

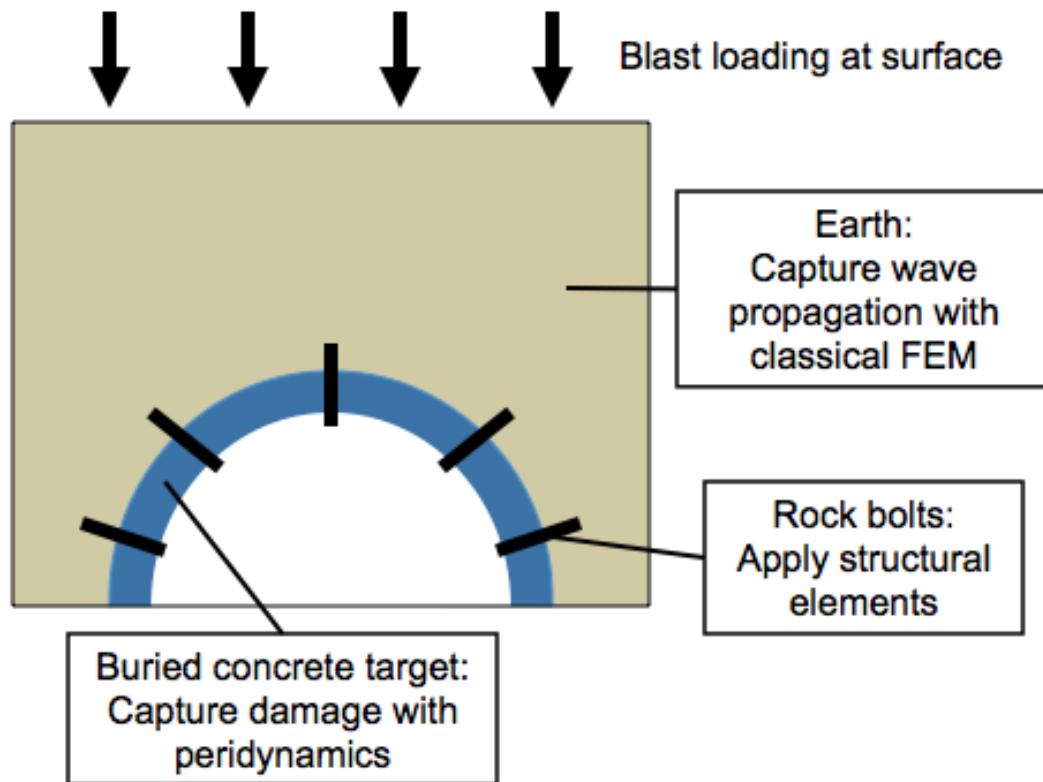
Strong Local-Nonlocal Coupling for Integrated Fracture Modeling

LDRD FY13-FY15

David Littlewood

Albany Developers Meeting
2 October 2012

Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.


Goal: Direct Coupling of Peridynamics and Classical FEM

DRIVER

- Provide an integrated fracture modeling capability to the DOE and DoD

IMPACT

- Advance state of the art in computational simulation of material failure and fracture
- Integrated fracture modeling capability directly applicable to Sandia's mission

Vision

*Apply peridynamics in
regions susceptible to
material failure*

Local-Nonlocal Coupling for Integrated Fracture Modeling

APPROACH

- Fully integrate *peridynamics* with *classical finite-element models*
 - Mathematical foundations for local-nonlocal coupling
 - Algorithm and software prototyping
 - Initial validation against experimental data
 - Implementation in *Sierra/SolidMechanics*

TEAM

- Expertise: mathematics, mechanics, scientific computing, engineering analysis
- Direct line of sight from mathematical foundations to deployment

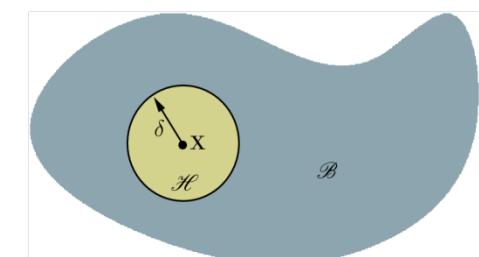
Team Members

David Littlewood (1444)
Michael Parks (1444)
Jakob Ostien (8256)
Stewart Silling (1444)
Max Gunzburger (FSU)
Pablo Seleson (U. Texas)

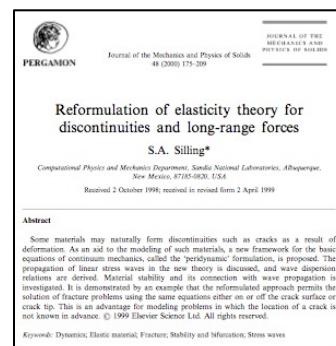
Peridynamics

WHAT IS PERIDYNAMICS?

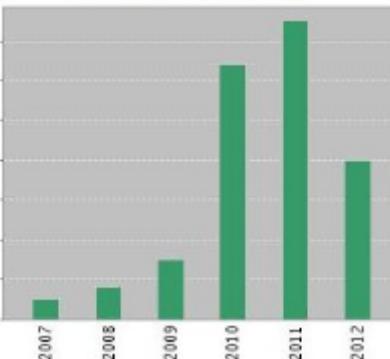
Peridynamics is a mathematical theory that unifies the mechanics of continuous media, cracks, and discrete particles


HOW DOES IT WORK?

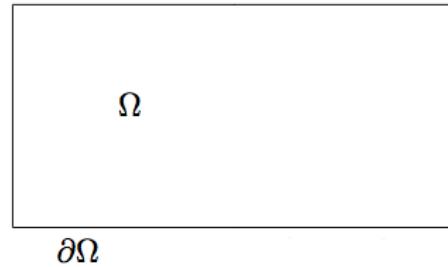
- Peridynamics is a *nonlocal* extension of continuum mechanics
- Remains valid in presence of discontinuities, including cracks
- Balance of linear momentum is based on an *integral equation*:

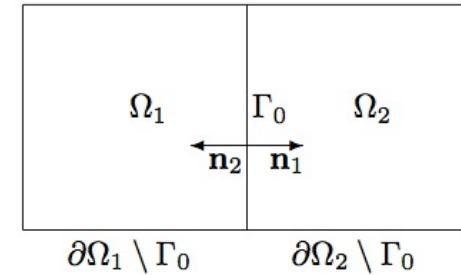

$$\rho(\mathbf{x})\ddot{\mathbf{u}}(\mathbf{x}, t) = \underbrace{\int_{\mathcal{B}} \left\{ \underline{\mathbf{T}}[\mathbf{x}, t] \langle \mathbf{x}' - \mathbf{x} \rangle - \underline{\mathbf{T}}'[\mathbf{x}', t] \langle \mathbf{x} - \mathbf{x}' \rangle \right\} dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x}, t)}$$

Divergence of stress replaced with
integral of nonlocal forces.


The point \mathbf{x} interacts
directly with all points
within its horizon

Increasing prominence
of peridynamics


Citations in Each Year


Local-Nonlocal Coupling: Domain Decomposition Approach

DOMAIN DECOMPOSITION FOR LOCAL MODELS

One Domain Problem

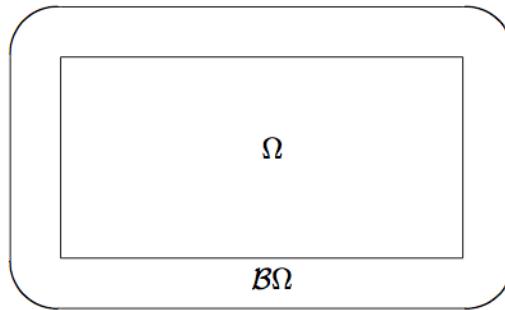
Equivalent Two Domain Problem

KEY POINTS

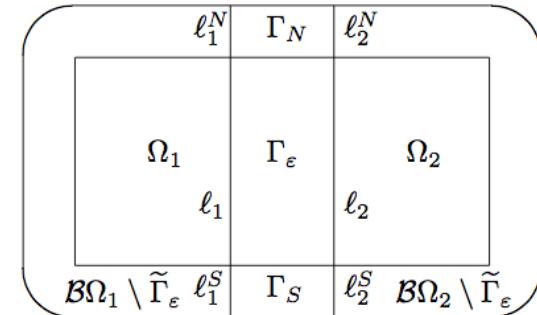
- For a given one-domain problem, an equivalent two-domain problem can be constructed
- Sub-domain problems are solved independently, subject to an additional set of *transmission conditions* (continuity & flux balance)
- Example: Transmission conditions for classical diffusion problem:

$$u_1(\mathbf{x}, t) = u_2(\mathbf{x}, t), \text{ on } \Gamma_0 \times (0, T).$$

$$(\mathbf{D}_1(\mathbf{x}) \nabla u_1(\mathbf{x}, t)) \cdot \mathbf{n}_1 = -(\mathbf{D}_2(\mathbf{x}) \nabla u_2(\mathbf{x}, t)) \cdot \mathbf{n}_2, \text{ on } \Gamma_0 \times (0, T).$$


CAN DOMAIN DECOMPOSITION BE EXTENDED TO NONLOCAL MODELS?

- YES, domain decomposition for nonlocal diffusion has been developed by Seleson, Gunzburger, and Parks [*submitted for publication, 2012*]


Local-Nonlocal Coupling: Domain Decomposition Approach

DOMAIN DECOMPOSITION FOR NONLOCAL MODELS

One Domain Problem

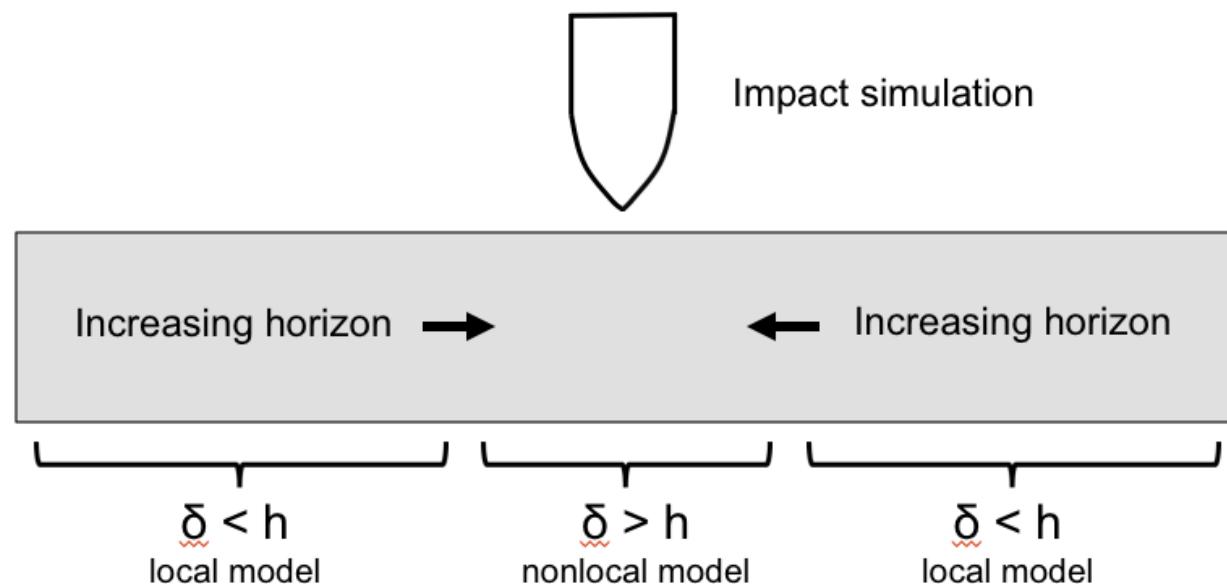
Equivalent Two Domain Problem

KEY POINTS

- Interface between domains is a boundary layer due to nonlocal interactions
- Transmission conditions must be derived for nonlocal models (continuity & flux balance)

$$u_1(\mathbf{x}, t) = u_2(\mathbf{x}, t), \text{ in } \Gamma_\varepsilon \times (0, T).$$

$$\frac{\partial u}{\partial t}(\mathbf{x}, t) = \int_{\bar{\Omega}} c_{\text{sym}}(\mathbf{x}', \mathbf{x})(u(\mathbf{x}', t) - u(\mathbf{x}, t)) dV_{\mathbf{x}'} + q(\mathbf{x}, t), \text{ in } \Gamma_\varepsilon \times (0, T).$$

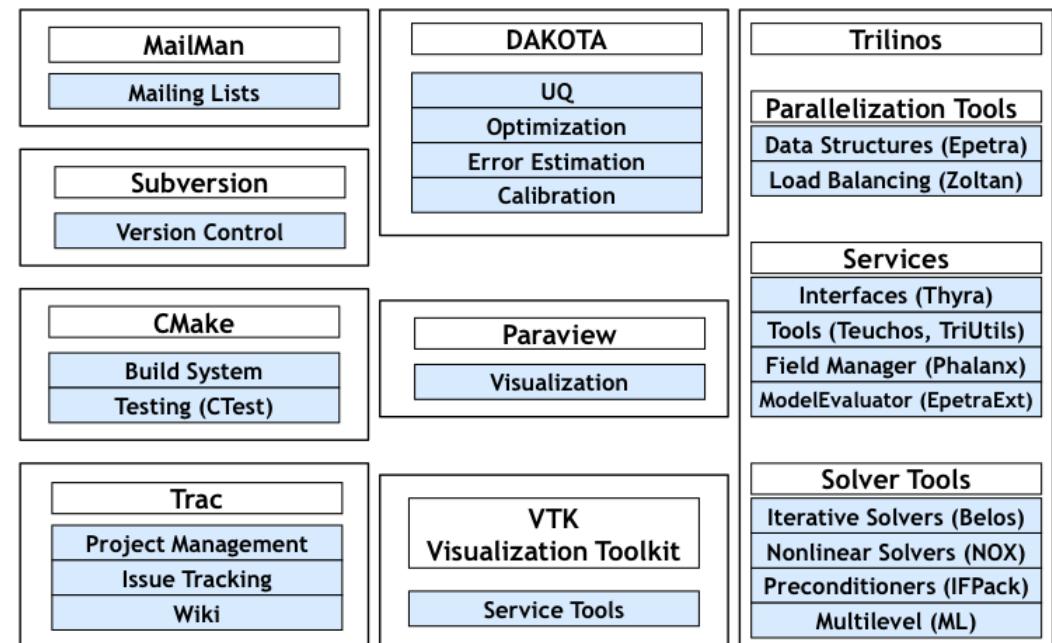

CAN DOMAIN DECOMPOSITION BE APPLIED TO LOCAL-NONLOCAL COUPLING?

- YES, local-nonlocal coupling is achieved by reducing the nonlocal length scale (peridynamic horizon) to zero within one of the domains
- Challenges remain for application to solid mechanics: Extension from scalar fields (e.g., concentration) to vector fields (e.g., displacements)

Implicit Local-Nonlocal Coupling

APPLY UNIFIED PERIDYNAMIC MODEL WITH A VARYING HORIZON

- Key point: Peridynamics converges to a local model as the horizon approaches zero
 - Horizon > mesh spacing produces a nonlocal model
 - Horizon < mesh spacing produces a local model
- Apply local-local coupling to peridynamics (horizon < mesh spacing) and classical FEM
- **Key challenge:** Current mesh-free discretization and quadrature rules do not support a horizon < mesh spacing
 - Higher-order peridynamic quadrature must be developed
 - Current quadrature work: Gunzburger, and Bond and Lehoucq

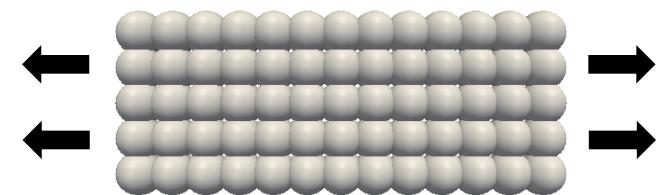

Algorithm Development and Software Prototyping

VET ALGORITHMS IN AN OPEN-SOURCE, COLLABORATIVE SOFTWARE FRAMEWORK

- Candidate algorithms for local-nonlocal coupling
- Higher-order peridynamic quadrature
- Algorithm design for compatibility with production analysis code
- Platform for initial model validation

PROTOTYPE DEVELOPMENT

- *Peridigm* peridynamics code [Parks, Littlewood, Mitchell]
- *Albany/LCM* classical finite-element code [Salinger, Ostien]
- Trilinos agile components
 - Rapid prototype development
 - Feedback mechanism to Trilinos developers



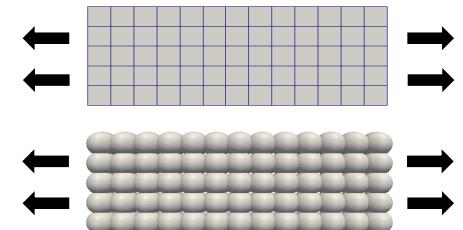
M. Parks, D. Littlewood, A. Salinger, and J. Mitchell, *Peridigm* Summary Report: Lessons Learned in Development with Agile Components, SAND2011-7045.

Prototyping in *Albany/LCM* and *Peridigm*

PERIDIGM SIMULATIONS USING CLASSICAL MATERIAL MODELS

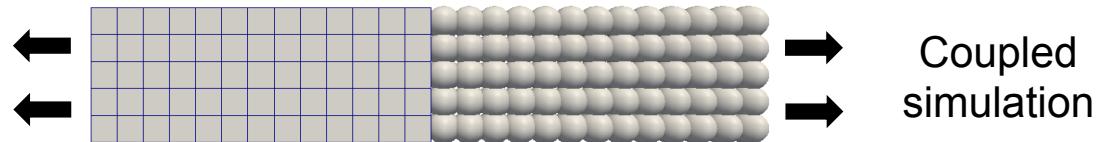
- Non-ordinary state-based peridynamics
 1. *Peridigm* computes approximate deformation gradient
 2. Kinematic data passed to material model in *Albany*
 3. *Peridigm* converts stresses to pairwise peridynamic forces

DRIVE PERIDYNAMICS SIMULATION FROM ALBANY


- Wrap *Peridigm* in a `PHX::Evaluator`
 - Internal force / Jacobian
 - Implicit / explicit time integration
 - File I/O, conversion to sphere elements
 - Contact

Initial milestones:
pure peridynamic
simulations

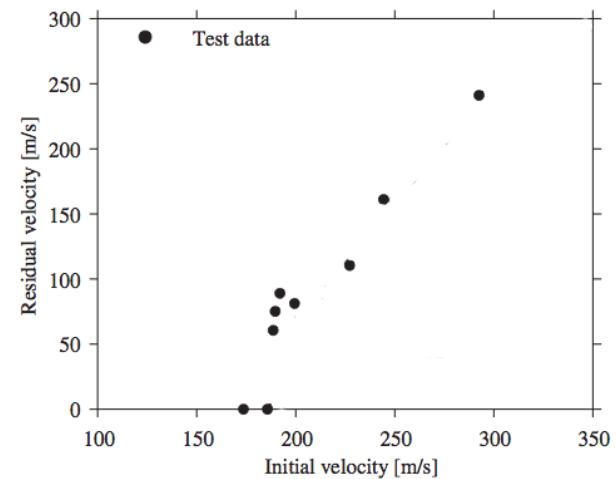
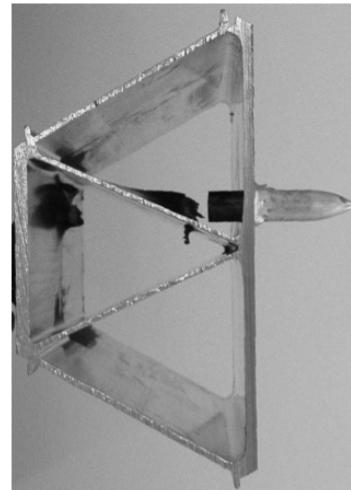
Prototyping in *Albany/LCM* and *Peridigm*


COMBINED PERIDYNAMICS / CLASSICAL FEM SIMULATIONS

- Drive simulations from *Albany*
- Independent blocks for peridynamics and classical FEM

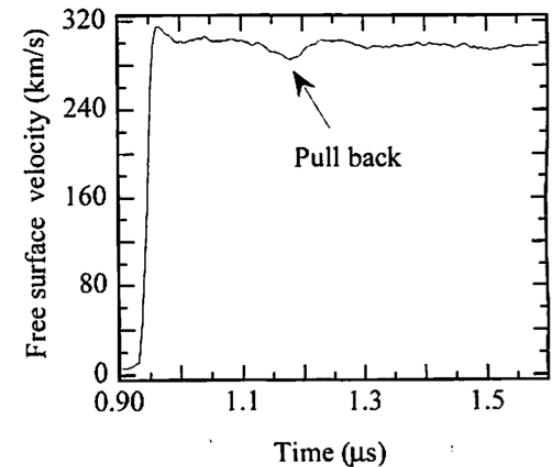
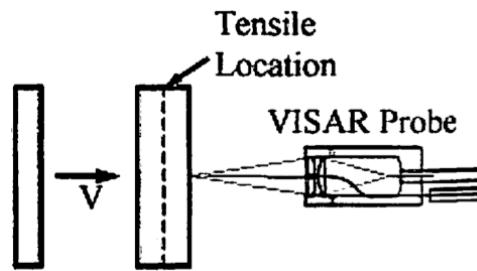
COUPLED PERIDYNAMICS / CLASSICAL FEM SIMULATIONS

- Drive simulations from *Albany*
- Mesh tying couples the peridynamic and classical-FEM portions of the simulation
 - Multi-point constraints provide quickest path to (lousy) coupled simulation
 - Create framework for implementation of coupling algorithms



HIGHER-ORDER QUADRATURE FOR PERIDYNAMICS IN PERIDIGM

- Mathematical formulations must be extended to three dimensions
- Payoff: Increased accuracy and improved convergence rates
- Payoff: Allows for peridynamic horizon that is smaller than the element size
 - Natural path to local-nonlocal coupling

Initial Model Validation



PERFORATION OF ALUMINUM PANELS

- Perforation of extruded AA6005-T6 panels by steel projectiles [Borvik, et. al, 2005]
- Validate exit velocities against experimental measurements
- Qualitative evaluation of localization and damage patterns

SPALLATION OF SILICON CARBIDE

- Spall in shock-loaded silicon carbide [Dandekar, 2004]
- Validate free-surface velocities against experimental data

T. Borvik, A.H. Clausen, M. Eriksson, T. Berstad, O.S. Hopperstad, and M. Langseth, Experimental and numerical study on the perforation of AA6005-T6 panels, *International Journal of Impact Engineering*, 32, pp. 35-64, 2005.

D.P. Dandekar, Spall strength of silicon carbide under normal and simultaneous compression-shear shock wave loading. *International Journal of Applied Ceramic Technology*, 1(3), pp. 261-268, 2004.

B.L. Boyce, J.E. Bishop, A. Brown, T. Cordova, J.V. Cox, T.B. Crenshaw, K. Dion, J.M. Emery, J.T. Foster, J.W. Folk III, D.J. Littlewood, A. Mota, J. Ostien, S. Silling, B.W. Spencer, G.W. Wellman, Ductile Failure X-Prize, SAND2011-6801.

Implementation in Sierra/SolidMechanics

DEPLOYMENT TO THE DOE AND DOD

- Sierra is the engineering mechanics simulation code suite supporting the nation's nuclear weapons mission, as well as other customers
- Leverage existing implementation of peridynamics in *Sierra/SM* [Littlewood, *Sierra/SM* team]
- Strengthen collaboration between 1400, 8200, and 1500

MEASURES OF SUCCESS

- Performance in validation experiments
- Range of applicability
 - Hexahedron elements (focus is here)
 - Tetrahedron elements, structural elements
 - RKPM
- Impact on code complexity, performance, and maintainability

IMPACT

- Failure modeling capability of direct relevance to Sandia's national security missions

Questions?

Strong Local-Nonlocal Coupling for Integrated Fracture Modeling

David Littlewood

djlitt@sandia.gov

Multiphysics Simulation Technologies (Org. 1444)

References

SEMINAL WORK IN PERIDYNAMICS

S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, *Journal of the Mechanics and Physics of Solids*, 48(1), pp. 175-209, 2000.

S. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic States and Constitutive Modeling, *Journal of Elasticity*, 88(2), pp. 151-184, 2007.

S.A. Silling and R.B. Lehoucq, Peridynamic theory of solid mechanics, *Advances in Applied Mechanics*, 44, pp. 73-168, 2010.

PUBLICATIONS IN LOCAL-NONLOCAL COUPLING

B. Kilic and E. Madenci, Coupling of peridynamic theory and the finite element methods, *Journal of Mechanics of Materials and Structures*, 5(5), pp. 707-733, 2010.

F. Han and G. Lubineau, Coupling of nonlocal and local continuum models by the Arlequin approach, *International Journal for Numerical Methods in Engineering*, 89, pp. 671-685, 2012.

G. Lubineau, Y. Azdoud, F. Han, C. Rey, and E. Askari, A morphing strategy to couple non-local to local continuum mechanics, *Journal of the Mechanics and Physics of Solids*, 60, pp. 1088-1102, 2012.

B. Aksoylu and M.L. Parks, Variational theory and domain decomposition for nonlocal problems, *Applied Mathematics and Computation*, 217, pp. 6498-6515, 2011.

P. Seleson, M. Gunzburger, and M.L. Parks, Interface problems for nonlocal diffusion models and the coupling of local and nonlocal models, *Submitted for publication*, 2012.

P. Seleson, S. Beneddine, and S. Prudhomme, A force-based coupling scheme for peridynamics and classical elasticity, *Computational Materials Science*, *Accepted for publication*, 2012.