIN DERIVATIVES OF STRESS COMPONENTS W.R.T. NODAL DISPLACEMENTS

10	
 	

Unit Test: Calculation of Stress

!
 // Instantiate the material model and the material parameters structure!
!
 Material<double> * elasticMat = new ElasticNew<double>(*props);!
 matParams<double> * matp = new matParams<double>(); !
!
 matp->nelements = 1; !
 matp->dt = 5e-3; !
 double strainRate[] = { 0.025, 0.0, 0.0, 0.0, 0.0, 0.0 }; !
 double stressOld[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; !
 double stressNew[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; !
 matp->strain_rate = strainRate; !
 matp->stress_old = stressOld; !
 matp->stress_new = stressNew;!
!
 // Compute the stress!
 !
 elasticMat->getStress(matp);!
!
 // Verify computed stress values!
!
 double stressNewExp[] = { 5e-3*0.025*youngsValue, 0.0, 0.0, 0.0, 0.0, 0.0 };!
!
 for(int i=0; i< 6; i++) !
 ASSERT_NEAR(stressNewExp[i], stressNew[i], 1e-14); !
!

11	
 	

Unit Test: Calculation of Stress and Derivatives w.r.t. Strain
!
 typedef Sacado::ELRFad::DFad<double> FadType!
!
 // Instantiate the material model and material parameters structure!
!
 Material<FadType> * elasticMat = new ElasticNew<FadType>(*props); !
 matParams<FadType> * matp = new matParams<FadType>(); !
!
 matp->nelements = 1;!
 matp->dt = 5.0e-3; !
 double stressOld[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; !
 matp->stress_old = stressOld; !
 !
 // the components of the strain rate are the independent variables !
 int numDof = 6; !
 double strainRate[] = { 0.025, -0.01, -0.02, 0.0001, -0.0003, 0.002 }; !
 vector<FadType> strainRate_AD(numDof); !
 for(int i=0 ; i<numDof ; ++i){ !
 strainRate_AD[i].diff(i, numDof); !
 strainRate_AD[i].val() = strainRate[i]; !
 } !
 matp->strain_rate = &strainRate_AD[0]; !
 !
 // the components of the stress tensor (stressNew) are the dependent variables !
 double stressNew[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; !
 vector<FadType> stressNew_AD(numDof); !
 for(int i=0 ; i<numDof ; ++i){ !
 stressNew_AD[i].val() = stressNew[i]; !
 } !
 matp->stress_new = &stressNew_AD[0]; !
 !
 // Compute the stress!
!
 elasticMat->getStress(matp); !
!

12	
 	

Unit Test: Calculation of Stress and Derivatives w.r.t. Strain

!
 // K = bulk modulus !
 // mu = shear modulus !
!
 elasticityTensor[0][0] = K+4.0*mu/3.0; !
 elasticityTensor[0][1] = K-2.0*mu/3.0; !
 elasticityTensor[0][2] = K-2.0*mu/3.0; !
 elasticityTensor[1][0] = K-2.0*mu/3.0; !
 elasticityTensor[1][1] = K+4.0*mu/3.0; !
 elasticityTensor[1][2] = K-2.0*mu/3.0; !
 elasticityTensor[2][0] = K-2.0*mu/3.0; !
 elasticityTensor[2][1] = K-2.0*mu/3.0; !
 elasticityTensor[2][2] = K+4.0*mu/3.0; !
 elasticityTensor[3][3] = 2.0*mu; // factor of two for Mandel notation !
 elasticityTensor[4][4] = 2.0*mu; !
 elasticityTensor[5][5] = 2.0*mu; !
!
 // Verify the stress calculation !
!
 for(int i=0; i< 6; i++) !
 ASSERT_NEAR(stressNew_AD[i].val(), stressNewExpected[i], tol); !
 !
 // verify the Jacobian!
 !
 for(int i=0; i<6; ++i) { !
 for(int j=0 ; j<6; ++j) !
 ASSERT_NEAR(stressNew_AD[i].dx(j), elasticityTensor[i][j]*timeStep, tol); !
 } !
 }!
 !

13	
 	

Albany Tests

!
 <ParameterList name="Problem">!
 <Parameter name="Name" type="string" value="Lame"/>!
 <Parameter name="Lame Material Model" type="string" value="Elastic_New"/>!
 <ParameterList name="Lame Material Parameters">!
 <Parameter name="Youngs Modulus" type="double" value="1.0"/>!
 <Parameter name="Poissons Ratio" type="double" value="0.25"/>!
 </ParameterList>!
 !
 . . .!
!
 </ParameterList>!
!

TESTS THAT CALL LAME

•  LameStaticElasticity3D
Case 1) Matrix-free solver
Case 2) Tangent constructed via finite-difference probe

•  LameMultiMaterials
•  Tests ability to assign a large number of materials to different blocks

TESTS THAT CALL LAMENT

•  LamentStaticElasticity3D
Case 1) Tangent constructed via automatic differentiation

14	
 	

Ongoing Work
LAMENT ALBANY

SIERRA/SOLIDMECHANICS

•  Templatize code spanning from probing operation through LAME material models
1.  Element tangent probe
2.  Internal force calculator

•  Nested class hierarchy within large code base adds complexity
•  Utilize new master element that wraps Intrepid [Ostien]

3.  Material manager
4.  LAME interface
5.  LAME material model(s)

•  Milestone #1: Compute finite-difference tangent with multiprobe type
•  Milestone #2: Compute tangent via automatic differentiation

•  Explore power of Sacado beyond
tangent stiffness matrix

•  Additional system tests

•  Port additional LAME materials to LAMENT
•  Tackle a material model written in Fortran

Additional unit tests

Proof-of-concept demonstration of tangent
matrix construction via automatic differentiation

15	
 	

LAMENT

Applying Sacado to a Sierra
Material Model Library

David Littlewood
djlittl@sandia.gov!

Multiphysics Simulation Technologies (Org. 1444)

Questions?

