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Outline

Shear-dominated ductile failure

e Shear-modified Gurson damage model
 Model formulation
* Numerical implementation and verification

 Model Calibration and Validation
* Experiments for 6061-T651 Aluminum
* Optimization-based parameter calibration (use Dakota, with Kyle

Karlson)

Cap-plasticity model for porous geomaterials
* Model formulation
* Numerical implementation and verification
e 3D penetration problem on Salem limestone (couple cap plasticity
model with poro-mechanical problem)



Ductile Failure and Stress Triaxiality

mean stress

Triaxiality = ——————————  low trixaxialit - i
raxiality =~ Y shear-dominated state

typical ductile failure of specimen
in tensile test

Triaxiality contour
0.0 1.0 triaxiality in double-notched shear

Schematic representation of the strain to failure of a ductile metal




Classical Gurson Damage Model

The macroscopic yield surface

o(r,Y, f) = 28Y28 +:2q1f cosh(%) —q3f?—1=0
""""""""""""" S~ pressure dependent
p = tr(T)/B mean stress
s = dev(7'> deviatoric stress tensor
Y current effective stress of the damage-free matrix material
f void volume fraction «— damage parameter

g1, q2, g3 model fitting parameters [Tvergaard 1990]

damage-free f =0 Hardening law for matrix material Evolution of eqps
@ e Saturation-type . 9%
3s:s Y =Yy + Yoo [1 —exp(—de,)] + Keg EY(1—f)=T1: (78_7->
b= 272 ! * Power-law o0 where 1
OR & = ||s|| — \/gy Y = Y(_)(1 ‘|‘.E€q/YO)N o7 S+ §Q1C_Z2Yf sinh(v)1
3 * Hardening minus recovery model

yield surface for J2 Y =Y5(0) + 21u(0)ess
plasticity!



Shear Modification

Classical damage evolution law )
L . N exp |1 <Eq‘€N) >0
f p— fg —|— fnu fnu — qu A(gq) f— { SN\/ﬁ eXp [ 2 SN ] ’ p -

original void growth law, physically based and derived by [Gurson 1977]

7('97'

Recent experiment evidence suggests classical model over estimate the fracture strain

fg = (1— f)tr ( 8_(1)) <«— predicts no void growth under shear state

Shear-modified damage growth law

Introducing third-stress-invariant dependent [Nahshon-Hutchinson 2008]

2 .
w(t)=1-— 27J3 where 7, := \/%HSH effective stress
273 . . .
J3 := det(s) third stress invariant

e

fo= = (452 ) ka2 (452

material constant that sets the magnitude of
@  the damage growth rate in pure shear states
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Hyperelastic Constitutive Relation

Strain energy function

U — \Ilvol[Je] 4 \Iliso [Be]
The volumetric and isochoric parts

1 N 1 .
Pellg,] = S (I Jo)?, WU°[b,] = i be b
where
b, :=J 2b, x bulk modulus
J. :=det F, 1 shear modulus
b. .= F.F!

Elastic constitutive law and the Kirchhoff stress
T = /ﬁ;lnt]eg_1 + ,ulnIA)e

The Kirchhoff pressure and deviatoric stress tensor

1 1
p= §tr(1') = §/<,lndet b.

s =dev(T) = pdevinb,

A

Flow rule

from principal of
maximum dissipation

1 0P

——Ly(be) - bt =y——



Numerical implementation

An implicit objective integration algorithm is implemented for integrating stress
response over a finite time step. Backward Euler is applied to rate equations.

Local unknown vector (4x1)

X = {p7 fa €q5 A/Y}
Local nonlinear system of equations (4x1)

1 1
Ri(X) = 5518~ §¢Y2

Ry(X) = p— p"™ + q1qokAYY f sinh(v)

, 2
R3(X)=f—fn—qq2(1 — f)A~Y fsinh(v) — \/;A’ykwfw(T)HsH — Aeg — g4(n))
Ay
Y(1-f)
Iterative solution procedure like the Newton’s method requires consistent linearisation,
therefore the computation of local Jacobian matrix (4x4) J = aR/@X\

difficulty and time-consuming to
Remarks derive analytical expression!

Ry(X) =4 — €4n) — (s : 8+ q1q2pY fsinh(v))

. Forward Automatic Differentiation (FAD) is used to obtain local Jacobian matrix.
. LocalNonlinearSolver is used to solve the linearized equation, and upon convergence,
. compute the system sensitivity information.

_____________________________________________________________________________________________________________________________



Implicit integration algorithm for shear-modified Gurson damage model

GIVEN: €q(n)> fn, be(n) and F

FIND:

STEP 1.
STEP 2.
STEP 3.

STEP 4.

STEP 5.

Ta 5qv f7 be(Fp)

Compute trial elastic left Cauchy-Green tensor b'

Compute trial Kirchhoff pressure and deviatoric tensor p'*, s
Check yielding: ®"(p'*, ', e4(n), fn) > 07

No, set p = p'*, s = s, b, = b,
Yes, local Newton loop

4.1 Initialize X" and iteration count k = 0
4.2 Assemble residual R(X")
4.3 Check convergence: || R ||< tol 7
Yes, converged and go to STEP 5
4.4 No, compute local Jacobian matrix J = dR/)X <=== FAD
4.5 Solve system of equations J - X = R for X  <=== LocalNonlinearSolver

4.6 Update Xkt = xF 0X,k— k+1 and go to 4.2
Update T = s+ pg. and ¢,. f, F,

tr

€¢ = €q(n),J = Jn and exit

*The plastic deformation gradient is updated upon local convergence

0P
Fp — exp (—) . Fb(n)

oT

This integration needs to be done for each global iteration within a global loading step.



example code from GursonFD_Def.hpp using FAD and NonLinearSolver

// initialize local unknown vector
X[0] = dgam; XI[1] = p; XI[2] = fvoid; XI[3] = eq;

{// local Newton-Raphson loop

// initialize DFadType local unknown vector Xfad
// Note that since Xfad is a temporary variable that gets changed within local
iterations
// when we initialize Xfad, we only pass in the values of X, NOT the system
sensitivity information
for (std:i:isize t i = 0; i < 4; ++1i) {
Xvallil = Sacado::ScalarValue<ScalarT>::eval(X[i]); &= ”unpaCk” SyStem sen
Xfad[i]l = DFadType(4, i, Xvallil); . ]
} information

// local system of equations
Rfad[@] = Phi;
Rfad[1] = pfad - p
+ dgam * ql * g2 * kappa * Ybar x fvoidfad * std::sinh(tmp);
Rfad[2] = fvoidfad - fvoid - dfg - dfn;
Rfad[3] = eqfad - eq - deq;

// get ScalarT Residual
for (int 1 = 0; 1 < 4; i++)
R[i] = Rfad[il.val();

// get local Jacobian . .
for (int i = 0; i < 4; i++) local Jacobian matrix (4x4)

for (int j = 0; j < 4; j++)

dRAX[i + 4 * j1 = Rfad[il.dx(j); J=0R/0X

// call LocalNonlinearSolver

solver.solve(dRdX, X, R); <«— LocalNonlinearSolver
} // end local Newton loop

// compute sensitivity information w.r.t system parameters, and pack back to X

solver.computeFadInfo(dRdX, X, R); €— compute system sensitivity

1sitivity




Verification: element tests

hydrostatic 4r

extensioin

* J2 predicts no 3l
plasticity (pressure-
independent).

*  Gurson model
response
independent of
shear term, because
it’s purely hydrostatic
stress state.

o z2r

e b
Gurson kw=0
— Gurson kw=3

simple shear 147

* Analytical solution
can be derived if
void nucleation is
neglected.

* Damage free
Gurson recovers J2
model.

*  Without shear
term, the classical
Gurson model

Effective stress
o o
(23] [++] —

o
B

0
[\

— kw=1
kw=2
kw=3

— no damage

© J2

U analytical | ,

predicts no
damage growth.

o
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Outline

Shear-dominated ductile failure

* Model Calibration and Validation
* Experiments for 6061-T651 Aluminum
* Optimization-based parameter calibration (Use Dakota, with Kyle
Karlson)



Smooth Tensile Test for 6061-T651 Aluminum

original smooth tensile test data

400

True Stress, Mpa

300
2000

100

R

0.024 0.026 0.028 0.03 0.032
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True Strain

8 sets of experimental data
Non-smooth and non-unique data points
Calibrate model to fit engineering stress-
strain curve up to peak load

clean and average data sets
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Tensile specimen: Notched and smooth



Force, Ibf
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Notched Tensile Test for 6061-T651 Aluminum

Digitalized data for notched tensile tests
2000 ' ' -

original notched tensile test data

u T T T T
.
o
Vs

—/

‘_" AL=.0187 \ =t R4
~
6061-T651 3.5" dia bar b / RS
MNotch Tensile: axial
— D=0.3", d=0.15", GL=0.5" 2
+ R1=.024": 6061T6_76
O R2=.048"6061T6_89
B V R3=.096" 6061T6_103 ALF.0324
o R4=240" 6061T6_117
[ | L | L | L | | !
0 5 10 15 20 25 30 2 3 4
AL = 0.5" Extensometer Displacement, in. Displacement m -4
1

4 different notch radius

original figure is digitalized

Notched tensile test used for calibration, also
“validation”.

Tensile specimen: Notched and smooth



Model Calibration

Parameters to calibrate in the damage model

Besides elastic constants, for shear-modified Gurson model, the following
parameters need to be calibrated

the matrix strain hardening parameters Yo, N === Smooth tensile test
the macroscopic yield surface coefficients q1,¢2,93 === keep constant
initial void volume fraction f, === keep constant

void nucleation law  fx . en, sy === Notched tensile

shear damage parameter [ | === Shear test

mesh size D, === mesh refinement study



Model calibration

Optimization-based model calibration

* Find the parameter set (p1,...,pN) that minimizes the objective function (maximize the
agreement between simulation response and experiment)

1 n

f(p1,..,pN) = 3 Z;[Fi(l?h .,oN) — 7
1=
response (simulation) target (experiment)

e Solution of the optimization problem requires iterative process

* Requires computing derivative of objective function w.r.t. parameter sets (Use FAD in
Albany?)

(" DAKOTA

optimization, sensitivity analysis,
parameter estimation,
\_uncertainty quantification

parameters
(design, UC,
state)

response
metrics

Computational Model (simulation)
* Black box: any code: mechanics, circuits,

high energy physics, biology, chemistry }

* Semi-intrusive: Matlab, ModelCenter, Python
SIERRA multi-physics, SALINAS, Xyce




Model calibration

Optimization-based model calibration

* Find the parameter set (p1,...,pN) that minimizes the objective function (maximize the
agreement between simulation response and experiment)

1 n

f(p1,..,pN) = 3 Z;[Fi(l?h .,oN) — 7
1=
response (simulation) target (experiment)

e Solution of the optimization problem requires iterative process
* Requires computing derivative of objective function w.r.t. parameter sets

Dakota for automating the parameter variation process

4 DAKOTA

optimization, sensitivity analysis,
parameter estimation,
\_uncertainty quantification

parameters
(design, UC,
state)

response
metrics

Computational Model (simulation)
* Black box: any code: mechanics, circuits,

high energy physics, biology, chemistry J
on

* Semi-intrusive: Matlab, ModelCenter, Pyth

SIERRA multi-physics, SALINAS, Xyce Albany




Calibration of the matrix strain hardening parameters

350

 Calibration up to peak load w0l
» Dakota Least-square method & 50l Opeak
* Numerical gradient computed by finite difference

tre:
N
(=]
=]

—_
o
o

n

—_
o
o

Engineering Stres

1

12
f(p1,.spN) = QZ[Fi(ph---,pN)—Fi} 50|
=1 ’ o0 Enginee?i.r:g Strain o1
objective function vs. iterations parameter R vs. iterations
14000 201
12000+
S 10000/ 1!
E
2 80007
) o 10
>
5 6000}
2
o
O 4000r i
3]
20007
0 L L L 1 e © 1 1 | 1 1
0 2 4 6 8 10 ' 0 2 4 6 8 10
Number of evaluation Numbarof avaluatan

hardening minus recovery

0.2



Calibration the matrix strain hardening parameters

saturation type hardening
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* Single element calibration
e different hardening laws are
calibrated



Smooth tensile tests

* Verify the calibrated parameters from single element calibration
* Due to symmetry, only one-eighth of the sample is simulated
 Damage not included (does not affect pre-peak response)

saturation type hardening

3507

3007

™

o

o
T

Engineering Stress

Y Experiment

——Simulation

0 0.02 0.04 0.06 0.08 0.1
Engineering Strain

material parameters

calibrated: constant:

Yy = 303.3 MPa fo=0 g1 =1.5

Yo =376.9 MPa k., =0 g2 = 1.0
K = 30.4 MPa fn=0 q3 = 2.25

0=12.4



Smooth tensile tests

damage parameter Von Mises stress
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Notched Tensile Tests

Introduce damage in the model (use constant from literature)
Use calibrated hardening law from smooth tensile test (“validate”)

Four different notch radius, one eighth of the sample modeled

[ ]
Power law hardening

Saturation hardening law
. 20001
2000 B o . -
- Expetiment - Experimen
— Simulation:mesh1 Simulation
~ 7 Simulation:mesh2
P
&
2
Q
L
3 4 4
Displacement, m -4
x 10

Displacement, m -4
x 10
FE mesh for four different radius

damage parameters
fo = 0.002
k,=0
Fn = 0.04




Remarks and ongoing work

* Develop and implement a hyper-elastic formulation of the
shear-modified Gurson model
* Use FAD and LocalNonlinearSolver assisting the
implementation of the model
* Use Dakota to automate process of optimization-based
parameter calibration
e Parameter Calibration:
e Parameters for matrix hardening law calibrated using
single element
* Void nucleation parameter will require multi-element
(specimen-scale computation) calibration using
notched tensile test
* The optimization process may not always converge and
may not converge to local minimum

Torsion Test on Notched Tube

—0.2

* Shear damage parameter calibration
requires high fidelity test: Notched Tube

D|\|\|\|||m
o
—







Cap plasticity model

* For modeling complicated behavior of porous geomaterials, such as sandstone,

limestone
* Capable of capturing shear localization in low porosity geomaterials, as well as

compaction band in high porosity geomaterials
* Three invariant, isotropic and kinematic hardening, nop-associative plasticity

Compaction +
shear

i i i Dilation + sh
Yield surface and plastic potential ilation + shear

f(Iy, Jo, J3, 0, k) = (I'(B))?J2 — F.(Fp — N)* =0
g(I1, Ja, J3, o, k) = (D(B))*Jo — F{(F{ — N)?
where the exponential shear failure surface

Inelastic deformation

Elastic
deformation

Diff. stress (G1-03)

Ff([l) = A-— C’exp(BIl) — 9[1

F{(Ii) = A— Cexp(LI) — ¢Ix

£
a-

I'(g3) is a function of the Lode angle, and
takes into account differences in
compression and extension

1 ., ( 3V3J;5
p=—gsin" (2(J2)3/2>

I'(B) = % <1 +sin 38 + %(1 — sin 35))




Cap plasticity model

F. provides an smooth elliptical cap to the yield function

Felhym)=1=H(n— 1) (Xl(lli;—m/ﬂ>2

where function X (the intersection of the cap surface with the mean stress axis in
median plane)

X(k) =k — RF(k)

Evolution laws for kinematic hardening

& = yh" (o)

h® = c*GY(a) dev(g—g_)

where G is a function limits the growth of the back stress as it approaches the failure surface
N B VIS o« L

GY(a)=1-— N J2—§a.a

Evolution laws for isotropic hardening

k= Yh"(K)
B tr(0g/00)
- 0ch /oK

where the following form of volumetric strain is used

? = W (exp[D1(X (k) — Xg) — Da(X (k) — Xg)?] — 1)



Numerical implementation

* Both implicit and explicit scheme has been used to integrate the cap plasticity model
* Explicit scheme:

e an normal stress correction algorithm has been implemented to prevent stress

drifting from yield surface.

* no local system of equation needs to be solved.

* smaller time steps are generally required
* Implicit scheme:

* require iterative solution of local system of equation

* larger time steps can be used

Local unknown vector (13x1)
X ={o,a,k,Av}

Local nonlinear system of equations (13x1)

Remarks

' Forward Automatic Differentiation (FAD) is used to obtain local Jacobian matrix.
' LocalNonlinearSolver is used to solve the linearized equation, and upon convergence,
compute the system sensitivity information.



example code from Caplmplicit_Def.hpp using FAD and NonLinearSolver

// initialize local unknown vector

X[0] = sigmaVal(@, 0); X[1] = sigmaVal(1l, 1); X[2] = sigmaVal(2, 2);
X[3] = sigmaVal(1l, 2); X[4] = sigmaVal(@, 2); X[5] = sigmaVal(e, 1);
X[6] = alphaVal(e, 0); X[7] = alphaVal(1, 1); XI[8] = alphaval(1l, 2);
X[9] = alphaVal(@, 2); X[10] = alphaVal(e, 1);

X[11] = kappaVal; X[12] = dgammaVal;

{// local Newton-Raphson loop
for (int i = 0; i < 13; ++i) {
XVallil
Xfad[il
¥

DFadType(13, i, Xvallil);

// local system of equations (13 x 1)

// get ScalarT Residual
for (int i = @0; 1 < 13; i++)
R[i] = Rfadl[il.val();

// get local Jacobian
for (int 1 = 0; 1 < 13; i++)
for (int j = 0; j < 13; j++)
dRdX[i + 13 x j] = Rfad[il.dx(j);
if (kappa_flag == true) {
for (int §j = 0; j < 13; j++)
dRAX[11 + 13 * j] = 0.0;
dRdX[11 + 13 % 11] = 1.0;
}

// call LocalNonlinearSolver
solver.solve(dRdX, X, R);

} // end local Newton loop

// compute sensitivity information w.r.t system parameters, and pack back to X

solver.computeFadInfo(dRdX, X, R);

Sacado::ScalarValue<ScalarT>::eval(X [i]);

<«— LocalNonlinearSolver

<— “unpack” system sel
information

local Jacobian matrix (13x13)
J=0R/0X

F

<— compute system sensitivity

nsitivity




Material Parameters for Salem Sandstone

Parameter Value Unit
E 22,547 MPa
% 0.2524 dimensionless
A 689.2 MPa
B, L 2.94e — 4, 1.0e — 4 1/MPa
) 675.2 MPa
0,0 0.0 rad
R, Q 28.0 dimensionless
Ko -8.05 MPa
W 0.08 dimensionless
Ds 1.47¢ — 3 1/MPa
Do 0.0 1/MPa?
c“ leb MPa
W 1.0 dimensionless
N 6.0 MPa




Verification: element tests

plane strain compression plane stress
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3D Penetration Problem on Salem Limestone

Couple cap plasticity model with poro-mechanical problem in LCM

eqps contour pore-pressure evolution

PORE BRESSURE
QE]OOO




