i

Strong Local-Nonlocal Coupling for
Integrated Fracture Modeling

LDRD FY13-FY15

David Littlewood

Albany Developers Meeting
2 October 2012

Q%*:. Sandia National Laboratories is'a multi program‘laboratory managed and operated by Sandia Corporatlon IR D
B2 wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National ///’ VA ‘ n G‘
j Nuclear Security Administration under contract'DE-AC04-94AL85000. .,ua,.

SAND2012- 8932P



Goal: Direct Coupling of Peridynamics and Classical FEM
DRIVER

= Provide an integrated fracture modeling capability to the DOE and DoD

IMPACT

= Advance state of the art in computational simulation of material failure and fracture
= |ntegrated fracture modeling capability directly applicable to Sandia’s mission
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Local-Nonlocal Coupling for Integrated Fracture Modeling

APPROACH

= Fully integrate peridynamics with classical finite-element models
= Mathematical foundations for local-nonlocal coupling
= Algorithm and software prototyping
= [nitial validation against experimental data
= |Implementation in Sierra/SolidMechanics
TEAM

= Expertise: mathematics, mechanics, scientific computing, engineering analysis
= Direct line of sight from mathematical foundations to deployment
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Peridynamics

WHAT IS PERIDYNAMICS?

Peridynamics is a mathematical theory that unifies the mechanics of
continuous media, cracks, and discrete particles

HOW DOES IT WORK?
: L : : : The point X interacts
= Peridynamics is a nonlocal extension of continuum mechanics directly with all points
= Remains valid in presence of discontinuities, including cracks within its horizon

= Balance of linear momentum is based on an integral equation:

p(x)ii(x, £) = /@ [T, f] (x — x) — T'[x, 1] (x — )} dVi + b(x, 1) g
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Divergence of stress replaced with
integral of nonlocal forces.
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Local-Nonlocal Coupling: Domain Decomposition Approach

DOMAIN DECOMPOSITION FOR LOCAL MODELS

One Domain Equivalent Two
Problem Q Domain o Ly @
Problem 55
o0 du\To 00\ To
KEY POINTS

® For a given one-domain problem, an equivalent two-domain problem can be constructed

= Sub-domain problems are solved independently, subject to an additional set of
fransmission conditions (continuity & flux balance)

= Example: Transmission conditions for classical diffusion problem:
u1(x,t) = ug(x,t), on Iy x (0,7).
(D1(x)Vuy(x,t)) - ny = — (Da(x)Vua(x,t)) -nz, on Iy x (0,7).

CAN DOMAIN DECOMPOSTION BE EXTENDED TO NONLOCAL MODELS?

" YES, domain decomposition for nonlocal diffusion has been developed by Seleson,
Gunzburger, and Parks [submitted for publication, 2012]
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Local-Nonlocal Coupling: Domain Decomposition Approach

DOMAIN DECOMPOSITION FOR NONLOCAL MODELS

4 N a N Ty [ ™
One Domain Equivalent Two
Problem Q Domain Q, r, o
Problem p y
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KEY POINTS

= |Interface between domains is a boundary layer due to nonlocal interactions
= Transmission conditions must be derived for nonlocal models (continuity & flux balance)

uy(x,t) = uz(x,t), in I'e x (0,T).

Z_QZ(X, t) = _/%Csym(x"x)(u(x’,t) - 'U:(x3 t)) de’ + Q(xa t)’ in F€ X (O’ T)

CAN DOMAIN DECOMPOSITION BE APPLIED TO LOCAL-NONLOCAL COUPLING?

" YES, local-nonlocal coupling is achieved by reducing the nonlocal length scale
(peridynamic horizon) to zero within one of the domains

= Challenges remain for application to solid mechanics: Extension from scalar fields
(e.g., concentration) to vector fields (e.g., displacements)

’ Sandia
6 National _
Laboratories




Implicit Local-Nonlocal Coupling

APPLY UNIFIED PERIDYNAMIC MODEL WITH A VARYING HORIZON

= Key point: Peridynamics converges to a local model as the horizon approaches zero
= Horizon > mesh spacing produces a nonlocal model
" Horizon < mesh spacing produces a local model
= Apply local-local coupling to peridynamics (horizon < mesh spacing) and classical FEM

= Key challenge: Current mesh-free discretization and quadrature rules do not support a
horizon < mesh spacing

= Higher-order peridynamic quadrature must be developed
= Current quadrature work: Gunzburger, and Bond and Lehoucq

Impact simulation

Increasing horizon ===p <= Increasing horizon
\ ) |\ ) |\ )
Y Y Y
o<h d>h o<h
local model nonlocal model local model
7 S.A. Silling and R.B. Lehoucq, Convergence of peridynamics to classical elasticity theory, Journal of Elastigil National

(1), pp. 13-37, 2008. Laboratories



Algorithm Development and Software Prototyping

VET ALGORITHMS IN AN OPEN-SOURCE, COLLABORATIVE SOFTWARE FRAMEWORK

= Candidate algorithms for local-nonlocal coupling

= Higher-order peridynamic quadrature

= Algorithm design for compatibility with production analysis code
= Platform for initial model validation

PROTOTYPE DEVELOPMENT — daiwan | || [ DAKotA ] || Tritines ]
. . . Mailing Li uQ T T
" Peridigm peridynamics code | e Optimization Parallelization Tools
[Parks, Littlewood, Mitchell] . Error stmation_| || 200 0 a
’ ’ | Subversion | Calibration Load Balancing (Zoltan)
= Albany/L.CM classical finite-element | L VersionControl | .
code [Salinger, Ostien] Interfaces (Thyra)
B _ | CMake | | Paraview | ||| Tools (Teuchos, Triutils)
= Trilinos agile components Build System [ Visushzation | || [etd Manager (Phalan)
) Testing (CTest) ModelEvaluator (EpetraExt)
= Rapid prototype development
. Solver Tools
= Feedback mechanism to | Trac | VIK Iterative Solvers (Belos)
i Project Management Visualization Toolkit Nonlinear Solvers (NOX)
TrIIInOS developers Issue Tracking : Preconditioners (IFPack)
Wiki | Service Tools | Multilevel (ML)

M. Parks, D. Littlewood, A. Salinger, and J. Mitchell, Peridigm Summary Report: Lessons Learned in Development with
Agile Components, SAND2011-7045.
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Prototyping in Albany/LCM and Peridigm

PERIDIGM SIMULATIONS USING CLASSICAL MATERIAL MODELS

® Non-ordinary state-based peridynamics

1. Peridigm computes approximate
deformation gradient

2. Kinematic data passed to material model

in Albany <=
3. Peridigm converts stresses to pairwise -
peridynamic forces

Initial milestones:
DRIVE PERIDYNAMICS SIMULATION FROM ALBANY oure peridynamic

simulations

® Wrap Peridigm in a PHX: :Evaluator
= |nternal force / Jacobian
= Implicit / explicit time integration
= File I/O, conversion to sphere elements
= Contact




Prototyping in Albany/LCM and Peridigm

COMBINED PERIDYNAMICS / CLASSICAL FEM SIMULATIONS - —
<= —-—)

= Drive simulations from Albany o
: : : - e -
= Independent blocks for peridynamics and classical FEM -
COUPLED PERIDYNAMICS / CLASSICAL FEM SIMULATIONS Combined simulation

= Drive simulations from Albany

= Mesh tying couples the peridynamic and classical-FEM portions of the simulation
= Multi-point constraints provide quickest path to (lousy) coupled simulation
= Create framework for implementation of coupling algorithms

=  Coupled

= =) Simulation
S PR -

HIGHER-ORDER QUADRATURE FOR PERIDYNAMICS IN PERIDIGM

= Mathematical formulations must be extended to three dimensions

= Payoff: Increased accuracy and improved convergence rates

= Payoff: Allows for peridynamic horizon that is smaller than the element size
= Natural path to local-nonlocal coupling
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Initial Model Validation

PERFORATION OF ALUMINUM PANELS

= Perforation of extruded AA6005- 2 .
T6 panels by steel projectiles gzw—
[Borvik, et. al, 20035] 5 iﬁ: 150 *

" Validate exit velocities against 71001 "
experimental measurements 50 - .

= Qualitative evaluation of o

Initial velocity [m/s]

localization and damage patterns

SPALLATION OF SILICON CARBIDE N LA UL
i 1F Tensile E 240 : (\N\’\i\\ :
= Spall in shock-loaded silicon 1 ocation El ]
carbide [Dandekar, 2004] 1 VisARProbe 2 160F Pull back ]
= Validate free-surface velocities - L % - -
against experimental data g sor ]
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T. Borvik, A.H. Clausen, M. Eriksson, T. Berstad, O.S. Hopperstad, and M. Langseth, Experimental and numerical study
on the perforation of AA6005-T6 panels, International Journal of Impact Engineering, 32, pp. 35-64, 2005.

D.P. Dandekar, Spall strength of silicon carbide under normal and simultaneous compression-shear shock wave loading.
International Journal of Applied Ceramic Technology, 1(3), pp. 261-268, 2004.

B.L. Boyce, J.E. Bishop, A. Brown, T. Cordova, J.V. Cox, T.B. Crenshaw, K. Dion, J.M. Emery, J.T. Foster, J.W. Folkd

Sandia
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Implementation in Sierra/SolidMechanics

DEPLOYMENT TO THE DOE AND DOD

= Sierra is the engineering mechanics simulation code suite supporting the
nation’s nuclear weapons mission, as well as other customers

= Leverage existing implementation of peridynamics in Sierra/SM [Littlewood,
Sierra/SM team]

= Strengthen collaboration between 1400, 8200, and 1500

MEASURES OF SUCCESS

= Performance in validation experiments

= Range of applicability
= Hexahedron elements (focus is here)
= Tetrahedron elements, structural elements
= RKPM

= |Impact on code complexity, performance, and
maintainability

IMPACT

= Failure modeling capability of direct relevance to Sandia’s national security
missions

12
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Questions?
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