I

LAMENT

Applying Sacado to a Sierra
Material Model Library

Funding: ASC Algorithms (Hoekstra)

David Littlewood

Albany Developers Meeting
2 October 2012

‘*;; Sandia National Laboratories is'a multi program/laboratory managed and operated by Sandia Corporatlon
B""a wholly owned subsidiary of Lockheed Martin Corporation, for. the U.S. Department of Energy's National ‘ )..
_:;5 Nuclear Security Administration under contract DE-AC04-94AL85000. ///’ VA

SAND2012-9161P



Sierra

Sierra is the engineering mechanics simulation code suite supporting the
nation’s nuclear weapons mission, as well as other customers

Advanced Simulation and Computing (ASC) code
= Developed and maintained within center 1500
= Customers include DOE, DoD, and industrial partners

= Capabilities:

= Solid Mechanics (Presto, Adagio)
= Structural Dynamics (Salinas)
= Thermal / Fluids (Aria)

2 National _
Laboratories




Library of Advanced Materials for Engineering (LAME)

LAME IS THE MATERIAL LIBRARY UTILIZED BY SIERRA/SOLIDMECHANICS

= 80+ material models

= ~30 “supported” material models for Sierra/SolidMechanics
= Material models for solid elements, shell, cohesive zones, ...
= Equation of State (EOS) material models

= Examples of material models ported to LAME:

= EPIC material models (DoD code)
= Abaqus User Material (UMAT) models

AAAAAAAAAAAA

uuuuuuuuuuuuuu
mmmmmmmmmmmmmmmm

() sandia National Laboratories




LAME Interface

= Input
= Kinematic variables (strain, strain rate, volume, ...)
= Material model state variables
= Qutput
= Stress
= Updated material model state variables
Standardized C interface
= Wraps model-specific interfaces with a common interface
= Many material models written in Fortran
= Extreme example: Kayenta model contains 26,738 lines of Fortran
Sierra/SolidMechanics calls LAME at the element level
= Kinematic calculations are specific to each element type
= Hierarchy of derived classes, nested classes, etc.
= For historical reasons, LAME wrapped in several layers of abstraction
Albany calls LAME from within the LameStress evaluator
= Deformation gradient is required field
= Stress is evaluated field
= Currently limited to small subset of LAME material models




LAME Interface

INTERFACE INCLUDES POINTERS TO A LARGE SET OF DATA

struct matParams {

int nelements;

int nnodes_per_elem;

int nintg;

double dt;

double time;

double dt_mat;

double * strain_rate;

double * spin;

double * stress_old;

double * stress_new;

double * state old;

double * state_new;
std::vector<double *> sub_states_old;
std::vector<double *> sub_states new;
double * temp_old;

double * temp_new;

double * capillarypressure_old;

double * capillarypressure _new;
double * wettingphasepressure_old;
double * wettingphasepressure_new;
double * nonwettingphasesaturation_old;
double * nonwettingphasesaturation_new;

double * concentration;
double * left_stretch;

double * rotation;

double * volume;

double * entropy;

double * energy balance_term;
double * material_properties;
double * tangent_moduli;
double * centroid;

double * ym_old;

double * ym_new;

double * nU_new;

double * nU_old;

double * bulk_scaling;

double * shear_scaling;
double * sound_speed_old;
double * sound_speed new;
double * density_old;

double * density_new;
double * bulk_viscosity_old;
double * bulk_viscosity new;
double * internal_energy old;
double * internal_energy new;
double * bulk_modulus;

double * shear_modulus;

double * thickness;

double * base_vectors;

double * characteristic_length;

double * yield_stress;

double * equivalent_plastic_strain_old;
double * equivalent_plastic_strain_new;
double * plastic_strain_rate;

double * element_global_base_vectors;
double * element_global coordinates;
double * scratch;

std::string model;

bool probingElement;

double * strain_rate_avg;

double * crack_flag_old;

double * crack_flag_new;

double * decay old;

double * decay_new;

double * failure_measure_old;

double * failure_measure_new;

|5




Sacado: An Automatic Differentiation Library

WHAT IS THE SACADO PACKAGE?

Sacado is a C++ template-based toolset for automatic differentiation (AD) and
sensitivity analysis [Phipps, Gay]

HOW DOES IT WORK?

« Computer-science wizardry utilizing C++ templates and operator overloading
- Targeted code is templated on the scalar type (e.g., double)

* When instantiated for the standard type, original code is recovered

- When instantiated for an AD type, Sacado functionality is enabled
« Sacado’s AD types contain:

* Abase value (the original scalar)

- Additional fields corresponding to derivative terms

WHAT ARE THE APPLICATIONS TO SIERRA/SM?

* Automatic calculation of function derivatives
« Applicable to tangent matrix for implicit time integration and/or modal analysis
« Ability to carry out multiple function evaluations simultaneously (multiprobe)

. /




A Simple Example of Automatic Differentiation with Sacado
FUNCTION TEMPLATED ON THE SCALAR TYPE

- Standard C++ template syntax
- Replace scalar (double) with template argument ScalarT

template<typename ScalarT> void testFunction(ScalarT* a,
ScalarT* b)

{
a[0] = 2.0 + 3.0*b[0] + 4.0*b[1]*b[1];

}

EXPLICIT TEMPLATE INSTANTIATION

« Define specific instances of templated function in *.cpp file

* Avoids need to use header files exclusively

* Improved compilation time

* Loss of generality (cannot use arbitrary template argument elsewhere in code)

template void testFunction<double>(double* a,
double* b);

template void testFunction<Sacado::Fad::DFad<double> >(Sacado::Fad::DFad<double>* a,
Sacado: :Fad: :DFad<double>* b);

‘ Sandia
7 National
Laboratories




A Simple Example of Automatic Differentiation with Sacado

FUNCTION INSTANTIATED WITH TEMPLATE ARGUMENT = double

vector<double> a(l);
vector<double> b(2);
b[0] 2.0;
b[1] 3.0;

testFunction(&a[0], &b[0]);

cout << "a[0] = " << a[0] << endl;

a[0] = 44

FUNCTION INSTANTIATED WITH TEMPLATE ARGUMENT = Sacado::Fad::DFad<double>

vector<Sacado: :Fad: :DFad<double> > a(1l);
vector<Sacado: :Fad: :DFad<double> > b(2);
b[0] = Sacado::Fad::DFad<double>(2, 0, 2.0);
b[1l] Sacado: :Fad: :DFad<double>(2, 1, 3.0);

testFunction(&a[0], &b[0]);

cout << "a[0].val() " << a[0].val() << endl;

cout << "a[0].dx(0) " << a[0].dx(0) << ", a[0].dx(l) = " << a[0].dx(1l) << endl;
a[0j.val() = 44
a[0].dx(0) = 3, a[0].dx(1l) = 24

g Sandia
8 National
Laboratories



LAMENT:. LAME Now Templated
GOAL: OBTAIN DERIVATIVES OF STRESS COMPONENTS W.R.T. NODAL DISPLACEMENTS

double * nonwettingphasesaturation_new; double * internal_energy_new;
double * concentration; double * bulk_modulus;
ScalarT * deformation_gradient double * shear_modulus;

template <typename ScalarT>
struct matParams {

int nelements;

int nnodes_per_elem;

int nintg;

double dt;

double time;

double dt_mat;

ScalarT * strain_rate;

ScalarT * spin;

double * stress_old;

ScalarT * stress_new;

double * state_old;

double * state_new;
std::vector<double *> sub_states_old;
std::vector<double *> sub_states new;
double * temp_old;

double * temp_new;

double * capillarypressure_old;
double * capillarypressure_new;
double * wettingphasepressure_old;
double * wettingphasepressure_new;

double * nonwettingphasesaturation_old;

ScalarT * left_stretch;
ScalarT * rotation;
double * volume;
double * entropy;

double * energy balance_term;

double * material_properties;
double * tangent_moduli;
double * centroid;

double * ym_old;

double * ym_new;

double * nU_new;

double * nU_old;

double * bulk_scaling;

double * shear_scaling;
double * sound_speed_old;
double * sound_speed _new;
double * density old;

double * density_new;
double * bulk_viscosity_old;
double * bulk_viscosity _new;
double * internal_energy old;

double * thickness;

double * base_vectors;

double * characteristic_length;

double * yield_stress;

double * equivalent_plastic_strain_old;
double * equivalent_plastic_strain_new;
double * plastic_strain_rate;

double * element_global base_vectors;
double * element_global coordinates;
double * scratch;

std::string model;

bool probingElement;

double * strain_rate_avg;

double * crack_flag_old;

double * crack_flag_new;

double * decay_old;

double * decay_new;

double * failure_measure_old;

double * failure_measure_new;

|5




Unit Test: Calculation of Stress

// Instantiate the material model and the material parameters structure

Material<double> * elasticMat = new ElasticNew<double>(*props);
matParams<double> * matp = new matParams<double>();

matp->nelements = 1;

matp->dt = 5e-3;

double strainRate[] = { 0.025, 0.0, 0.0, 0.0, 0.0, 0.0 };
double stressO0ld] ] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
double stressNew] ] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
matp->strain_rate = strainRate;

matp->stress old = stress0Old;

matp->stress new = stressNew;

// Compute the stress

elasticMat->getStress(matp);

// Verify computed stress values

double stressNewExp[] = { 5e-3*0.025*youngsValue, 0.0, 0.0, 0.0, 0.0, 0.0 }

for(int i=0; i< 6; i++)
ASSERT NEAR(stressNewExp[i], stressNew[i], le-14);

10




Unit Test: Calculation of Stress and Derivatives w.r.t. Strain

typedef Sacado::ELRFad: :DFad<double> FadType
// Instantiate the material model and material parameters structure

Material<FadType> * elasticMat = new ElasticNew<FadType>(*props);
matParams<FadType> * matp = new matParams<FadType>();

matp->nelements = 1;

matp->dt = 5.0e-3;

double stressoOld[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
matp->stress_old = stress01d;

// the components of the strain rate are the independent variables
int numDof = 6;
double strainRate[] = { 0.025, -0.01, -0.02, 0.0001, -0.0003, 0.002 };
vector<FadType> strainRate_ AD(numDof);
for(int i=0 ; i<numDof ; ++i){

strainRate AD[i].diff (i, numDof);

strainRate AD[i].val() = strainRate[i];

}

matp->strain rate = &strainRate AD[O0];

// the components of the stress tensor (stressNew) are the dependent variables
double stressNew[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
vector<FadType> stressNew AD(numDof);
for(int i=0 ; i<numDof ; ++i){
stressNew AD[i].val() = stressNew[i];

}
matp->stress new = &stressNew AD[O0];

// Compute the stress

elasticMat->getStress(matp);

11




Unit Test: Calculation of Stress and Derivatives w.r.t. Strain

// K = bulk modulus
// mu = shear modulus

elasticityTensor[0][0] = K+4.0*mu/3.0;
elasticityTensor[0][1] = K-2.0*mu/3.0;
elasticityTensor[0][2] K-2.0*mu/3.0;
elasticityTensor[1][0] K-2.0*mu/3.0;
elasticityTensor[1][1] = K+4.0*mu/3.0;
elasticityTensor[1][2] K-2.0*mu/3.0;
elasticityTensor[2][0] = K-2.0*mu/3.0;
elasticityTensor[2][1] K-2.0*mu/3.0;
elasticityTensor[2][2] K+4.0*mu/3.0;

elasticityTensor[3][3] = 2.0*mu; // factor of two for Mandel notation
elasticityTensor[4][4] = 2.0*mu;
elasticityTensor[5][5] = 2.0*mu;

// Verify the stress calculation

for(int i=0; i< 6; i++)
ASSERT NEAR(stressNew AD[i].val(), stressNewExpected[i], tol);

// verify the Jacobian

for(int i=0; i<6; ++i) {
for(int j=0 ; j<6; ++j)
ASSERT NEAR(stressNew AD[i].dx(]j), elasticityTensor[i][j]*timeStep, tol);
}

12




Albany Tests

TESTS THAT CALL LAME

- LameStaticElasticity3D
Case 1) Matrix-free solver
Case 2) Tangent constructed via finite-difference probe
« LameMultiMaterials
« Tests ability to assign a large number of materials to different blocks

TESTS THAT CALL LAMENT

« LamentStaticElasticity3D
Case 1) Tangent constructed via automatic differentiation

<ParameterList name="Problem">
<Parameter name="Name" type="string" value="Lame"/>
<Parameter name="Lame Material Model" type="string" value="Elastic New"/>
<ParameterList name="Lame Material Parameters">
<Parameter name="Youngs Modulus" type="double" value="1.0"/>
<Parameter name="Poissons Ratio" type="double" value="0.25"/>
</ParameterList>

</ParameterList>

13 /




Ongoing Work
LAMENT ALBANY

- Port additional LAME materials to LAMENT ° EXxplore power of Sacado beyond

- Tackle a material model written in Fortran tang.e-nt stiffness matrix
Additional unit tests - Additional system tests

SIERRA/SOLIDMECHANICS

Proof-of-concept demonstration of tangent
matrix construction via automatic differentiation

- Templatize code spanning from probing operation through LAME material models
1. Element tangent probe
2. Internal force calculator
* Nested class hierarchy within large code base adds complexity
« Utilize new master element that wraps Intrepid [Ostien]
3. Material manager
4. LAME interface
5. LAME material model(s)

- Milestone #1: Compute finite-difference tangent with multiprobe type
« Milestone #2: Compute tangent via automatic differentiation

14 /




15

Questions?

LAMENT

Applying Sacado to a Sierra
Material Model Library

David Littlewood

djlittl@sandia.gov
Multiphysics Simulation Technologies (Org. 1444)

/ /

Sandia

National
Laboratories




