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Organic photovoltaics =

There is a growing interest in converting clean solar
energy to electricity at low cost.

How can theory/computations aid in experimental
design?

DFT to predict ground-state properties MY

* Bandgaps a\‘ﬁg o e
e HOMO/LUMO positions MO

e Structural properties | oener Acceptr .

Time-dependent DFT to predict excited states properties

* Absorption / emission spectra visible Spectrum
 Energy and charge transfer w - | - "
e Excitation energies & oscillator strengths o~ 7 Mo e

\Wavelength in nanometers
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The exchange-correlation functional (s

* Severe problems in exchange-correlation potential
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* Wrong asymptotic behavior - charge-transfer
excitations severely underestimated and poorly
predicted molecular orbital energies
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Modifying the exchange functional &%

* Replace incorrect DFT portion with long-range
nonlocal exchange
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Splitting the Coulomb potential:
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M = range separation parameter r,, (distance between 2 electrons)
units: 1/Bohr
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Non-empirical tuning o

e How do we determine u?
 Koopman’s (Janak’s) Theorem:

IP =-€,0m0
— Rigorously obeyed for “exact” functional

* Construct objective function J? as function of u

32 () = [IP(u) + EHOMQ(/J)]Z

— Minimum of J? gives optimal u for satisfying Janak’s
Theorem = non-empirical “tuning” of XC functional

M.E. Foster, B.M. Wong, J. Chem. Theory Comput. 8, 2682 (2012)
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Quasiparticle/ionization energies .

J2(u) = [IP(u) + EHomo(U)]z

DNA & RNA
nucleobases

Jﬁiﬁ;

Adenine Cytosine
Guanine Thymme
U“l 0.05 0.25 0.45 0.65 0.85
M (Bohr?)
] »G@Guanine -+-Adenine -®Cytosine -<Thymine -+ Uracil |

M.E. Foster, B.M. Wong, J. Chem. Theory Comput. 8, 2682 (2012)
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lonization energies / electron affinities e
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LC formalism matches GW calculations LC formalism matches GW calculations
Other functionals: errors > 2.0 eV! Other functionals: qualitatively incorrect

M.E. Foster, B.M. Wong, J. Chem. Theory Comput. 8, 2682 (2012)
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Excitation energies o
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M.E. Foster, B.M. Wong, J. Chem. Theory Comput. 8, 2682 (2012)
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Long-range corrected functionals i

* Have the correct asymptotic behavior
* Can be non-empirical tuned
* Improved excitation energy

e Substantial improvements for predicting
ionization energies and electron affinities

M.E. Foster, B.M. Wong, J. Chem. Theory Comput. 8, 2682 (2012)



Sandia

What are metal-organic Frameworks Naoro
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Metal-organic framework s(MOF) are composed of two ; -
major components: a metal ion or cluster of metal ions and o

an organic molecule called a linker
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Ordering donor/acceptor interfaces e

Conventional Disordered R
Bulk Heterojunction [

Donor (e.g. P3HT)
Acceptor (e.g. PCBM)

‘,' Metal-ion cluster

' Tailored HJat ’f y
linker-guest
interfacq

Lk

Donor (CNF)
Acceptor (infiltrate)

Highly Ordered Nanoheterojunction
Using Crystalline Nanoporous
Framework (CNF)




Passive scaffolds and active networks (i) o

Passive Scaffolds - the CNF simply functions to order the donor/acceptor materials and plays no active role
in the PV energy conversion process.

CNF - Scaffold Combined D-A framework
Acceptor Donor o

(n-type) ~ (p-type)

Active Network — the CNF is designed to play an active role in the PV energy conversion process by
functioning as the donor or acceptor material.

CNF - Donor (p-type) Combined D-A framework

Acceptor (n-type) /'




Passive framework infiltration: MOF-177
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H,BTB == MOF-177

-
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Optical image of MOF-177 crystals

* 808 atoms in the primitive unit cell

* Transparent colorless block shaped crystals

* Open three-dimensional and ordered structure
with extra large pores.

* Two unique cavities denoted by “A” and “B”

Optimized Structure - Tight-Binding Density Functional Theory (DFTB)




MOF-177 — Passive scaffold Nere
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Density of States - Tight-Binding Density Function Theory (DFTB)
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MOF Infiltration — Electron Acceptors/Donor Natoral
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MOF-177 + acceptor molecules: PCBM infiltration
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Infiltration is energetically favorable
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DFT/tight-binding calculations (DFTB):

* 663 Structures generated

10-Step optimization to remove close
contacts

Translation Increments of 1 A




Characterizing MOF-Infiltration with PCBM through Sandia
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Cross-Sectional Microscopy aboratores

MOF177 particles were embedded in

acrylic resin. Microtomed sections from

the interior of MOF177 and infiltrated
MOF177 particles were examined by {, : \\\

microluminescence spectroscopy.

Cured resin

Excited by UV-light, MOF177 fluoresced bright blue.

MOF177
Infiltrated with PCBM, the local fluorescence was strongly
guenched (visible only at long camera exposure times)
throughout the section.
—MOF-177
—MQF-177 + PCBM )
MOF177/ %
PCBM . ’ \

350 400 450 500 550 600 650
Ex: 330-385nm; Em filter: 420nm Wavelength [nm]




Charge transfer - H,BTB/PCBM =
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Resonance energy transfer - H,BTB/PCBM s
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MOF-177 + donor molecules: thiophene oligomer Sandia
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Charge transfer - H,BTB/6-thiophene (i) &,
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Resonance Energy Transfer - H,BTB/6-thiophene {%:ffi"g,es
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Characterizing MOF-Infiltration with 6-thiophene Sandia
through Cross-Sectional Microscopy
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Microtomed sections were used to
confirm 6-thiophene infiltration into
MOF177.

Microluminescent image of MOF177
infiltrated with sexithiophene.
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Energy Dispersive X-Ray
Analysis in the TEM
identifies sulfur from 6-
thiophene in MOF177

Microluminescent
spectrum of
MOF177/sexithiophene
microtomed section
shows contributions
from MOF177 and
sexithiophene.
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Conclusions e

e MOF-177 is a passive network

* Infiltration of MOF-177 with PCBM and 6-
thiophene is energetically favored

* Resonance energy transfer is responsible for the
observed quenching between MOF-177 and PCBM

* MOF have the potential to order donor/acceptor
interfaces
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